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Abstract: The main goal of this paper is to achieve the Bayesian shrinkage estimators
for the scale parameter of the Rayleigh distribution with progressively type-II censor-
ing data. The best linear estimators are also presented under the squared error and
linear exponential loss functions. Furthermore, the relative efficiency of the proposed
Bayesian shrinkage estimators is calculated for the best linear estimators. Finally,
through a numerical analysis, the relative efficiency of the Bayesian shrinkage estima-
tors is compared with the best linear estimators.
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1 Introduction
The failure time and the mean lifetime can be investigated and compared when they
can be represented or described by a continuous random variable. Otherwise, they
are nothing except the measure and value of the failure times. In recent years to deal
with these problems, the Rayleigh distribution is widely used as a model to investigate
the lifetime of the productions. Also, the Rayleigh distribution has been extensively
considered in practical issues, real experiments, and survival analysis. Nowadays, the

∗Corresponding author:zhrkhodadadi@gmail.com



A Bayesian shrinkage approach under symmetric and asymmetric loss functions 84

Rayleigh distribution is one of the most common statistical models that is applied for
reliability studies of lifetime data and quality control and it is broadly utilized in the
different branches of sciences, such as medical and engineering.

To determine the appropriate statistical model for the data and relevant analysis,
it is necessary to consider all the distributions that can be employed as a distribution
of the lifetime data and choose the most convenient distribution. In choosing the
appropriate distribution, the principal statistical inferences regarding the parameter of
the applied model are estimating and performing the hypothesis test of the parameters,
and the Rayleigh distribution plays an important role in this regard. The importance
of the Rayleigh distribution is due to its application in modeling the failure time, the
distribution function of lifetime data, and the behavior of the hazard rate function
which can be strictly increasing with different choices of the model’s parameter. The
Rayleigh distribution is more flexible to modeling the different data sets, due to the
behavior of its hazard rate function. See Polovko (1968) for more applications of the
Rayleigh distribution.

The probability density function (PDF) and cumulative distribution function (CDF)
of the Rayleigh distribution are represented as

f(x; ν, λ) =
x

λ
e

−x2

2λ ,

FX(x; ν, λ) = 1− e
−x2

2λ , x > 0, λ > 0, (1)

where λ is called the scale parameter.
In nature, it is impossible to investigate all the existing data of a variable or the

measured value for a variable may be out of the measurable bands. Therefore, the data
must be censored. These data are called censored data. The censored random variables
(censored samples) studied by Viveros and Balakrishnan (1994); Bandyopadhyay and
Chattopadhyay (1995); Yuen and Tse (1996); Aggarwala and Balakrishnan (1998);
Balakrishnan et al. (2001); Guilbaud (2001); Balakrishnan and Sandhu (1995, 1996);
Fernandez (2004); Dey et al. (2015); Jia et al. (2018); Dey et al. (2023) and Asar
and Arabi Belaghi (2023). Among different censoring schemes, progressively type-II
censoring is one of the most reputed schemes in censoring fields; See Dey et al. (2016);
Basiri and Beigi (2021); Ren and Gui (2021); Tolba et al. (2023) and Kumar et al. (2023)
as new works in the field of using this scheme in the Rayleigh distribution family. The
aim of this paper is to present an optimized estimation of the scale parameter of the
Rayleigh distribution under progressively censored data.

In some application situations, the researcher has some prior information from
the unknown parameter λ as a guess λ0. The shrinkage estimator of the unknown
parameter λ is used when the guess value λ0 for λ is available. The shrinkage estimators
have been discussed by many authors and one can refer to Lehmann and Casella (1998);
Prakash and Singh (2008, 2009) and Singh et al. (2007).

Estimating parameters under the squared error loss function (SELF) is not always
appropriate, since the SELF assigns equal weights to positive and negative errors,
whereas overestimating is more serious and worse than underestimating. Here, overes-
timation error is defined when the loss function is positive and underestimation error
is defined when the loss function is negative. Therefore, it is more suitable to estimate
the parameters under an asymmetric loss function. Zellner (1986) introduced an asym-
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metric loss function named as the linear exponential (LINEX) loss function, which is
defined as

L(∆) = ea∆ − a∆− 1, a ̸= 0, ∆ =
λ̂− λ

λ
, (2)

where the sign and the absolute value of the shape parameter ∆ indicate the direction
and degree of non-symmetric, respectively. The positive (negative) value of a is used
when the overestimation is more (less) serious than the underestimation. The loss
function (2) is an approximation of the SELF and if |a| be near to zero, is almost
symmetric.

Recently, some authors have discussed the Bayesian estimation methods under the
LLF, among them we cite Marrelec et al. (2003); Ahmadi et al. (2005) and Singh et al.
(2007). However, the scale parameter λ is more desirable under this asymmetric loss
function, and the estimator can still be improved.

By considering the uniformly minimum variance unbiased (UMVU) estimator λ and
using the prior information λ0, Thompson (1968) introduced a new estimator called
the shrinkage estimator as

λ̂S = Kλ̂+ (1−K)λ0, 0 ≤ K ≤ 1, (3)

where λ̂ is the preliminary UMVU or unbiased maximum likelihood (UML) estimator
and K is the shrinkage coefficient, which can be defined as the researcher’s opinion.

The values of K near to 1 and near to zero, indicate the tendency of the estimator
to the sample and the guess value, respectively. While the guess value of the parameter
is near to the real value, the shrinkage estimator shows a more appropriate behavior
than classic estimators such as the ML estimator, which means that the shrinkage
estimator has less risk. Thompson (1968), by using the proposed method, provided
a linear minimum variance unbiased estimator with the shrinkage coefficient K. In
application of the BS method in the Rayleigh distribution, Dey et al. (2015) studied the
BS estimator under the general entropy loss function for progressively type-II censored
data.

Here, we consider the experiment is under a progressively type-II censoring scheme.
We propose the Rayleigh distribution for modeling the censored data and present the
BL and BS estimates of the scale parameter under two popular loss functions, as a
highlight of this paper. Moreover, the comparison of the BS estimates with the BL
estimates through a numerical analysis is another point of this work.

As stated above, the structure of the paper is organized as follows. In Section 2, we
derive the BL estimates of the parameter of Rayleigh distribution with the progressively
type-II censoring data under SELF and LLF. In Section 3, under theses conditions, the
BS estimates of the parameter are also obtained. In order to evaluate the efficiency of
the estimators, the risk function of the proposed estimators under both loss functions
LLF and SELF are computed. In Section 4, we calculate the relative efficiency and
then present a numerical analysis to compare the proposed BS estimators with respect
to the BL estimators.
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2 The best linear estimator
Consider X1, X2, . . . , Xn as a random sample of the Rayleigh distribution with size
n. Suppose X = (X(1), X(2), . . . , X(m)) is the sample derived from the progressively
type-II censoring scheme R = (r1, r2, . . . , rm), where ri’s are pre-assigned numbers of
elimination of units from the test. According to Balakrishnan and Aggarwala (2000),
the likelihood function under the sample progressively type-II censoring is defined as

L(λ|X) = A

m∏
i=1

f(X(i))[1− F (X(i))]
ri ,

= Aλ−m
m∏
i=1

X2
(i) exp

(
− 1

2λ

m∑
i=1

(1 + ri)X
2
(i)

)

∝ Aλ−m exp

(
− 1

2λ
T

)
, (4)

where A = n(n− r1 − 1) . . . (n−
∑m−1

i=1 ri −m+ 1) and T =
∑m

i=1(1 + ri)X
2
(i). Based

on the Factorization Theorem, T is the complete sufficient statistic that has λχ2
(2m)

distribution (Dey et al., 2015). To optimize the equation (4), we take the derivative of
the log-likelihood function with respect to λ and then equal it with zero. The result of
solving the equation will be the ML estimator of the λ as

λ̂ = λ̂MLE = λ̂UMV UE =
T

2m
=

1

2m

m∑
i=1

(1 + ri)X
2
(i) ∼

λ

2m
χ2
(2m). (5)

If cλ̂ is a linear estimator for λ, where c is a positive constant, then the risk function
under the SELF is equal to

RS(cλ̂) = E(cλ̂− λ)2 =
[
c2
(
m−1 + 1

)
− 2c+ 1

]
λ2.

The minimum risk is obtained, if the following conditions are satisfied{
∂RS(cλ̂)

∂c = 2c
(

1
m + 1

)
− 2 = 0,

∂2RS(cλ̂)
∂c2 = 1

m + 1 > 0.

This conclude that
c = cS =

m

m+ 1
, RS(cS λ̂) =

λ2

m+ 1
. (6)

Similarly, the risk function of cλ̂ under the LINEX loss function is computed as

RL(cλ̂) = AE(ea∆ − a∆− 1)

= E
(
ea((cλ̂−λ)/λ) − a(cλ̂− λ)/λ− 1

)
= E

(
e
a

(
c T
2m

−λ

λ

))
− aE

(
c T
2m − λ

λ

)
− 1
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= eaE
(
e

ac
2mχ2

(2m)

)
− aE

( c

2m
χ2
(2m) − 1

)
− 1

= ea
(
1− ac

m

)−m

− a(c− 1)− 1.

The minimum risk exists if ∂RL(cλ̂)
∂c = 0 and ∂2RL(cλ̂)

∂c2 > 0 are satisfied. So,{
∂RL(cλ̂)

∂c = a
mme−a

(
1− ac

m

)−(m+1) − a = 0,
∂2RL(cλ̂)

∂c2 = a2m+1
m e−a

(
1− ac

m

)−(m+2)
> 0.

Therefore,

cL =
m

a
(1− e−a/(m+1)), RL(cLλ̂) = e

−a
m+1 (a+ 1)− 1. (7)

3 The Bayesian shrinkage estimator
In contrary to the classic statistic that researchers estimate the unknown parameter
with the sample information, in the Bayesian approach the unknown parameter is
estimated based on the combination of the sample information and prior distribution.
Prakash and Singh (2009) investigated the BS estimation of the scale parameter of
the Weibull distribution based on the censored data under the LINEX loss function.
Dey et al. (2015) achieved the Bayesian shrinkage estimation of the scale parameter for
the Rayleigh distribution based on the censored data under the general entropy loss
function.

Whenever the prior information of the parameter exists, the conjugate prior distri-
bution of λ is inverse-Gamma with the following PDF

g1(λ) =
βα

Γ(α)
λ−α−1e−

β
λ , α > 0, β > 0. (8)

Another class of the prior distributions is represented as

g2(λ) = λ−de−
cd
λ , d > 0, c > 0.

In the absence of the prior information of the parameter λ, the uniform or improper
distributions can be applied as the prior distribution.

The posterior density of the parameter λ under the prior density function g1(λ) is
defined as

π1(λ|X) ∝ g1(λ)L(λ|X) ∝ λ−(m+α+1) exp

(
−

T
2 + β

λ

)

∝
(
T
2 + β

)α+m

Γ(α+m)
λ−(m+α+1) exp

(
−

T
2 + β

λ

)
, (9)

which is the inverse-Gamma distribution with the parameters (α + m) and (T2 + β).
Therefore, the Bayes estimator of the parameter under the SELF is obtained as

λ̂B1 = EP (λ|X) =
T
2 + β

α+m
=

(
T

2
+ β

)
φ1, φ1 = (α+m)−1, (10)
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where the subscript P in expectation indicates that expectation was obtained under
the posterior density. Due to the presence of the unknown parameter in the estima-
tor, in practice the computation of the estimator is unfeasible. Hence, the posterior
distribution g1(λ) must be estimated under the point prior information E(λ̂B1) = λ0,
where the point λ0 is a guess value of λ. Consequently, the value of β based on the
point prior information would be as

β1 =

(
1

φ1
−m

)
λ0.

By substituting this value in (10), the Bayesian shrinkage estimator of λ under the
SELF is computed as

λ̂BS1 =

(
T

2
+ β1

)
φ1 = mφ1λ̂+

(
1

φ1
−m

)
λ0φ1 = K1λ̂+ (1−K1)λ0, (11)

where the shrinkage coefficient is K1 = mφ1. Since the obtained estimator is similar to
the shrinkage estimator defined in (3), hence λ̂BS1 is named as the Bayesian shrinkage
estimator.

Now, the Bayes estimator of the parameter λ under the LLF is achieved through
minimizing

EP

{
e
a
(

λ̂BS1
λ −1

)
− a

(
λ̂BS1

λ
− 1

)
− 1|X

}
with respect to λ̂B2. This leads the following equation

EP

(
1

λ
e

aλ̂B2
λ |X

)
= eaEP

(
1

λ
|X
)
.

By using the posterior density in (9), we can rewrite the above equation as∫ ∞

0

1

λ
e

aλ̂B2
λ

(
T
2 + β

)α+m

Γ(α+m)
λ−(m+α+1)e−

T
2

+β

λ dλ =ea
∫ ∞

0

1

λ

(
T
2 + β

)α+m

Γ(α+m)

× λ−(m+α+1)e−
T
2

+β

λ dλ,

So, (
T
2 + β

)α+m

Γ(α+m)

Γ(α+m+ 1)(
T
2 + β − aλ̂B2

)α+m+1 = ea
(
T
2 + β

)α+m

Γ(α+m)

Γ(α+m+ 1)(
T
2 + β

)α+m+1 .

Therefore
T

2
+ β − aλ̂B2 =

(
T

2
+ β

)
e−

−a
m+α+1

and hence, the Bayes estimator of the parameter λ under the LLF would be as

λ̂B2 =

(
T

2
+ β

)
φ2, φ2 =

(
1− e−

−a
m+α+1

)
a

. (12)
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Similarly, the posterior distribution g1(λ) must be estimated under the point prior
information E(λ̂B2) = λ0 that concludes

(mλ0 + β)φ2 = λ0.

Therefore, the value of � based on the point prior information would be as

β2 = λ0

(
1

φ2
−m

)
.

Subsequently, the BS estimator of the parameter λ under the LLF is obtained as

λ̂BS2 =

(
T

2
+ β2

)
φ2 =

(
mλ̂+ λ0

(
1

φ2
−m

))
φ2 = K2λ̂+ (1−K2)λ0. (13)

where the shrinkage coefficient is K2 = mφ2.
The risk functions of the Bayes estimator under the SELF is achieved as follows

RS(λ̂B1) = E(λ̂B1 − λ)2 = E

(
φ1

(
T

2
+ β

)
− λ

)2

=
1

4
φ2
1E(T 2) + φ2

1β
2 + φ2

1E(T )β − λφ1E(T )− 2φ1λβ + λ2

= mφ2
1λ

2 + (λ(mφ1 − 1) + βφ1)
2. (14)

Similarly, the risk of the Bayes estimator under the LINEX loss function is demon-
strated by

RL(λ̂B2) = E(ea∆ − a∆− 1) = E

(
e
a
(

λ̂B2−λ

λ

)
− a

(
λ̂B2 − λ

λ

)
− 1

)

= e
aβφ2

λ −a(1− aφ2)
−m − a

(
φ2(mλ+ β)− λ

λ

)
− 1. (15)

Now by considering λ̂BSi = Kiλ̂+(1−Ki)λ̂0, i = 1, 2, the risk functions of the Bayesian
shrinkage estimator under the SELF and LLF is respectively given by

RS(λ̂BS1)=E(λ̂BS1 − λ)2 = E[(K1λ̂+ (1−K1)λ0 − λ)2]

=λ2

(
K2

1

m
+ (1−K1)

2(1− δ)2
)
, (16)

RL(λ̂BS2)=E

[
exp

(
a

(
K2λ̂+ (1−K2)λ0

λ
− 1

))
− a

(
K2λ̂+ (1−K2)λ0

λ
− 1

)
− 1

]

=exp(a((1−K2)δ − 1))Mχ2
(2m)

(
aK2

2m

)
− a[K2 + (1−K2)δ − 1]− 1

= ea((1−K2)δ−1)

(
1− aK2

2m

)−m

+ a[(1−K2)(1− δ)]− 1, (17)

where δ = λ0

λ .
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Moreover, the posterior density of λ based on the prior distribution g2(λ) is illus-
trated as

π2(λ|X) ∝ g2(λ)L(λ|X) ∝
[
e−de−

cd
λ

] [
λ−me−

T
2λ

]
∝

(
T
2 + cd

)r+d−1

Γ(r + d− 1)
e−

T
2

+cd

λ λ−(m+d). (18)

Therefore, λ has the inverse-Gamma posterior density function with the parameters
m + d − 1 and T

2 + cd which has the same form as the posterior density in (9). The
only difference is in the positions of α and β which are substituted by d − 1 and cd,
respectively. If we replace the following equation in (17), then all the discussed results
are satisfied

d = (α+ 1), c =
β

α+ 1
. (19)

4 Numerical analysis
In this section, we use the relative efficiency (RE) to compare the estimators, which
is defined as follows. The relative efficiency of the BS estimators λ̂BSi, i = 1, 2 with
respect best linear unbiased estimator under the SELF and LLF are determined as

RES(λ̂BS1, cS λ̂) =
RS(cS λ̂)

RS(λ̂BS1)
=

λ2

m+1

K2
1
λ2

m + (1−K1)2(λ0 − λ)2

=
1

(m+ 1)
(

K2
1

m + (1−K1)2(1− δ)2
) ,

REL(λ̂BS1, cLλ̂) =
RL(cLλ̂)

RL(λ̂BSi)

=
e

−a
m+1 (a+ 1)− 1

ea((1−K2)δ−1)
(
1− aK2

m

)−m
+ a((1−K2)(1− δ))− 1

.

As can be seen, the relative efficiency under SELF (RES(λ̂BS1, cS λ̂)) is a function of the
parameters r, α and δ whereas the relative efficiency under the LLF (REL(λ̂BS2, cLλ̂))
also depends on a.

In Figure 1, the relative efficiency of the BS estimator with respect to the BL
estimator under SELF based on the value of 0 ≤ δ ≤ 3 is represented for different
values of m = 5, 10, 20, 50 and α = 0.25, 0.5, 1, 2, 4, 10. In all plots, as expected, the
maximum value of the relative efficiency is attained at point δ = 1.

Based on Figure 1, the efficiency of the BS estimator λ̂BS1 under SELF is always
less than the BL estimator cλ̂ for all values δ when α is very close to zero. For a small
value of m, there is a remarkable difference between the efficiency of the two estimators
and with increasing m, their efficiencies are close together.

Generally, with increasing α, the BS estimator is more efficient when δ is close to
one. In this case, the range of the points around δ = 1 that the BS estimator has
better performance, decreases. Moreover, for small values of m and α, the efficiency of
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Figure 1: the relative efficiency of the BS estimator with respect to BL estimator under SELF based
on the value of 0 ≤ δ ≤ 3 for different values of m = 5, 10, 20, 50 and α = 0.25, 0.5, 1, 2, 4, 10.

the BS estimator strongly decreases when δ is far from one. Consequently, this shows
that with the suitable choice of α, when the guess value λ0 is near to the real value of
the parameter λ, the BS estimator under SELF is more efficient, especially for small
values of m.

Figures 2 and 3 present the relative efficiency of the BS estimator with respect to
the BL estimator under LLF based on the value of δ for different values of m = 5, 10
and α = 0.5, 1, 2, 4. In all plots of Figures 2 and 3, we observe the relative efficiency
under LLF strongly depends on a values, such that for its small values, the relative
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Figure 2: the relative efficiency of the BS estimator with respect to BL estimator under LLF based
on the value of δ for different values of α = 0.5, 1, 2, 4 and m = 5.

efficiency have large values for the points around δ = 1 that indicates the BS estimator
perform better than the BL estimator.

Generally, when m increases and a decreases, the relative efficiency under LLF
increases such that for the points around δ = 1, its values is much greater than one.
Moreover, for small values of m and large values of a, the efficiency of the BS estimator
is worse, especially when δ is far from one. With increasing α, the BS estimator has
better performance when δ is close to one. In this case, the range of the points around
δ = 1 that the BS estimator is more efficient, decreases. Consequently, with the suitable
choices of a and α, when the guess value λ0 is near to the real value of the parameter
λ, the BS estimator under LLF is more efficient.

Discussion and Conclusions
Here, our main goal was to introduce the BS estimation method under SELF and LLF
for the scale parameter of Rayleigh distribution with progressively type-II censored
data. First, we presented the ML estimator for the parameter and derived the BL
estimator based on the ML estimator under SELF and LLF. Then, we presented the
Bayesian method and derived the Bayesian estimator under the two loss functions.
Then, we proposed the BS method and obtained the BS estimators based on Bayesian
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Figure 3: the relative efficiency of the BS estimator with respect to BL estimator under LLF based
on the value of δ for different values of α = 0.5, 1, 2, 4 and m = 10.

estimators under the two loss functions. Also, we derived the risk function for all
estimators. Finally, we presented the relative efficiency of the BS estimators concerning
the BL estimators and used a numerical analysis to compare them. Our findings about
BL and BS estimation methods verified the previous results in this field. The numerical
results showed the BS estimator performs better than the BL estimator under SELF
if the guess value λ0 is near to the real value of the parameter λ, especially for small
values of m. The amount of α also affected the efficiency of the BS estimator. The
results indicated values of 1 ≤ λ ≤ 2 are suitable choices, and using the BS estimator
has a more applicable advantage concerning the BL estimator in this case. Under LLF,
the relative efficiency depended on a, α and m. If the guess value λ0 is near to the real
value of the parameter λ, the suitable choices of a and α lead to better performance of
the BS estimator under LLF, even if the amount of m is too small.
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