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Abstract: A common challenge in working with longitudinal data is dealing with
incomplete data. According to the existing studies on the dependence structure of
survival times, it is a riveting topic for researchers to estimate survival functions and
dependence parameters, especially in biology and medical research. Some researchers
have studied the aforementioned subjects with left- or right-truncated or censored data.
When the data involves interval censoring, the mentioned issues still need to be solved
or modified. In this article, we propose two alternative approaches to the estimation of
a dependence parameter and Kendall’s τ , given an interesting covariate and interval-
censored dataset. More precisely, these approaches include non-parametric and semi-
parametric methods to estimate the copula dependence parameter and Kendall’s τ ,
which are evaluated by simulation. Finally, we apply the mentioned approaches to a
real-world dataset and copula’s goodness-of-fit tests.

Keywords: Generalized Turnbull’s estimator, Copula function, Interval-censored data,
Semi-parametric estimation.
Mathematics Subject Classification (2010): 62N01, 62N02, 62H20.

1 Introduction
Correlation, one of the most widely used concepts in statistics, can be confusing due
to its multiple meanings and statistical interpretations.. The term “correlation” refers
to a mutual relationship or association between quantities. In most business, medical,
and agricultural fields, it is useful to express the quantity of this relationship. A
correlation coefficient is a statistical measure that also describes the association between
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random variables. There are many common correlation coefficients typically used, such
as Pearson and Spearman coefficients, and Kendall’s τ . The Pearson coefficient is
known as the Pearson product-moment correlation coefficientand describes the linear
relationship between two variables. Spearman’s correlation coefficient can be defined
as a special case of Pearson’s coefficient, applied to a collection of ranked variables. Of
course, unlike Pearson’s coefficient, it is not restricted to the linear relationship.

The third correlation coefficient, like Spearman’s, is based on the ranks of variables.
However, Kendall’s τ , proposed by Kendall (1938), differs by considering only the
direction of agreement between ranks and ignoring the magnitude of rank differences.
Consequently, Kendall’s τ is generally more appropriate for discrete data. The formal
Kendall’s τ is defined by

τX,Y =Pr ((X1 −X2)(Y1 − Y2) > 0)− Pr ((X1 −X2)(Y1 − Y2) < 0)

=E (sgn(X1 −X2)sgn(Y1 − Y2)) ,

where (X2, Y2) is an independent copy of (X1, Y1), and sgn is the sign function.
In practice, this measure is estimated by the formula

τ̂(X,Y ) =

(
n

2

)−1

{(the number of concordant pairs)

− (the number of discordant pairs)},

=

(
n

2

)−1 ∑
i<j

sgn((Xi −Xj)(Yi − Yj)). (1)

If the value obtained for a pair is +1, the pair is concordant. But, the values −1 and 0
indicate, respectively, that the pair is discordant and the pair is uncorrelated. All the
aforementioned parameters are meant to be used for precise data.

In many biomedical applications, the analysis of dependence for bivariate or mul-
tivariate survival data with censoring is straightforward. Kendall’s τ can be useful as
a rank-correlation measure. In fact, unlike Pearson’s correlation coefficient, Kendall’s
τ does not require any knowledge of the parametric shape of the marginal distribu-
tions. In addition, its rank-invariance properties make it suitable for measuring the
dependence in non-Gaussian lifetime models.

Many estimators of Kendall’s τ , with right-censored data, have been proposed and
studied by some statisticians. See Lim and Meier (2006); Beaudoin et al. (2007); Wang
and Wells (2000); Weier and Basu (1980); Oakes (1982, 2008); Lakhal et al. (2008).
Hesieh and Li (2017) studied the estimation of bivariate, left-truncated variables. Also,
Betensky and Finkelstein (1999) suggested the estimation of Kendall’s τ under inter-
val censoring by using a multiple imputation strategy. Kim (2015) employed a con-
ditional tau statistic to estimate an association of bivariate, interval-censored data;
the suggested method performed better in simulation studies compared to Betensky
and Finkelstein’s multiple imputation method, except in the case of strong associations.
Kang and Kim (2021) used the inverse probability censoring weighted (IPCW) method
to adjust the effect of inductively dependent censoring and multiple imputation tech-
niques to recover unknown failure times due to interval censoring. According to their
simulation studies, the proposed association estimator performs well with moderate
sample size.
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Recall that a test statistic based on τ̂ , the unbiased estimator of τ , which has an
asymptotic normal distribution, is known as (Lee, 1990), which is known as n1/2(τ̂ −
τ), and has an asymptotic normal distribution; see Hoeffding (1948). Based on left
truncation methods, Tsai (1990) studied the independence of random truncation and
failure time, and proposed a hypothesis testing. Martin (2005) proposed a quasi-
independence testing for censoring failure time. Derumigny and Fermanian (2019)
proposed an estimation which on kernel-based estimation of conditional Kendall’s τ .

Various tests of quasi-independence are available for one-sided truncation and for
truncation that depends on a measured covariate, but none of them can be applied
to more complex truncation schemes. Koziol (1980) proposed a goodness-of-fit test
for randomly censored data. Also, Genest et al. (2006) proposed a goodness-of-fit
test procedures for copula models based on the probability integral transformation,
Jahanshahi et al. (2020) studied goodness-of-fit-tests for the Rayleigh Distribution
that could be useful for type II, right-censored data. Still, it is difficult to estimate
Kendall’s τ and the dependence parameter when both survival times are subject to
interval-censored data. Therefore, we propose a simple non-parametric method and a
semi-parametric method to estimate Kendall’s τ under interval-censored observations.

This paper is organized as follows. In Section 2, we discuss the models of survival
under bivariate correlated and interval-censored variables, based on the survival copula.
Then, in Section 3, we propose methods for estimating the measure of the dependence
parameter under a parametric model. Finally, in Section 4, we present examples with
real-world data and the results of simulation studies.

2 Bivariate correlated and censored data modeling
Let S1(t1) and S2(t2) be the marginal survival functions of T1 and T2 longitodinal
variables, respectively, where S(t1, t2) = P (T1 > t1, T2 > t2) is the joint survival func-
tion. The non-parametric estimation of the joint survival function for two correlated
variables can be modeled by Sklar’s theorem (Sklar, 1959) as follows

P(T1 > t1, T2 > t2) = Cα

(
S1(t1), S2(t2)

)
,

where Cα is a couple of joint survival functions with α as the dependence parameter.In
the following, we present a brief review of some important families of Archimedean
copulas. Here, u, v ∈ (0, 1) and α is the dependence parameter of the copula.
Clayton’s family:

Cα(u, v) = max
{(

u−α + v−α − 1
)−1/α

, 0
}
;α ∈ [−1,∞) \ {0}.

Frank’s family:

Cα(u, v) =
−1

α
log

(
1 +

(e−αu − 1)(e−αv − 1)

(e−α − 1)

)
;α ∈ R \ {0}.

Gumbel’s family:

Cα(u, v) = exp
(
−
(
(− log(u))α + (− log(v))α

)1/α)
; α ∈ [1,∞).
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Remark 2.1. Let X and Y be continuous random variables with copula C. Then,
Kendall’s τ is given by

τ = 4

∫ 1

0

∫ 1

0

C(u, v)dC(u, v))− 1.

For the Kendall’s τ for Clayton copula is τ = α
α+2 , for Frank copula is τ = 1 +

4
α [D1(α)− 1] and for Gumbel copula is τ = θ−1

θ .

In general, incomplete data may include all possible types of observations. Interval-
censored data are among important instances of incomplete data. Recall that, when a
variable stochastically occurs in an interval such as (L,R), or (L ≤ T ≤ R), then we say
that the variable T is interval-censored. When we work with two correlated, interval-
censored datasets, we may observe the intervals (L1i, R1i) and (L2i, R2i) instead of the
variables T1i and T2i which lie in the related intervals, respectively. In this case, the
lower and upper bounds are considered as 0 ≤ L < R < +∞. Also, the variables
are said to be right-censored if R1i = +∞ (R2i = +∞), and left-censored if L1i = 0
(L2i = 0). Moreover, the data is said to be complete (exact) if L1i = R1i (L2i = R2i)
with respect to T1 and T2.

For right-censored data, researchers such as Kaplan and Meier (1938) and Beran
(1981) proposed a non-parametric estimator of the survival function of a univariate vari-
able. Then, Dabrowska (1988) proposed a non-parametric estimator of the joint sur-
vival function of bivariate, right-censored data based on the Kaplan–Meier estimator.
Turnbull (1976) proposed a unconditional maximum likelihood estimator (NPMLE) of
survival functions. Then, Dehghan and Duchesne (2011) proposed a non-parametric
conditional estimator of the survival function given interval-censored data, referred
to as generalized Turnbull’s estimator (GTE). The latter estimator was adapted for
all types of incomplete data and downsized to Kaplan–Meier and unconditional Turn-
bull’s estimators. This approach is able to estimate S(t | z0) = P [T > t | Z = z0],
where z0 is a certain value of a Z covariate, and T is the related variable that can be
interval-censored, that is, belongs to an interval like (L,R).

In practice, we have to work with bivariate correlated and interval-censored data.
So, we can estimate the marginal survival functions separately. But, it is not still
possible to estimate the joint survival function according to interval-censored data.
As mentioned above, the copula approaches have proposed the estimation of joint
distributions given complete data with dependence parameter(s). In this study, we
propose a solution based on the GTE, midpoint imputation, and the copula methods.

Let the data appear as a triple {(Lki, Rki, Zki); k = 1, 2, i = 1, ..., n} instead of
two survival times, say (Tki; k = 1, 2; i = 1, ..., n), respectively. Then, by using the
GTE (Dehghan and Duchesne , 2015), the normal kernel of the covariate, one can
estimate the related survival functions. Let (timp

1i , timp
2i ) be the corresponding imputed

values. Since there is a one-to-one correspondence between survival variables and their
related survival functions, one can use the GTE to estimate their corresponding survival
function as (S̃1

imp
, S̃2

imp
). Finally, the dependence parameter of the copula will be

estimated based on the sample size and the length of the interval-censored data, and
compared with that of the precise data. In addition, the estimation of Kendall’s τ will
be explained in the next section.
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3 Estimation of Kendall’s τ

In this section, we propose an estimator of Kendall’s τ . Although the estimator does
not have a closed form, it can be useful when the data are interval-censored. First,
we explain the non-parametric and semi-parametric estimations of the dependence
parameter by the copula model (Sklar, 1959).

3.1 Non-parametric estimation
To estimate the dependence parameter of the copula via Kendall’s τ , given interval-
censored data, let (timp

1i , timp
2i ); i = 1, ..., n be the midpoint-imputed values of the related

intervals, respectively. Therefore, one can estimate the related survival functions as
(S̃1

imp
, S̃2

imp
). Then, to estimate Kandall’s tau with the following non-parametric

formula, one can put the corresponding estimated survival functions in (1):

τ̂p =

(
n

2

)−1 ∑
1≤i≤j≤n

aimp
ij bimp

ij .

Here, if S̃1i
imp

< S̃1j
imp (S̃2i

imp
< S̃2j

imp), then aimp
ij = 1 (bimp

ij = 1); otherwise,
aimp
ij = −1 (bimp

ij = −1). Based on the definition of Kendall’s τ , we define a new τp
estimator, namely, τImp:

τimp =P ((S̃1i
imp − S̃1j

imp
)(S̃2i

imp − S̃2j
imp

) > 0)

− P ((S̃1i
imp − S̃1j

imp
)(S̃2i

imp − S̃2j
imp

) < 0).

According to the U-statistics theory, E[aimp
ij bimp

ij ] = τ . So,(
n

2

)−1 ∑
1≤i≤j≤n

(
aimp
ij bimp

ij − τ
)
= τ̂p − τ.

Therefore,
√
n(τ̂p−τ) asymptotically converges to the normal distribution with a mean

of zero. See Lee (1990) and Van der Vaart (1998).

3.2 Semi-parametric estimation
Pseudo-log-likelihood is a method for estimating the dependence parameter of a copula
function, introduced by Genest et al. (1995). This method does not need additional
assumptions on the marginal distribution functions, and estimates the dependence
parameter of the copula model by replacing the estimated values of the survival function
and maximizing the following equation:

ℓ(α) =
∑

log(Ĉα(S̃1
imp

(T1i), S̃2
imp

(T2i))).

Here, S̃1
imp and S̃2

imp are correlated survival functions at the midpoints of interval-
censored data. Semi-parametric models can be defined based on copula models.



Kendall’s τ in interval-censored data 102

As reviewed above, some common copula models were proposed by Clayton, Gumbel
and Frank (Clayton, 1978; Gumbel, 1960; Frank, 1979) in which one could estimate
the dependence parameters based on Kendall’s τ . For more information, see Genest
and Rivest (1993); Genest et al. (1995); Oakes (1982); Wang and Wells (2000). Since
there is a one-to-one correspondence between τ and the parameter of the copula, by
fitting one of the previous copula families on the incomplete data under consideration,
one can estimate Kendall’s τ and the dependence parameter of the copula.

4 Simulation results and application of the proposed
estimator to real-world data

Although it is possible to apply these methods to datasets of more than 2 dimensions,
in this study, we focus on two-dimensional, incomplete datasets. Therefore, we apply
the GT estimator, Kendall’s τ , Sklar’s theorem, and common survival copulas of the
Archimedean families, to real, incomplete (interval-censored) data. Obviously, right-
censored data would be less accurate than interval-censored data. We believe that
when some of the variables are related to each other, it is better to first estimate the
upper bound for the right-censored cases. Since the real-world data under consideration
contains right-censored cases, we first estimate the related upper bounds according to
these cases, and then replace the right-censored cases with interval-censored data.

4.1 Simulation results
Let T1i and T2i be the two random variables of the Weibull(Shape = 3, Scale = 1 ∗Z),
distribution, with Z being covariate. Note that in this study, the distribution of Z
was considered to be uniform on the interval (5, 25), but one could take another
distribution for the covariate Z, such as the normal distribution given by Epanech-
nikov or the normal kernel. To extract the desired samples, according to the above
distribution and parameters, two samples of size n were considered, including the last
visit/inspection time: {Vi1, Vi2, i = 1, ..., n}. Since the observations were required to be
interval-censored, the sample data appeared to be of the form {(Li, Ri, Zi); i = 1, ..., n}.
The simulation was done by using a homogeneous Poisson process with the rate of the
interval’s length censoring (for example, the rate could be the inverse of E(R-L)), the
intervals being (L1i, R1i) and (L2i, R2i), containing T1i and T2i (i = 1, · · · , n) respec-
tively.

For the joint distribution function of T1 and T2, we considered the following two
cases:

• (T1, T2) follow Clayton’s model by replacing their survival function in (??) as
follows:

S(t1, t2) =
(
S1(t1)

−α + S2(t2)
−α − 1

)− 1
α ,

where according to (??), Kendall’s τ for Clayton copula is τ = α
α+2 .

• (T1, T2) follow Frank’s model by replacing their survival functions in (??) as
follows:

S(t1, t2) =
−1

α
log

{
1 +

(e−αS1(t1) − 1)(e−αS2(t2) − 1)

(e−α − 1)

}
,
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where according to (??), Kendall’s τ for Frank copula is τ = 1 + 4
α [D1(α) − 1], and

D1 is the Debye function Debye (1912), defined for any positive integer k by Dk(x) =
k
xk

∫ x

0
tk

et−1dt.

The simulation results are presented in Tables 1 and 2 for cases 1 and 2, respectively.
We set the parameter values as τ ∈ (0.2, 0.4, 0.6, 0.8), n ∈ (30, 50, 100, 200), and Rate ∈
(0.2, 0.5, 1, 2), and the number of iterations used in this study was 2000. Therefore,
we calculated τ̂1 =

∑2000
i=1

τ̂1i
2000 as a non-parametric estimation of Kendall’s τ . In the

semi-parametric method, we considered the two common copula families of Clayton
and Frank as parametric models, and the survival function estimator of the given
interval-censored data as a non-parametric method. We first estimated the dependence
parameter of the copula models. So we have then calculated τ̂2 as estimations of
Kendall’s τ for the given interval-censored data, namely, the semi-parametric method
of estimation. Finally, we compared them by using the criterion of mean square error
(MSE).

Table 1: Estimation of τ under Clayton’s family
τ̂1 MSEτ̂1 τ̂2 MSEτ̂2 τ̂1 MSEτ̂1 τ̂2 MSEτ̂2

Rate τ n = 30 n = 50
0.2 0.2 0.1429 0.0241 0.1529 0.0243 0.1425 0.0171 0.1500 0.0155

0.4 0.2433 0.0349 0.2548 0.0321 0.2419 0.0284 0.2462 0.0243
0.6 0.3696 0.0803 0.3579 0.0753 0.3631 0.0766 0.3445 0.0777
0.8 0.4272 0.1476 0.4016 0.1537 0.4266 0.1499 0.3847 0.1663

0.5 0.2 0.2020 0.0190 0.2109 0.0179 0.1998 0.0101 0.2012 0.0083
0.4 0.3536 0.0163 0.3530 0.0118 0.3478 0.0095 0.3399 0.0075
0.6 0.5618 0.0143 0.5176 0.0164 0.5516 0.0115 0.5073 0.0154
0.8 0.6771 0.0227 0.5984 0.0395 0.6681 0.0214 0.5951 0.0396

1.0 0.2 0.2198 0.0177 0.2284 0.0153 0.2183 0.0096 0.1216 0.0076
0.4 0.3808 0.0150 0.3757 0.0102 0.3743 0.0085 0.3608 0.0065
0.6 0.6197 0.0090 0.5746 0.0078 0.6155 0.0052 0.5747 0.0056
0.8 0.7721 0.0054 0.6929 0.0121 0.7688 0.0036 0.7010 0.0097

2.0 0.2 0.2238 0.0172 0.2296 0.0148 0.2173 0.0093 0.2152 0.0071
0.4 0.3847 0.0148 0.3823 0.0101 0.3817 0.0084 0.3728 0.0059
0.6 0.6359 0.0083 0.5989 0.0063 0.6307 0.0052 0.5990 0.0040
0.8 0.8071 0.0034 0.7431 0.0048 0.8024 0.0020 0.7493 0.0032

n = 100 n = 200
0.2 0.2 0.1365 0.0137 0.1355 0.0110 0.1336 0.0092 0.1267 0.0071

0.4 0.2307 0.0243 0.2263 0.0221 0.2276 0.0236 0.2144 0.0222
0.6 0.3527 0.0786 0.3239 0.0872 0.3488 0.0784 0.3115 0.0931
0.8 0.4145 0.1548 0.3636 0.1859 0.4081 0.1581 0.3490 0.2011

0.5 0.2 0.2002 0.0049 0.1925 0.0038 0.1936 0.0026 0.1801 0.0019
0.4 0.3392 0.0056 0.3256 0.0045 0.3352 0.0036 0.3167 0.0033
0.6 0.5439 0.0096 0.5029 0.0147 0.5368 0.0091 0.4978 0.0174
0.8 0.6604 0.0225 0.5920 0.0419 0.6522 0.0236 0.5886 0.0438

1.0 0.2 0.2157 0.0045 0.2053 0.0033 0.2114 0.0021 0.1945 0.0016
0.4 0.3710 0.0039 0.3541 0.0033 0.3657 0.0019 0.3455 0.0017
0.6 0.6138 0.0028 0.5735 0.0037 0.6016 0.0017 0.5756 0.0027
0.8 0.7586 0.0032 0.7041 0.0091 0.7523 0.0031 0.7073 0.0083

2.0 0.2 0.2173 0.0043 0.2060 0.0031 0.2973 0.0017 0.2842 0.0015
0.4 0.3792 0.0031 0.3626 0.0031 0.4600 0.0015 0.4402 0.0016
0.6 0.6290 0.0023 0.6012 0.0020 0.6289 0.0029 0.6014 0.0021
0.8 0.7971 0.0009 0.7571 0.0020 0.7975 0.0009 0.7577 0.0009
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Table 2: Estimation of τ under Frank’s family
τ̂1 MSEτ̂1 τ̂2 MSEτ̂2 τ̂1 MSEτ̂1 τ̂2 MSEτ̂2

Rate τ n = 30 n = 50
0.2 0.2 0.1453 0.0290 0.1434 0.0303 0.1385 0.0227 0.1334 0.0246

0.4 0.2472 0.0480 0.2369 0.0518 0.2354 0.0427 0.2265 0.0471
0.6 0.3796 0.0802 0.3601 0.0854 0.3697 0.0794 0.3536 0.0851
0.8 0.4437 0.1495 0.4194 0.1539 0.4298 0.1570 0.4106 0.1623

0.5 0.2 0.2055 0.0161 0.2009 0.0151 0.2067 0.0098 0.2027 0.0097
0.4 0.3577 0.0142 0.3455 0.0143 0.3864 0.0091 0.3436 0.0099
0.6 0.5736 0.0139 0.5422 0.0164 0.5625 0.0109 0.5381 0.0138
0.8 0.6863 0.0248 0.6437 0.0291 0.6827 0.0207 0.6501 0.0266

1.0 0.2 0.2171 0.0160 0.2140 0.0143 0.2209 0.0090 0.1275 0.0083
0.4 0.3872 0.0113 0.3763 0.0096 0.3831 0.0065 0.3744 0.0060
0.6 0.6337 0.0068 0.6019 0.0064 0.6297 0.0036 0.6047 0.0040
0.8 0.7833 0.0037 0.7375 0.0061 0.7778 0.0028 0.7429 0.0051

2.0 0.2 0.2226 0.0143 0.2213 0.0130 0.2230 0.0085 0.2209 0.0078
0.4 0.3934 0.0105 0.3856 0.0088 0.3950 0.0062 0.3874 0.0058
0.6 0.6539 0.0066 0.6253 0.0055 0.6486 0.0034 0.6266 0.0029
0.8 0.8179 0.0022 0.7762 0.0024 0.8173 0.0011 0.7851 0.0014

n = 100 n = 200
0.2 0.2 0.1370 0.0118 0.1332 0.01267 0.1328 0.0094 0.1306 0.0100

0.4 0.2324 0.0278 0.2263 0.0304 0.2278 0.0267 0.2244 0.0284
0.6 0.3552 0.0835 0.3482 0.0878 0.3522 0.0843 0.3469 0.0868
0.8 0.4174 0.1585 0.4062 0.1629 0.4124 0.1638 0.4071 0.1659

0.5 0.2 0.1978 0.0050 0.1951 0.0050 0.1957 0.0026 0.1943 0.0027
0.4 0.3446 0.0052 0.3382 0.0058 0.3392 0.0037 0.3362 0.0041
0.6 0.5538 0.0095 0.5387 0.0117 0.5473 0.0095 0.5387 0.0109
0.8 0.6691 0.0229 0.6495 0.0271 0.6618 0.0243 0.6508 0.0269

1.0 0.2 0.2181 0.0045 0.2155 0.0043 0.2131 0.0022 0.2119 0.0021
0.4 0.3819 0.0036 0.3701 0.0035 0.3741 0.0018 0.3715 0.0018
0.6 0.6223 0.0051 0.6066 0.0026 0.6144 0.0014 0.6052 0.0018
0.8 0.7711 0.0026 0.7890 0.0043 0.7650 0.0028 0.7517 0.0039

2.0 0.2 0.2206 0.0043 0.2191 0.0041 0.2174 0.0022 0.2166 0.0021
0.4 0.3878 0.0036 0.3835 0.0030 0.3853 0.0016 0.3833 0.0015
0.6 0.6423 0.0034 0.6280 0.0023 0.6389 0.0007 0.6307 0.0007
0.8 0.8112 0.0005 0.7906 0.0039 0.8055 0.0003 0.7933 0.0005

According to Tables 1 and 2, the non-parametric approach performed slightly better
than the semi-parametric approach. The proposed estimators were fully efficient in the
independence position (Genest et al., 1995), except in the presence of small dependence
between the variables and small sample size (n).

In addition, the MSE values increase the τ values do so, given the amall sample
size (n). When the rate is small, that is the length of the interval-censored is large,
the MSE values increase by the τ values, but when the rate is big that is the length
of the interval-censored is small, the MSE values decrease by the τ values. Finally the
MSE of τ̂1 and τ̂2 are close together and also have the same behaviour. It seems that
the Clayton model is not sensitive to the value of sample size, and its performance is
good even if n is small (n = 30). Also, in this model, τ̂2 performs well, when the length
of the interval-censored is large. Therefore, the results are close to those obtained by
Oakes (2008).

Generally, in interval-censored data, decreasing the length of intervals improves
the accuracy, as expected. Note that when the dependence value is big, the non-
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parametric and semi-parametric methods perform like one another. The estimation of
the dependence parameter of the copula is provided in the next table, in which α̂ and
α̂cen are non-parametric and semi-parametric estimations of α with variances of σ2(α̂)
and σ2(α̂cen), respectively. The coefficients CV and CVcen of variation, as criteria, were
subject to the non-parametric (α̂) and semi-parametric (α̂cen) estimators, respectively.

Since the CV criteria are free of measuring units, they refer to the small variance
according to it’s related mean, when it is less than 1. Although the variance of α̂cen

increases according to the values of α, it can be seen that CV is decreasing by the
values of α and the sample size (n). Furthermore, CV is decreasing by the rate of
interval censoring. The α̂cen and its variance (σ2

α̂cen
) according the rate values. Also

σ2
α̂cen

increase by the α values. In general the α̂ is greater than α̂cen. Finally, Table
3 provides the results according to the interval-censored data, given various values of
the interval rate. The MSE of the τ̂2 is slightly better than the MSE of the τ̂1 when
the sample size is small, but they have the same behaviour when the rate and τ values
are increasing.

Table 3: Estimation of the dependence parameter of the copula (α)
α̂cen σ2(α̂cen) CVcen α̂cen σ2(α̂cen) CVcen

n α α̂ σ2(α̂) CV Rate=0.2 Rate=0.5
100 0.5 0.54 0.0317 0.3297 0.33 0.0263 0.4914 0.48 0.0295 0.3578

1.3 1.17 0.0664 0.2202 0.60 0.0329 0.3291 0.94 0.0495 0.2366
3 3.14 0.4153 0.2052 0.98 0.0419 0.2088 2.06 0.1144 0.1642
8 7.80 1.9600 0.1795 1.16 0.0446 0.1820 2.96 0.1903 0.1473

Rate=1 Rate=2
0.5 0.52 0.0308 0.3374 0.53 0.0312 0.3332
1.3 1.12 0.0580 0.2150 1.15 0.0613 0.2151
3 2.73 0.1956 0.1620 3.06 0.2531 0.1644
8 4.84 0.5607 0.1547 6.40 1.1177 0.1652

Rate=0.2 Rate=0.5
200 0.5 0.50 0.0141 0.2375 0.29 0.0114 0.3681 0.45 0.0132 0.2553

1.3 1.13 0.0453 0.1884 0.56 0.0142 0.2127 0.94 0.0225 0.1595
3 3.21 0.1471 0.1195 0.91 0.0176 0.1457 2.00 0.0509 0.1128
8 7.93 0.8565 0.1167 1.08 0.0182 0.1163 2.86 0.0896 0.1043

Rate=1 Rate=2
0.5 0.49 0.0138 0.2397 0.50 0.0139 0.2357
1.3 1.08 0.0266 0.1510 1.11 0.0284 0.1518
3 2.71 0.0907 0.1111 3.04 0.1138 0.1109
8 4.88 0.2397 0.1003 6.56 0.4940 0.1071

4.2 Real-world data
In this subsection, we apply the aforementioned methods to the data in hand to esti-
mate the copula dependence parameter which includes the observed intervals of Cy-
tomegalovirus (CMV). These are samples of urine and blood, taken from 204 patients,
which were sampled every 12 and 4 weeks, respectively. The data have already been
studied by Finkelestein and Goggins (2000). These datasets include right and interval-
censored times. The dataset also includes some information about each patient’s base-
line and the last CD4 cell count. The interesting subjects on the dataset could be to
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study the association between CMV shedding in blood and urine times, fit a copula as
a joint distribution, and then estimate the dependence parameters given the interval
censoring.

To estimate this association, we considered T1 and T2 as times of CMV shedding in
blood and urine, respectively, and Z to be the common covariate for T1 and T2, that is,
the last CD4 cell count for every patient. To modify the right-censored data, via the
relationship between the baseline CD4 (BASCD4) and the last CD4 (LASTCD4) cell
count, we found a linear regression model between them to estimate the upper bounds
(R̂ = L+DIFFL,R), subject to the right-censored (R = +∞) observations, as shown
below:

DIFFL,R = 3.29 + 0.1 ∗ LASTCD4 + 0.0799 ∗BASCD4.

Here, the difference between L and R, namely DIFFL,R, is considered as a response
variable, estimated by BASCD4 and LASTCD4, which have significant testing, for
example, p-value = 0 0.01779. Therefore, the right-censored observations were modified
such that [L1k, R̂1k]; k = 1, 2, according to the variables T1k; k = 1, 2. Then, we esti-
mated the correlated survival functions with the non-parametric and semi-parametric
methods mentioned in Section 3. So, we estimated Kendall’s τ . The non-parametric
estimation of τ was 0.2313,

Then, we compared the survival functions of patients with low and high CD4 cell
numbers. To do so, we considered two groups; the low group having CD4 cell counts
lower than 75, and the high group having CD4 cell counts greater than 75. As expected,
the low group had a lower survival probability compared to the high group. Figure 1
graphically demonstrates this fact.

After estimating the right-censored time to event by the method mentioned above,
in goodness-of-fit-test analysis, we used the (Schepsmeier and Brechmann, 2013) which
the results have presented at Table 4. This shows the results of fitting copula families
on the dataset; four copula families, namely Gumble, Frank, Clayton, and Tawn were
good fits on the dataset. The results suggest that the Gumble copula is the best fit to
the dataset based on the Akaike Information Criterion (AIC). However, if we consider
the Log-likelihood (log-like) criterion, the Tawn copula is found to be a better fit than
the other three copula families. The Tawn copula is particularly interesting because it
is defined based on Pickands dependence functions, which are a function used to model
the dependence between random variables.

Table 4: The fitted copula families for dataset
Copula Association Parameter Kendal’s τ AIC BIC Loglike.
Gumbel 1.85 0.46 -18.4 -16.71 10.2
Tawn2 2.34(0.65) 0.42 -17.99 -14.62 11
Frank 4.98 0.45 -17.03 -15.34 9.51
Joe 2.24 0.40 -16.66 -14.97 9.33
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Figure 1: Survival times for CMV shedding in blood and urine

5 Conclusion

Obviously, a parametric method works better than a non-parametric method. Usually,
when the dataset is incomplete, it is impossible to use a parametric model. Therefore,
both non-parametric and semi-parametric models are needed to work well in simulation.
Since the results of non-parametric approaches are slightly better than semi-parametric
approaches, for interval-censored data, non-parametric methods may be preferred. As
expected, when the sample size and the rate of interval censoring increase, the accuracy
of the results is improved regardless of the method that is utilized. Based on our
proposed approaches, the estimator of Kendall’s τ worked well as a non-parametric
method under interval-censored data, when the expectation of R − L, E(R − L), was
small. The rate of the censoring process was approximately equal to the inverse of
E(R−L), and played an essential role in the improvement of the accuracy of the results.
Since the dataset under consideration included many right-censored cases, to adapt
the position of the dataset for the interval-censored cases and improve the accuracy of
the results, we first extracted a regression relationship between some variables, then
estimated the upper bounds of the right-censored cases. Because CD4 cell count has
a very important role in the patient’s survival, we used the non-parametric estimation
of the conditional survival function given the CD4 cell count. The research results
confirmed the efficiency proposed by (Genest et al., 1995) for estimating Kendall’s τ in
the independence mode. Note, however, that according to the results of the goodness-
of-fit-test of copula models on the modified dataset, by using VineCopula (Schepsmeier
and Brechmann (2013)), the Gumbel copula was fit to the given unconditional and
conditional data with the value of the AIC. Still, the estimated values of Kendall’s τ
were 0.22 and 0.46, respectively. As expected, conditioning the survival function on
the covariate, compressed the neighbourhood of the covariate centre so that Kendall’s
τ significantly increased.
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