
Journal of Statistical Modelling: Theory and Applications
Vol. 4, No. 2, 2023, pp. 35-56
Yazd University Press 2023

Research Paper

Mixtures of the normal mean-variance of Lindley factor
analysis model with missing data

Maryam Darijani1, Hojatollah Zakerzadeh1∗, Farzane Hashemi2
1Department of Statistics, Yazd University ,Yazd, Iran

2Department of Statistics, University of Kashan, Kashan

Received: Feburary 02, 2024/ Revised: May 17, 2024/ Accepted: May 30, 2024

Abstract: For a heterogeneous community comprised of multiple sub-communities, the
model-based clustering method stands out as a suitable recommendation. Moreover,
incomplete data collection and information loss may occur due to a variety of causes.
In this paper, our focus is on investigating the mixture of factor analysis model in the
presence of missing data. Here, the latent factors and errors within each sub-cluster
exhibit non-normal characteristics and adhere to the normal mean-variance mixture
of Lindley distribution. This model is termed the mixture of normal mean-variance
mixture of Lindley factor analysis. To estimate model parameters and generate a single
imputation of potential missing values under the missing with random mechanism, we
introduce a generalized expectation-maximization algorithm. The number of factors
and mixture components are determined by the evaluation criteria of the model. The
proposed model’s advantage is validated through a real dataset and simulation studies,
demonstrating its superior performance compared to existing models.

Keywords: Asymmetry; ECME algorithm; Factor analysis model; Incomplete data;
Mixture model; Model-based clustering.
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1 Introduction
Spearman (1904) originally introduced the factor analysis (FA) model. When applying
the FA model, a reduced number of unobserved variables, referred to as “factors,” are
expressed as linear combinations of the observed variables. Ghahramani and Hinton
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(1997) applied the mixture of factor analysis (MFA) model for high-dimensional data
clustering. The MFA model has found widespread application in various fields, includ-
ing medicine (Wall et al., 2012), bioinformatics (McLachlan et al., 2003), behavioral
sciences (De Roover et al., 2022), and pattern recognition (Gaarenstroom et al., 1977).

Consider the following the Gaussian MFA model

Yj = µi +BiUij + εij ,
[
Uij
εij

]
∼ Nq+p

([
0
0

]
,
[
I 0
0 Di

])
, j = 1, . . . , n, i = 1, . . . , g,

(1)
where µi is a location vector p-dimensional, Bi ∈ Rp×q is the matrix of “factor load-
ings”, Uij is the vector of “factor scores” with (q < p) dimension, εij ∈ Rp defines the
error vector called “specific factors”, and, Di is a diagonal matrix. For additional infor-
mation and uses, see Lawley and Maxwell (1962), Joreskog et al. (1979) and Basilevsky
(2009). The validity of statistical inference can be impacted by non-normal data be-
cause the Gaussian MFA model is not robust to asymmetry, heavy tails, and missing
values. Interest in the MFA model based on skewed distributions has grown to address
this shortcoming (Lee et al., 2018a,b, 2021). McLachlan et al. (2007), using the mul-
tivariate t-distribution introduced the mixture of t-factor analyzers (MTFA) model to
increase the validity of the MFA model when the data have heavier tail clusters than
the normal distribution. Then, the MFA model was extended based on restricted mul-
tivariate skew-normal distribution (rMSN) (Azzalini, 2005) for the component latent
factors which is introduced with the title, “mixtures of skew-normal factor analyzers”
(MSNFA) (Lin et al., 2016; Maleki and Wraith, 2019), and it was demonstrated that
this model is more applicable than MTFA. Also, Murray et al. (2014) developed latent
factors and errors in the MFA model based on the skew-t distribution (Azzalini and
Capitanio, 2003) which is called mixtures of skew-t factor analyzers (MSTFA). To see
the unrestricted and restricted versions of the MSTFA model, refer to Murray et al.
(2013) and Lin et al. (2015).

Another family of asymmetric distributions is the generalized hyperbolic (GH) dis-
tribution family (Barndorff-Nielsen, 1977), encompassing the skew-Laplace (Arslan,
2010), skew-t, variance-gamma (Fischer et al., 2023), and normal inverse Gaussian
(NIG) (Göncü and Yang, 2016) distributions. Certain GH distributions are formulated
through the normal mean-variance (NMV) mixture family, where the generalized in-
verse Gaussian (GIG) distribution serves as the mixing random variable. Consider the
following linear random representation

X = µ+Wλ+
√
WZ, (2)

where Z and W are independent random variables such that Z is a multivariate nor-
mal distribution with mean 0 and variance matrix Σ, and W is a non-negative random
variable with the GIG distribution. Also, λ and µ are vector of shape and location
parameters in Rp, respectively. Then, X follows a p-variate random variable with
GH distribution. The normal mean-variance mixture of Lindley (NMVL) distribution,
introduced by Naderi et al. (2018), arises when the random variable W in (2) follows
the Lindley distribution (Ghitany et al., 2008). In recent years, skewed MFA mod-
els based on GH distributions have gained prominence in the literature due to their
characteristics, such as heavier tails, and their application to financial and economic
data (Murray et al., 2014; Tortora et al., 2016; McNicholas et al., 2017; Hashemi et
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al., 2020). Recognizing the substantial impact of missing data on statistical inferences,
Wei et al. (2018) extended the generalized hyperbolic factor analysis (GHFA) proposed
by Tortora et al. (2016) in the presence of missing data. Additionally, Lin et al. (2018)
delved into the study of the restricted multivariate skew-t factor analysis model to
enhance the interpretation of relationships between variables in the context of missing
data. For further details, refer to Wang (2013, 2015) and Wang et al. (2017).

In this study, we investigate the MFA model with missing data, where the latent
factors and errors in each sub-cluster follow the NMVL distribution. The advantage of
employing the NMVL distribution lies in its reduced number of input parameters com-
pared to linear combinations of the GH distribution. Additionally, this distribution
exhibits a broader range of skewness and kurtosis than competing distributions, and
the mixture of normal mean-variance mixture of Lindley factor analysis (MNMVLFA)
model performs well in the presence of missing data. Considering the missing at ran-
dom (MAR) assumption (Rubin, 1976; Little and Rubin, 2019), parameter estimation
is conducted through the development of the expectation-maximization-type (EM) al-
gorithm (Dempster et al., 1977), specifically the expectation conditional maximization
either (ECME) method (Liu and Rubin, 1994). This method facilitates parameter esti-
mation by effectively handling missing data. To leverage information from the available
data, we also provide a forecasting mechanism to generate reasonably estimated values.
To enhance the accuracy of calculations, observed and missing vectors are determined
using two indicator matrices. To assess the applicability of this method, we examined
a real dataset and designed simulation studies.

The structure of this article is as follows. In section 2, we list the MNMVLFA
model’s symbols and fundamental characteristics. We also look at the issue of the
model not being recognized. The MNMVLFA model with missing data is presented in
section 3, along with the estimation technique and several of the model’s useful features,
including initialization, convergence assessment, and performance comparison criteria.
Simulation studies are presented in section 4 to assess the current approach used in
this study. We assess the benefit of the suggested approach using a real data medical
in section 5.

2 Preliminaries
In this section, we offer some required topics and prepare the ground for introducing the
MNMVLFA model. As a first step, we must define the notation used in this paper. Let
fGHp(x;µ,λ,Σ, κ, χ, ψ) be the probability density function (pdf) of a p-dimensional
GH distribution introduced by Barndorff-Nielsen (1977) with parameter µ, λ ∈ Rp,
Σ ∈ Rp×p, κ ∈ R, χ, ψ > 0 given by

fGHp(x;µ,λ,Σ, κ, χ, ψ) = C
Kκ−p/2

(√
t
)

tp−2κ
exp

(
(x− µ)⊤Σ−1λ

)
, x ∈ Rp, (3)

where C = (ψ/χ)κ/2(ψ + λ⊤Σ−1λ)p/2−κ/(2π)p/2|Σ|1/2Kκ(
√
ψχ) is the normalizing

constant and t =
(
ψ + λ⊤Σ−1λ

) (
χ+ (x− µ)⊤Σ−1(x− µ)

)
. Also Kκ(·) interprets

the modified Bessel function of the third kind of order κ.
A p-variate NMVL distribution with location vector µ, scale covariance matrix Σ,

skewness vector λ and shape parameter α, denoted by X ∼ NMVLp(µ,λ,Σ, α) has
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the pdf

fNMV L(x;µ,λ,Σ, α) =
α

1 + α
fGHp

(x;µ,λ,Σ, 1, 0, 2α)

+
1

1 + α
fGHp

(x;µ,λ,Σ, 2, 0, 2α) . (4)

A two-level hierarchical demonstration from (4) is

X |W = w ∼ Np(µ+ λw,wΣ), W ∼ Lindley(α).

The pdf of Lindley (α) is expressed as a linear combination of GIG distribution as

fLindley(w;α) =
α

1 + α
fGIG (w; 1, 0, 2α) +

1

1 + α
fGIG (w; 2, 0, 2α) ,

where fGIG(.) is the pdf of GIG distribution (Good, 1953) as

fGIG(w;κ, χ, ψ) =

(
ψ

χ

)κ/2
wκ−1

2Kκ(
√
ψχ)

exp

{
−1

2

(
w−1χ+ wψ

)}
, w > 0.

The GIG distribution is unimodal. Also, if χ = 0 and κ > 0, the distribution of the
GIG becomes to gamma distribution with parameters κ and ψ

2 , and if ψ = 0 and κ < 0,
the distribution of the GIG becomes to inverse gamma distribution with parameters
−κ and χ

2 .
Y is a p-dimensional random vector of FA model. The NMVLFA model can be

written in a matrix-vector form as

Y = µ+BU + ε, (5)

along with the assumption[
U
ε

]
∼ NMVLq+p

([
−aαΛ−1/2λ

0

]
,

[
Λ−1 0
0 D

]
,

[
Λ−1/2λ

0

]
, α

)
, (6)

that µ, B, U , ε and diagonal matrix D = diag(σ2
1 , . . . , σ

2
p), (all arrivals are strictly

positive) that called “uniquenesses”, were defined in (1). Also

W ∼ Lindley(α), aα = E(W ) =
α+ 2

α(α+ 1)
, and bα = Var(W ) =

α2 + 4α+ 2

α2(α+ 1)2
.

The marginal distribution Y from (5) and (6) is

Y ∼ NMVLp(µ− aαδ,Σ, δ, α), (7)

where δ = BΛ−1/2λ⊤ is a p-dimensional vector of reparameterized shape parameters,
and Σ = BΛ−1B⊤ +D with Λ = aαIq + bαλλ

⊤ to verify the orthogonality of factor
loadings. Subsequently, the mean vector and covariance matrix of Y are

E(Y ) = µ and cov(Y ) = BB⊤ +
α+ 2

α(α+ 1)
D. (8)
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The rotational invariance of the factor loadings B and the skewness parameter λ
contribute to the identifiability problem of the NMVLFA model. Assume that an
orthogonal matrix of order q is S. The marginal distribution in (7) is invariant if
B and λ are exchanged by BS and S⊤λ. Furthermore, the covariance structure
(8) remains unchanged as a result of these orthogonal modifications. We add q(q−1)

2
identifiability limits to the factor loading matrix as a result of these modifications.
Numerous approaches have been suggested to address this issue; see to Lopes and
West (2004); Bai and Li (2012).

3 Examining aspects of the model
3.1 Incomplete MNMVLFA model
Vector Y = (Y1, ...,Yn) is a p-dimensional feature vector with n independent com-
ponents originating from a heterogeneous community with g subclasses. In a finite
mixture model, to determine the density of the observed component Yj , we define an
unobserved membership indicator vector Zj = (Z1j , . . . , Zgj). Therefore, if Yj belongs
to class i, it is assigned the value of one, and the rest are assigned the value of zero.

Zij =
{

1 if Yj belongs to class i
0 otherwise.

Mixing proportions are determined by π = (π1, . . . , πg) so that Pr(Zij = 1) = πi. It
is obvious that

Zj ∼ M(1;π1, . . . , πg),

g∑
i=1

πi = 1,

that is the multinomial distribution with pdf

f(Zj ;π) ∝ π
z1j
1 π

z2j
2 . . . (1− π1 . . .− πg−1)

zgj ,

g∑
i=1

zij = 1.

The MNMVLFA model consists of g sub-models of (6) with mixture ratio π. In a
special case, each Yj is

Yj = µi +BiUij + εij with probability πi (i = 1, . . . , g), (9)

with the assumption[
Uij
εij

]
∼ NMVLq+p

([
−aαi

Λ
−1/2
i λi
0

]
,

[
Λ−1
i 0
0 Di

]
,

[
Λ

−1/2
i λi
0

]
, αi

)
, (10)

in which aαi
is aα when α replaced with αi and Λi = aαi

Iq + bαi
λiλ

⊤
i . According to

the model (9), the marginal density of Yj is

f(yj) =

g∑
i=1

πiψ(yj ;θi), (11)



Mixtures of the NMVLFA model with missing data 40

in which ψ(yj ;θi) is the NMVL density quoted in (4), θi = (µi,Bi,Di,λi, αi) shows
the ith mixture component of unknown parameters and Θ = (π1, . . . , πg−1,θ1, . . . , θg)
demonstrates the whole unknown parameters. We propose situations where missing
values occur for reasons beyond our control. To solve this problem, we formulate
this model with missing data in such a way that, Yj(p × 1) is partitioned into two
subvectors so that yjo(pjo×1) includes the observed portion of Yj and yj

m((p−pjo)×1)
includes the residual inputs, namely the missing portion of Yj . To simplify calculations,
we define two permutation matrices Oj ∈ R(poj×p) and Mj ∈ R((p−poj )×p) so that
Y o
j = OjYj and Y m

j = MjYj . From (11), we have

f(yoj ;Θ) =

g∑
i=1

πiψ(y
o
j ;θi).

It is easy to see Yj = O⊤
j Y

o
j + M⊤

j Y m
j and OjO

⊤
j + MjM

⊤
j = Ip. In order to

achieve closed-form for the estimators, we use the procedure of Hashemi et al. (2020)
by introducing invariant transformations

B̃i
∆
= BiΛ

−1/2
i and Ũij

∆
= Λ

1/2
i Uij . (12)

To evaluate the conditional expectation in the E-step for the computational algorithm
interpreted in the subsection 3.2, the following theorem is useful.

Theorem 3.1. From (7) and (9), we have
a. The marginal distribution of the Y o

j ’th observation is

Y o
j | (Zij = 1) ∼ MNMVLpoj (µ

o
ij − aαi

δoij ,Σ
oo
ij , δ

o
ij , αi). (13)

b. The conditional distribution of Y o
j given wj is

Y o
j | (wj , Zij = 1) ∼ Npoj

(µoij − aαi
δoij + wjδ

o
ij , wjΣ

oo
ij ),

where µoij = Ojµi, δoij = Ojδi, δi = BiΛ
−1/2
i λi and Σoo

ij = OjΣiO
⊤
j .

c. The MNMVLFA model formulated in (9) has the following hierarchical presentation

Y o
j | (ũij , wj , Zij = 1) ∼ Npoj (µ

o
ij + B̃o

ijũij , wjD
oo
ij ),

Y m
j | (Y o

j , ũij , wj , Zij = 1) ∼ Np−poj (φ
m.o
ij , wjD

mm.o
ij ),

Ũij | (wj , Zij = 1) ∼ Nq((wj − aαi
)λi, wjIq),

Wj | (Zij = 1) ∼ Lindley(αi),
Zj ∼ M(1;π1, . . . , πg),

where B̃o
ij = OjB̃i, φm.oij = Mj

[
µi + B̃iŨij +DiC

oo
ij (yj − µi − B̃iŨij)

]
, Doo

ij =

OjDiO
⊤
j , Dmm.o

ij = Mj

(
Ip −DiC

oo
ij

)
DiM

⊤
j and, Coo

ij = O⊤
j

(
OjDiO

⊤
j

)−1
Oj.

d. Conditional distributions are obtained as

Ũij | (yoj , wj , Zij = 1) ∼ Nq(q
o
ij , wjR

oo
ij ),
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f(Wj | yoj , (Zij = 1)) = πoj fGIG

(
wj ; 1−

poj
2
, χoij , ψ

o
ij

)
+(1− πoj )fGIG

(
wj ; 2−

poj
2
, χoij , ψ

o
ij

)
,

Zj | yoj ∼ M(1; π̃1j , . . . , π̃gj)), (14)

where

χoij = (yoj − µoij + aαi
δoij)

⊤Σoo
ij

−1(yoj − µoij + aαi
δoij),

Σoo
ij = OjΣiO

⊤
j ,

ψoij = δo
⊤

ij Σoo
ij δ

o
ij + 2αi,

πoj =
αifGHp

(
yoj ;µ

o
ij − aαi

δoij , δ
o
ij ,Σ

oo
ij , 1, 0, 2αi

)
fMNMVL

(
yoj ;µ

o
ij − aαi

δoij ,Σ
oo
ij , δ

o
ij , αi

) ,

and qoij = Roo
ij

{
boij + λi(wj − aαi

)
}

, boij = B̃⊤
i C

oo
ij (yj−µi) ,Roo

ij = (Iq+B̃⊤
i C

oo
ij B̃i)

−1.
The posterior probability of the jth observed feature vector yoj belongs to component i
of the mixture is

π̃ij = E(Zij | yoj ) =
πif(y

o
j ,θi)

f(yoj ,Θ)
.

e. conditional expectations are for r = ±1

E(W r
j | yoj ) =

(
χoij
ψoij

)r/2{
πoj

K
(1−

po
j
2 )+r

(√
ψoijχ

o
ij

)
K

(1−
po
j
2 )

(√
ψoijχ

o
ij

)
+(1− πoj )

K
(2−

po
j
2 )+r

(√
ψoijχ

o
ij

)
K

(2−
po
j
2 )

(√
ψoijχ

o
ij

) }, (15)

E(Ũij | yoj ) = Roo
ij

{
boij + λi

(
E(Wj | yoj )− aαi

)}
(16)

E(W−1
j Ũj | yoj ) = Roo

j

{
bojE(W−1

j | yoj ) + λ
(
1− aαiE(W−1

j | yoj )
)}
, (17)

E(W−1
j ŨijŨ

⊤
ij | yoj ) =

{
E(W−1

j Ũij | yoj )bo⊤ij

+
[
E(Ũij | yoj )− aαiE(W−1

j Ũij | yoj )
]
λ⊤
i + Iq

}
Roo
ij .(18)

Proof. a. Similar to the relationship described in equation (7), and considering the
observed portion of the vector Yj , this can be readily proved.
b. Using the relations (2), (9), (10) and, transformations of relation (12) and these
clear points, that Ũij has the random representation of relation (2) with location,
scale and skewness parameters defined in relation (10), and also εij =

√
WZ∗, which

Z∗ ∼ Np(0,Di) is proved.
c. Similar to part (b), and with the assistance of permutation matrices, the partitioning
of the matrix Yj , along with the properties of the conditional normal distribution, is
demonstrated.
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d. It can be proved by performing simple algebraic operations from parts (b) and (c)
and using Bayes theorem.
e. It is proved using part (d) and similar to what is given in Hashemi et al. (2020).

3.2 Estimation of model parameters using ECME algorithm
When there is missing data or a hidden variable in a statistical model, the expectation-
maximization (EM) algorithm is an iterative method for computing maximum likeli-
hood (ML) estimates. The EM algorithm’s features include monotone convergence and
ease of use. Despite these desirable features, the maximization step of the EM algo-
rithm is nearly impossible for the MNMVLFA model. As a result, we use the ECME
approach, an extension of the expectation-conditional maximization (ECM) technique
Meng and Rubin (1993), to estimate the parameters of the MNMVLFA model. The
ECME algorithm shows a faster convergence speed than EM and ECM algorithms while
maintaining stability and integrity. The ECME algorithm replaces certain CM-steps
of the ECM algorithm with CML-steps, leading to the maximization of the restricted
true likelihood function. To browse a symbol of variables, we consider the allocation
indicator vector Z = (z1, . . . , zn), the latent factor vector Ũ = (Ũ1, . . . , Ũn), and
the vector of mixture variables W = (W1, . . . ,Wn) simultaneously with the vector of
missing values ym = (ym1 , . . . ,y

m
n ) as the missing data. In the part (c) of theorem

3.1 , the log-likelihood function of Θ for the complete data, consists of the observed
data yo = (yo1 , . . . ,y

o
n) and the missing data yc = (Z, Ũ ,W ,ym), by removing the

independent values of the parameter is

ℓc(Θ | yc)=
n∑
j=1

g∑
i=1

Zij [log πi −
1

2
log |Di|+ log fLindley(Wj ;αi)]

−1

2

n∑
j=1

g∑
i=1

W−1
j

(
yj − µi − B̃iŨij

)⊤
D−1
i

(
yj − µi − B̃iŨij

)
−1

2

n∑
j=1

g∑
i=1

((
Wj − 2aαi

+W−1
j a2αi

)
λiλ

⊤
i − 2λi(Ũij − aαi

W−1
j Ũij)

⊤
)
.

(19)

In the kth repetition of the E-step, we calculate the expected value of ℓc(Θ | yc) given
the observed value yoj and the estimate of the current parameters Θ̂(k). The Q function
is then computed as

Q(Θ | Θ̂(k)) = E
(
ℓc(Θ | yc) | yoj , Θ̂(k)

)
, (20)

in which Θ̂(k) = (π̂
(k)
1 , . . . , π̂

(k)
g−1, θ̂

(k)
1 , . . . , θ̂

(k)
g ) and θ̂

(k)
i = (µ̂

(k)
i , ˆ̃B

(k)
i , D̂

(k)
i , λ̂

(k)
i , α̂

(k)
i ).

In order to appraise (20), it is necessary to obtain conditional expectations.

Ẑ
(k)
ij = E(Zij | yoj , Θ̂(k)), ŵ

(k)
ij = E(Wj | yoj , Θ̂(k)),

t̂
(k)
ij = E(W−1

j | yoj , Θ̂(k)), ζ̂
(k)
0ij = E(Ũij | yoj , Θ̂(k)),
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ζ̂
(k)
1ij = E(W−1

j Ũij | yoj , Θ̂(k)), Ω̂
(k)
ij = E(W−1

j ŨijŨ
⊤
ij | yoj , Θ̂(k)), (21)

which can be easily obtained by equations in the (15)-(18) stated in theorem 3.1, all
of elements in Θ changed with Θ̂(k).

In the (k+1)th repetition of the CM-steps, the updated formulas for the MNMVLFA
model parameters are given in the following steps:
CM-step 1: compute π̂(k+1)

i = n̂
(k)
i /n, in which n̂

(k)
i =

∑n
j=1 Ẑ

(k)
ij .

CM-step 2: compute

µ̂
(k+1)
i =

∑n
j=1 Ẑ

(k)
ij t̂

(k)
ij q̂

(k)
ij − D̂

(k)
i

∑n
j=1 Ẑ

(k)
ij Ĉoo(k)

ij
ˆ̃B

(k)
i ζ̂

(k)
1ij∑n

j=1 Ẑ
(k)
ij t̂

(k)
ij

,

in which q̂
(k)
ij = µ̂

(k)
i + D̂

(k)
i Ĉoo(k)

ij (yj − µ̂
(k)
i ).

CM-step 3: By placing µi = µ̂
(k+1)
i , and maximizing the function (20) relative to B̃i,

the updated ˆ̃B
(k)
i is

ˆ̃B
(k+1)
i =

 n∑
j=1

Ẑ
(k)
ij

[
Êoo(k)

ij Ω̂
(k)
ij + (q̂

(k)
ij − µ̂

(k+1)
i )ζ̂

(k)⊤

1ij

] n∑
j=1

Ẑ
(k)
ij Ω̂

(k)
ij

−1

,

in which Êoo(k)

ij =
(
Ip − D̂

(k)
i Ĉoo(k)

ij

)
ˆ̃B

(k)
i .

CM-step 4: By placing µi = µ̂
(k+1)
i and B̃i =

ˆ̃B
(k+1)
i ,and maximizing the function

(20) relative to D̃i, the updated D̂
(k)
i is obtained

D̂
(k+1)
i =

1

n̂
(k)
i

Diag

 n∑
j=1

Ẑ
(k)
ij Υ̂

(k+1)
ij

 ,

in which

Υ̂
(k+1)
ij = t̂

(k)
ij (q̂

(k)
ij − µ̂

(k+1)
i )(q̂

(k)
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Êoo(k)

ij − ˆ̃B
(k+1)
i

)
ˆ̃
ζ
(k)
1ij

(
q̂
oo(k)
ij − µ̂

(k+1)
i

)⊤
.

CM-step 5: compute
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∑n
j=1 Ẑ
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We employ ‘CML-step’ to maximize the restricted true log-likelihood function as
there is no closed-form for estimating the α parameter.
CML-step 6:

α̂
(k+1)
i = argmax

αi

n∑
j=1

log fMNMVL

(
yoj ;µ

o(k+1)

ij − aαiδ
o(k+1)

ij ,Σoo(k+1)

ij , δ
o(k+1)
ij , αi

)
,

in which µ̂o
(k+1)

ij , δ̂o(k+1)

ij and Σ̂oo(k+1)

ij are estimates of µoij , δoij and Σoo
ij , respectively.

In the ECME algorithm, E-step and CM/CML-steps continue until the reliable
convergence criterion is estimated. For example, the loop created in step (k+1) stops
when either ∥ Θ̂(k+1) − Θ̂(k) ∥ or |ℓ(Θ̂(k+1)) − ℓ(Θ̂(k))| becomes less than a user-
defined tolerance. This means that the algorithm continues until we reach convergence
in the value of parameters or likelihood function. In this perusal, if the maximum
number of repetitions achieves kmax = 10, 000, the algorithm terminates or when the
absolute difference between the log-likelihood value and its asymptotic estimate is
less than ϵ = 10−5. Upon convergence, the resulting ML estimates are indicated by
θ̂ = (π̂i, µ̂i, B̂i, D̂i, λ̂i, α̂i), in which B̂i =

ˆ̃BiΛ̂
1/2
i , and Λ̂i is Λ̂i = aα̂i

Iq + bα̂i
λ̂iλ̂

⊤
i .

3.3 Forecast of factor scores and missing values
Predicting the factor scores is helpful for additional analysis after the suggested model’s
parameters have been estimated. For example, one may seek to use factor information
for data reconstruction into a lower-dimensional subspace, or one may be interested
in knowing how factor scores differ between groups. By applying the law of repeated
expectations and utilizing (14), we arrive at

ûij = E(Uij | yoj , Θ̂) = Λ̂
−1/2
i R̂oo

ij

{
b̂oij + λ̂i

(
E(Wj | yoj , Θ̂)− aα̂i

)}
, (22)

in which E(Wj | yoj , Θ̂) is given by (15). accordingly, the estimated factor scores in
accordance with y0

j can be obtained as

ûj =

n∑
j=1

Ẑijûij .

In addition, substituting acceptable values instead of missing values is a necessary
step for constructing a full dataset to employ standard statistical methods. Another
advantage of the ML technique is that it assigns a value for any missing data, with the
title ”single imputation.” A minimum mean squared conditional predictor for ymj using
the ECME algorithm is

ŷmj = E(Y m
j | yoj , Θ̂) = Mj

n∑
j=1

Ẑij

[
µ̂i + B̂iûij + D̂iĈ

oo
ij (yj − µ̂i − B̂iûij)

]
. (23)

While the predictor (23) fails to capture the uncertainty surrounding the predictions of
the unknown missing values, addressing this issue can be achieved through a more uni-
versally functional multiple imputation (MI) procedure Schafer (1997). Significantly,
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MI operates under the assumption that the frequentist criterion (or the method of
ML) has been met, and subsequently generates single imputations multiple times for
replicated samples obtained through MCMC or bootstrap techniques.

3.4 Evaluation criteria
The log-likelihood function of a finite mixture model can lead to multiple states due to
its complexity. Consequently, the EM-based algorithm may face challenges in achieving
convergence, and even when convergence is reached, it may not yield a comprehensive
and dependable solution. To address this challenge effectively, it is advisable to test
various initial values and subsequently select the one that yields the highest likelihood.
This can be easily accomplished through multiple random initializations and the ex-
traction of initial parameter values based on different initial partitions (e.g., randomly
assigning each point to a cluster) or employing the k-means clustering method Hartigan
and Wong (1979). This involves determining the initial πi based on the sample pro-
portion of cluster labels and considering the initial µi as the sample mean vectors for
each cluster. Subsequently, the common FA model is fitted to each clustered sample,
and the resulting estimates are used as the initial values for Bi and Di. Addition-
ally, the initial skewness parameters λi are obtained through parameter estimation
in the NMVL distribution. Finally, the initial value of parameter αi is considered a
fixed value, such as α̂(0)

i = 1. Model-based clustering using the MFA method and its
various types typically involves unknown quantities, including the number of compo-
nents g and the number of factors q. In such cases, the Bayesian information criterion
(BIC) Schwarz (1978) proves useful for selecting g and q, particularly for determining
g Keribin (2000). AIC and BIC are

−2ℓ(Θ̂) +mcn,

here, ℓ(Θ̂) denotes the maximum log-likelihood value, m represents the number of free
parameters to be estimated within the model , and cn is 2 for the Akaike information
criterion(AIC) and log(n) for BIC. Biernacki et al. (2000) noted that BIC might not
be the optimal method for determining the number of components in a model-based
clustering approach. As an alternative, they introduced an integrated completed like-
lihood (ICL) criterion designed to select g in a way that facilitates proper partitioning
of the data. ICL is defined as follows

ICL = BIC + 2ENT (ẑ),

in which, ENT ((ẑ)) = −
∑g
i=1

∑n
j=1 ẑij log ẑij represents the entropy used for assess-

ing the overlap of clusters. Models with smaller BIC or ICL values indicate a better
fit. In cases where there is a discrepancy between the two criteria, the ICL criterion is
preferred due to its imposition of a higher penalty on more complex models. To verify
the convergence of the ECME algorithm in the MNMVLFA model, we measure the
absolute difference between the log-likelihood value and its asymptotic estimate using
the Aitken acceleration method Aitken (1925)

ℓ(k+1)
∞ − ℓ(k+1) < ϵ,
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in which ℓ
(k+1)
∞ McLachlan and Krishnan (2007) represents the extreme value of the

log-likelihood function in the (k+ 1)th repetition. In comparing the classification per-
formance of different model-based classifiers, we adopt the adjusted Rand index (ARI)
and the correct classification rate (CCR) with higher values meant for good classifica-
tion results. The ARI criterion, proposed by Hubert and Arabie (1985), extends the
Rand index (RI) Rand (1971), which confirms the agreement between two separate
partitions of the same data. Typically, ARI takes values in the range of (0,1), but in
exceptional cases, when the level of agreement is weak, it may assume a negative value.
The CCR is determined for each permutation of cluster labels and the reported value
is the largest value among all permutations.

4 Simulation study
In the following, we present simulation studies to scrutinize various aspects of the
model and computation procedures. The initial simulation study assesses the fitting
and clustering efficacy of the MNMVLFA model in comparison to other models.

4.1 Evaluation of fitting and clustering efficiency of the pro-
posed model

For simulation, synthetic data are generated with n = 500 observations from a mix-
ture of normal inverse Gaussian factor analysis (MNIGFA) distribution that g = 2 is
considered. In per repetition of M = 100 experiment, a random sample of size n=500
is extracted from the MNIGFA distribution Yj = µi +BiUij + ϵij , where[

Uij
ϵij

]
∼ NIGq+p

([
−aθiΛ

−1/2
i λi
0

]
,

[
Λ−1
i 0
0 Di

]
,

[
Λ

−1/2
i λi
0

]
, χi, ψi

)
,

where Λi = aθiIq + bθiλiλ
⊤
i , aθi =

√
χi/ψi, bθi = χi/ψi

K1.5(
√
χiψi)

K−0.5(
√
χiψi)

− a2θi , and
NIGp(µi,λi,Σi, χi, ψi) defines the p-variate NIG distribution, that this distribution is
a particular state of GH distribution with κ = −0.5. In order to generate non-normal
mixtures, the NIG distribution is considered because it creates the right amount of
asymmetry and leptokurtosis. The hypothetical two-component parameters of MNIGFA
with q = 2 are expressed as π1 = 1

3 , π2 = 2
3 , ψ1 = 11, ψ2 = 5, χ1 = 4, χ2 = 8,

µ1 = (0, 0, 0, 0, 0)⊤, µ2 = (10, 10, 10, 10, 10)⊤,

D1 = diag{1, 2, 3, 4, 3}, D2 = diag{1, 2, 3, 5, 4}, λ1 = (1, 9)⊤, λ2 = (2, 8)⊤,

B1 =
(

3 3 3 4 5
2 4 6 0 0

)⊤
, B2 =

(
0 0 0 4 5
2 4 6 1 1

)⊤
.

The mentioned initial values were deliberately chosen to ensure that the generated
data have high skewness, heavy-tails and strong separation between the two classes.
We compare the model presented in this article (MNMVLFA) with MFA, MSNFA,
and MSTFA in terms of performance. In this comparison, the MNIGFA model is
not considered because, as expected, the real model has the best performance. Also,
we consider two levels of missingness, 10% and 20%. To enhance the robustness of
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clustering settlement, we employ the ARI, which corrects the inefficiency of the RI
resulting from a fortuitous settlement. The model with the highest ARI provides the
most accurate classification. Lower AIC and BIC values indicate a better fit for the
model.

In Table 1, we present a summary of the fitting results of 500 simulated samples,
along with the ARI values used to evaluate the clustering. AIC or BIC best aligns with
the MNMVLFA model in the table, resulting in improved classification accuracy (ARI
= 0.843). According to the numerical results, the proposed MNMVLFA model provides
superior density estimation and improved clustering compared to its alternatives.

Table 1: Performance of varied skew mixture models fitted to 500 simulated MNIGFA
datasets.

missing rate Model ℓmax m AIC BIC ICL ARI CCR
10 MFA –3515.52 39 7109.04 7253.48 7272.77 0.70 0.85

MSNFA –3503.39 43 7092.77 7252.04 7272.96 0.77 0.91
MSTFA –3502.87 45 7095.75 7262.42 7285.33 0.73 0.90

MNMVLFA –3484.81 45 7059.62 7226.29 7248.74 0.84 0.96
20 MFA –3192 39 6461.99 6606.44 6632.13 0.63 0.76

MSNFA –3181.33 43 6448.67 6607.93 6635.75 0.75 0.90
MSTFA –3181.5 45 6453.01 6619.67 6645.94 0.71 0.88

MNMVLFA –3168.31 45 6426.63 6593.3 6633.88 0.82 0.95

4.2 Finite-sample attributes of EM-type estimators
Using a three-component MNMVLFA model, we produce 500 three-vary Monte Carlo
samples that show the true parameter values in Table 2. We accept sample sizes
n = 250, 500 and 1000. For simulated datasets, the MNMVLFA model with g = 3,
p = 3, and q = 1 is fitted and the results of the estimated parameters are gathered.
In this simulation, we consider the rate of missing above 30%. In Table 2, the mean
values and standard deviations (Std.) of the EM estimates amongst 500 experiments
are brought. To search for the accuracy of the estimate, we also calculate the absolute
bias (AB) and the mean squared error (MSE)

AB =
1

500

n∑
r=1

|θ̂(r) − θtrue| and MSE =
1

500

n∑
r=1

(θ̂(r) − θtrue )2,

where θ̂(r) specifies the parameter estimate for a particular element in Θ obtained
from the rth iteration. A close inspection of Table 2 provides evidence that all esti-
mated parameters are within the true range and the standard deviations are reasonable.
Furthermore, both AB and MSE values decrease with increasing n, experimentally con-
firming the accuracy of the ML estimates calculated with the EM algorithm.
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Table 2: Mean and standard deviations (Std.) for EM-type estimates–500 samples from the MNMVLFA model for 30% missing.
Component µi1 µi2 µi3 λi1 bi1 bi2 bi3 di1 di2 di3 α π
1 True 0 0 0 4 4 5 2 1 1 0.9 1 0.3
2 Parameter 5 5 5 -2 1 3 5 0.5 0.8 1 1.2 0.3
3 -2 -2 -2 -1 2 2 4 0.2 0.3 0.7 0.6 0.4
n = 250

Mean 0.058 0.057 0.095 4.054 3.940 4.922 2.319 1.162 1.400 0.795 1.290 0.323
1 Std. 0.531 0.446 0.596 0.504 0.466 0.581 0.255 0.186 0.248 0.246 0.261 0.059

AB 0.396 0.344 0.438 0.381 0.347 0.430 0.215 0.144 0.193 0.185 0.215 0.042
MSE 0.282 0.201 0.363 0.256 0.220 0.342 0.071 0.036 0.061 0.060 0.080 0.003

Mean 4.962 4.931 4.949 -1.978 1.015 3.104 4.718 0.419 0.713 1.185 1.495 0.345
2 Std. 0.260 0.402 0.315 0.384 0.572 0.427 0.323 0.348 0.322 0.645 0.459 0.059

AB 0.189 0.286 0.246 0.261 0.379 0.298 0.257 0.288 0.270 0.508 0.374 0.049
MSE 0.069 0.165 0.101 0.146 0.325 0.182 0.110 0.127 0.110 0.441 0.221 0.004

Mean -1.990 -1.908 -2.040 -0.970 1.966 1.950 3.919 0.329 0.283 0.801 0.640
3 Std. 0.151 0.162 0.220 0.233 0.239 0.442 0.377 0.292 0.310 0.403 0.401

AB 0.118 0.133 0.175 0.174 0.188 0.322 0.308 0.245 0.254 0.351 0.354
MSE 0.023 0.026 0.050 0.055 0.058 0.197 0.148 0.090 0.103 0.184 0.185

n = 500
Mean 0.032 0.017 0.067 3.986 3.990 4.944 2.175 1.104 1.364 0.835 1.138 0.312

1 Std. 0.315 0.338 0.386 0.296 0.354 0.392 0.162 0.125 0.189 0.166 0.164 0.037
AB 0.237 0.234 0.282 0.221 0.255 0.284 0.132 0.094 0.140 0.124 0.123 0.024
MSE 0.100 0.114 0.153 0.088 0.125 0.156 0.027 0.016 0.037 0.027 0.031 0.001

Mean 4.941 4.914 4.945 -2.041 1.064 3.039 4.750 0.449 0.765 1.040 1.234 0.338
2 Std. 0.178 0.260 0.228 0.249 0.360 0.278 0.220 0.262 0.230 0.391 0.306 0.037

AB 0.142 0.197 0.168 0.178 0.258 0.207 0.162 0.193 0.172 0.304 0.232 0.013
MSE 0.035 0.075 0.055 0.064 0.133 0.078 0.051 0.071 0.054 0.164 0.098 0.001

Mean -1.981 -1.985 -2.037 -0.990 1.983 1.966 3.938 0.176 0.271 0.778 0.634
3 Std. 0.089 0.102 0.140 0.156 0.158 0.294 0.230 0.179 0.198 0.247 0.263

AB 0.073 0.083 0.112 0.118 0.125 0.222 0.194 0.147 0.160 0.199 0.211
MSE 0.008 0.011 0.021 0.024 0.025 0.087 0.056 0.033 0.040 0.066 0.073
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Component µi1 µi2 µi3 λi1 bi1 bi2 bi3 di1 di2 di3 α π
1 True 0 0 0 4 4 5 2 1 1 0.9 1 0.3
2 Parameter 5 5 5 -2 1 3 5 0.5 0.8 1 1.2 0.3
3 -2 -2 -2 -1 2 2 4 0.2 0.3 0.7 0.6 0.4
n = 1000

Mean 0.017 0.012 0.062 3.989 3.993 4.953 2.104 1.084 1.276 0.920 1.104 0.309
1 Std. 0.196 0.279 0.265 0.176 0.259 0.251 0.117 0.092 0.130 0.133 0.147 0.025

AB 0.146 0.193 0.213 0.144 0.198 0.227 0.088 0.069 0.107 0.096 0.119 0.018
MSE 0.039 0.073 0.094 0.036 0.074 0.103 0.014 0.009 0.021 0.018 0.029 0.001

Mean 4.944 4.934 4.954 -2.034 1.052 3.033 4.754 0.457 0.766 1.058 1.229 0.331
2 Std. 0.096 0.213 0.178 0.174 0.257 0.193 0.152 0.179 0.140 0.292 0.203 0.026

AB 0.098 0.147 0.113 0.115 0.166 0.129 0.118 0.131 0.107 0.226 0.149 0.009
MSE 0.020 0.045 0.025 0.031 0.068 0.038 0.025 0.034 0.020 0.093 0.043 0.001

Mean -1.992 -1.990 -2.013 -0.966 1.985 1.976 3.946 0.174 0.278 0.776 0.639
3 Std. 0.076 0.098 0.114 0.119 0.117 0.228 0.143 0.128 0.136 0.203 0.197

AB 0.053 0.047 0.062 0.092 0.093 0.166 0.128 0.108 0.114 0.176 0.169
MSE 0.005 0.004 0.007 0.015 0.015 0.057 0.026 0.018 0.020 0.046 0.042
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5 Hepatitis disease data
An initial study of 155 patients with severe and hazardous hepatitis was conducted
Diaconis and Efron (1983). The data comprise both continuous and discrete values.
Nineteen variables, including age, sex, and outcomes of modulus biochemical mea-
surements, were measured for each patient. The dataset encompasses p = 6 numeric
properties measured on n = 155 patients, with one binary variable for dichotomous
classification. Specifically, 85 samples exhibit Yes for HISTOLOGY, while 75 samples
indicate No for HISTOLOGY. Furthermore, most properties exhibit weak to strong
asymmetry and mild to extremely heavy tails, indicating that both subcommunities
deviate significantly from normal distributions. The presence of missing values varies
widely across features, with some properties containing none, while others have 67
missing values. We applied the MFA, MSNFA, MSTFA, and MNMVLFA models to fit
this dataset, with the range of q taking values from 1 to qmax = 3.

We consider the value of g as 2, which corresponds to two memberships in the
manifest group. Table 3 summarizes ML results, containing the number of parameters,
the maximum log-likelihood value, and The values of ICL and BIC criteria. To compare
clustering performance in the mentioned models, the classification settlement obtained
by CCR is also presented in the final column of Table 3. According to the Table,
the MNMVLFA with q = 2 is the best model to fit this dataset (BIC=5671.659 and
ICL=5701.320) and the best classification accuracy (CCR = 0.731) for this dataset.
In competition with the other three classical methods, the MNMVLFA model is more
flexible.
Table 3: Performance of four mixtures of factor models fitted to the Hepatitis data.

Model q ℓmax m BIC ICL CCR
1 -2830.280 37 5847.168 5884.611 0.587

MFA 2 -2728.446 47 5693.933 5724.100 0.609
3 -2726.010 55 5729.409 5756.471 0.619
1 -2827.425 39 5851.544 5889.669 0.574

MSNFA 2 -2710.141 51 5677.498 5712.231 0.626
3 -2709.085 61 5725.819 5756.877 0.619
1 -2821.121 41 5849.022 5890.463 0.574

MSTFA 2 -2711.103 53 5689.508 5728.961 0.587
3 -2706.151 63 5730.038 5765.494 0.619
1 -2803.295 41 5813.370 5852.910 0.675

MNMVLFA 2 -2702.179 53 5671.659 5701.320 0.731
3 -2697.481 63 5712.698 5739.421 0.692

We are interested in investigating how missing values can be imputed to the four
MFA models. A suitable specification of latent factors is generally thought to produce
more accurate imputations of missing data. Figure 1 displays the paired dispersion
diagram of the missing values predicted by using (23) for all models. Our results
show that either the MFA and MSNFA or MSTFA models provide the same attributed
values, while the MNMVLFA model prepares different results.

In addition, we are eager to determine if the estimated factor scores are influenced by
the assumptions underlying the factor distribution. Figure 2 compares the scatter plots
of the factor scores obtained from the fitted models. The greater the dispersion, the
larger the difference between the two models. In Figure 2, the factor scores obtained
in two MFA and MSNFA models show relatively high dispersion compared to our
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proposed model (MNMVLFA). However, the difference between the MNMVLFA and
MSTFA models is relatively small due to the amount of dispersion. Therefore, in
Figure 3, these two models are compared more accurately. From the available results,
it is evident that fitting the MNMVLFA model on real data yields more reliable results
compared to the MFA, MSNFA, and MSTFA models.
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Figure 1: Scatter plots of imputed missing values using the MFA of all models for the Hepatitis
data.
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Figure 2: Scatter-histogram plots of factor scores obtained from the fitted models.

Figure 3 shows the fitted lines of MSTFA model against the MNMVLFA model
acquired by marginalization of the fitted distributions superimposed on the scatter
points for seven pairs of variables. Here the emphasis is on AGE against other variables,
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in which the missing values are attributed by (23). In Figure 3, the scatter of the real
data is more consistent with the MNMVLFA model. Also, some outlier values are not
included in the contour of the MSTFA model, while the proposed model (MNMVLFA)
also covers outliers. As a result, the lines of the MNMVLFA model have a better fit
with the scatter of points compared to the MSTFA model.
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Figure 3: Scatterplots of fitted MSTFA and MNMVLFA lines for fourteen pairs of variables from
the hepatitis data.

Conclusion
In this study, we developed the MFA model based on the NMVL distribution Naderi
et al. (2018) to analyze heavy-tailed and asymmetric data in the presence of missing
data. Initially, we review some preliminary results, focusing on the representation of
the NMVL distribution. After that, using the development of EM-type algorithms,
the ECME algorithm was employed to obtain parameter estimates for the MNMVLFA
model in the presence of missing values. Then, two simulation studies and a real
data example were designed to confirm the superiority of the proposed model. In the
first simulation, the MNMVLFA model demonstrates superior density estimation and
improved clustering compared to other models for data with high skewness and kurtosis
with missing data. The second simulation verifies the accuracy of the ML estimates
calculated using the ECME algorithm by examining the asymptotic properties of the
estimators. In the real data example, the appropriateness of the proposed model fit
was checked on the data in comparison with the MFA, NSNFA, and MSTFA models,
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which demonstrates the superiority of the model. For future work, we plan to explore
machine learning techniques to estimate the number of components and dimensions
of factor loadings. We also intend to present a whole class of MNMVFA models in
the presence of missing data, which include asymmetric distributions introduced by
Darijani et al. (2024) and the normal mean-variance mixture of Birnbaum-Saunders
factor analysis (NMVBSFA) model introduced by Hashemi et al. (2020).
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