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Abstract: In this paper, based on progressively Type-II censored samples, the maxi-
mum likelihood and Bayes estimators are derived for some lifetime parameters. In the
Bayesian framework, the point estimations of unknown parameters under both sym-
metric and asymmetric loss functions are discussed. The Bayesian estimations have
been obtained using the conjugate prior and discrete priors for the shape and scale
parameters, respectively. We also provide Bayes prediction intervals for the times to
failure of units censored in multiple stages in a progressively censored sample. Finally,
two numerical examples are presented to illustrate the results.
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1 Introduction
We consider a versatile scheme of censoring called progressive Type-II censoring. Under
this scheme of censoring, from a total of n units placed on a life-test, only m(< n) are
completely observed until failure. At the time of the first failure, R1 of the n−1 surviv-
ing units are randomly withdrawn (or censored) from the life-testing experiment. At
the time of the next failure, R2 of the n−2−R1 surviving units are censored, and so on.
Finally, at the time of the mth failure, all the remaining Rm = n−m−R1− . . .−Rm−1

surviving units are censored. Note that censoring takes place here progressively in m
stages. Clearly, this scheme includes as special cases the complete sample situation
(when n = m and R1 = R2 = . . . = Rm = 0) and the conventional Type-II right censor-
ing situation (when R1 = R2 = . . . = Rm−1 = 0 and Rm = n−m). The ordered failure
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times arising from such a progressively Type-II right censored sample are called progres-
sively Type-II right censored order statistics. Let X1:m:n, . . . , Xm:m:n be a progressively
Type-II censored sample with the censoring scheme R = (R1, R2, . . . , Rm). To sim-
plify the notation, we will use x1, x2, . . . , xm in place of x1:m:n, x2:m:n, . . . , xm:m:n. For
further details on progressively censoring, inferences and their applications, one may
refer to Balakrishnan and Aggarwala (2000) and Balakrishnan and Cramer (2014).

Let us consider the continuous random variable X with the cumulative distribution
function (cdf) F (x; θ, σ) . In many situations F (x; θ, σ) can be written as

F (x; θ, σ) = 1− [F̄0(x/σ)]
θ, −∞ ≤ c < x < d ≤ ∞, θ > 0, (1)

where F̄0(.) = 1 − F0(.), and F0(.) is an arbitrary continuous cdf with F0(c) = 0
and F0(d) = 1. Here, {F (x; θ), θ > 0} is called a proportional hazards family with
underlying distribution F0, see, Marshall and Olkin (2007). From the model 1, the
probability density function f(x; θ), the reliability function R(t; θ, σ) and hazard rate
function H(t; θ, σ), (at some t) are given, respectively, by

f(x; θ) =
θ

σ
f0(x/σ)[F̄0(x/σ)]

θ−1, −∞ ≤ c < x < d ≤ ∞, (2)

R(t; θ, σ) =

(
F̄0(

t

σ
)

)θ

, t > 0, (3)

H(t; θ, σ) =
θ

σ

f0(
t
σ )

F̄0(
t
σ )

, t > 0, (4)

where f0(.) = F ′
0(.) is the corresponding probability density function. Many authors

have discussed inference under progressive Type-II censored using different lifetime
distributions: see Aggarwala and Balakrishnan (1999), Cacciari and Montanari (2014),
Ng (2005), Mahmoud et al. (2014), El-Sagheer (2018), Zhang and Gui (2021), Soliman
(2005), and Soliman et al. (2006).

In this paper, we address the growing need for reliable estimation techniques in sur-
vival analysis, particularly in contexts where progressively Type-II censored samples
are prevalent. The proportional hazards (PH) family of distributions offers remark-
able flexibility in modeling hazard functions without imposing restrictive assumptions
about the baseline hazard shape, making it particularly valuable for analyzing com-
plex survival data. Unlike traditional lifetime distributions, the PH family maintains
the fundamental property that hazard ratios between different groups remain constant
over time, allowing for a more adaptable approach to understanding survival processes.
Understanding lifetime parameters such as reliability and hazard functions is crucial
for effective decision-making across various fields, as the PH family enables straightfor-
ward interpretation of covariate effects in terms of relative risk. This feature facilitates
meaningful comparisons across different groups or treatment conditions, enhancing the
practical applicability of our findings. Furthermore, the mathematical structure of PH
distributions allows for the incorporation of time-varying covariates, enabling dynamic
modeling that reflects real-world complexities. By leveraging these advantages, this
study aims to contribute to the existing literature by providing robust estimation tech-
niques that address the challenges posed by progressively censored data while offering
valuable insights into survival analysis. The rest of this paper is organized as follows.
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the maximum likelihood estimate (MLE) of the parameters θ and σ are discussed in
Section 2. Bayes estimators relative to different loss functions are considered in Section
3. In Section 4, We also provide Bayes prediction intervals for the times to failure of
units censored in multiple stages in a progressively censored sample. In Section 5, two
numerical example are used to illustrate the methodologies developed in this paper.

2 Maximum likelihood estimation
Let X1, X2, . . . , Xm denote a progressively Type-II censored sample from the propor-
tional hazards family (1) obtained from a sample of size n with the censoring scheme
R1, . . . , Rm. The likelihood function is given (Balakrishnan and Aggarwala, 2000) by

L(θ, σ|x) = A

m∏
i=1

{
f(xi; θ, σ)[1− F (xi; θ, σ)]

Ri
}
, (5)

where A = n(n− 1−R1)(n− 2−R1 −R2) . . . (n−m+ 1−R1 . . .−Rm−1). It follows
from (1), (2) and (5), that

L(θ, σ | x) = A
θm

σm

[
m∏
i=1

f0(
xi

σ )

F̄0(
xi

σ )

]
exp

(
θ

m∑
i=1

(Ri + 1) log F̄0(
xi

σ
)

)
. (6)

The log-likelihood function is

L = logL(θ, σ | x) = logA+m log θ −m log σ + θ

m∑
i=1

(Ri + 1) log F̄0(
xi

σ
)

+

m∑
i=1

log

[
f0(

xi

σ )

F̄0(
xi

σ )

]
. (7)

From (7), we obtain the likelihood equations as

dL

dσ
= −m

σ
+

θ

σ2

m∑
i=1

(Ri + 1)
xi f0(

xi

σ )

F̄0(
xi

σ )
− 1

σ2

m∑
i=1

xif
′
0(

xi

σ )

f0(
xi

σ )
− 1

σ2

m∑
i=1

xif0(
xi

σ )

F̄0(
xi

σ )
,

dL

dθ
=

m

θ
+

m∑
i=1

(Ri + 1) log F̄0(
xi

σ
). (8)

The maximum likelihood estimators (MLEs) θ̂ and σ̂ can be obtained by solving the
likelihood equations. Solving dL

dθ = 0 for θ gives, from (8)

θ̂ = − m∑m
i=1(Ri + 1) log F̄0(

xi

σ̂ )
, (9)

where σ̂ is the solution of

−m− m

σ̂
∑m

i=1(Ri + 1) log F̄0(
xi

σ̂ )

m∑
i=1

(Ri + 1)
xi f0(

xi

σ̂ )

F̄0(
xi

σ̂ )
− 1

σ̂

m∑
i=1

xif
′
0(

xi

σ̂ )

f0(
xi

σ̂ )
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− 1

σ̂

m∑
i=1

xif0(
xi

σ̂ )

F̄0(
xi

σ̂ )
= 0. (10)

Newton-Raphson iteration is employed to solve (10). The corresponding MLE of the
reliability function R(t) and the hazard function H(t), are given respectively by 3 and
(4) after replacing σ, and θ by their MLE σ̂, and θ̂.
Special Case: Taking

F̄0(x) =
1

1 + x
, x > 0,

X has parato distribution, and using (9), the MLE of θ is

θ̂ =
m∑m

i=1(Ri + 1) log(1 + xi/σ̂)
,

and the MLE, σ̂, is the solution of

−m+
1

σ̂

m∑
i=1

xi

(1 + xi/σ̂)
+

m

σ̂(
∑m

i=1(Ri + 1) log(1 + xi/σ̂))

m∑
i=1

(Ri + 1)
xi

(1 + xi/σ̂)
= 0.

This must be solved by Newton-Raphson method in order to obtain the MLE of the
scale parameter σ.

3 Bayes estimation
For a parameter θ and a decision rule θ̂, the most commonly used loss function is
squared error loss (SEL) function L1(θ̂, θ) = (θ̂ − θ)2. The symmetric nature of this
function gives equal weight to overestimation as well as underestimation, while in the
estimation of parameters of life time model, overestimation may by more serious than
underestimation or vice-versa. For example, in the estimation of reliability and failure
rate functions, an overestimate is usually much more serious than underestimate, in this
case the use of symmetric loss function may be inappropriate as has been recognized
by Basu and Ebrahimi (1991). This leads us to thinking that an asymmetrical loss
function may be more appropriate. One of the most popular asymmetric loss function
is the linear-exponential loss function (LINEX). This loss function was introduced by
Varrian (1975) and was extensively discussed by Zellner (1986).

L2(θ̂, θ) ∝ ec(θ̂−θ) − c(θ̂ − θ)− 1, (11)

where c is the shape parameter of the loss function. It controls the direction and degree
of symmetry. If c > 0, the overestimation is more serious than underestimation, and
vice-versa. For c close to zero, the LINEX loss is approximately SEL and therefore
almost symmetric. The posterior expectation of the LINEX loss function (11) is

Eθ[L2(θ̂, θ)] ∝ ecθ̂Eθ[exp(−cθ)]− c(θ̂ − Eθ(θ))− 1, (12)

where Eθ(·) denotes the posterior expectation with respect to the posterior density of
θ. The Bayes estimator of θ, denote by θ̂BL under the LINEX loss function is the value
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θ̂ which minimizes (12). It is

θ̂BL =
−1

c
log{Eθ[exp (−cθ)]},

provided that the expectation Eθ[exp (−cθ)] exists and is finite. Another useful asym-
metric loss function is the entropy loss (EL) function

L(θ̂, ϕ) ∝

(
θ̂

θ

)
− log

(
θ̂

θ

)
− 1, (13)

whose minimum occurs at θ̂ = θ. This loss is also known as Stein loss. The Bayes
estimate θ̂BG of θ under the entropy loss (13) is

θ̂BG =
(
Eθ(θ

−1)
)−1

.

Symmetric loss functions, such as Mean Squared Error and Mean Absolute Error, treat
positive and negative errors equally, providing simplicity and general applicability but
potentially leading to underfitting in asymmetric contexts. Conversely, asymmetric
loss functions like LINEX assign different penalties for over- and underestimations,
improving model performance by addressing specific error implications. Entropy loss
offers significant benefits over LINEX loss, particularly in Bayesian methods, due to its
interpretability and robustness to noisy data. It effectively aligns well with probabilistic
interpretations, making it suitable for real-world scenarios with imperfect data. In
contrast, LINEX loss is designed for situations where the costs of overestimations
and underestimations differ, allowing practitioners to tailor error costs for enhanced
predictive performance.

Under the assumption that both the parameters θ and σ are unknown, specifying
a general joint prior for θ and σ leads to computational complexities for the Bayes
estimates. To solve this problem and simplify the Bayesian analysis, we consider the
method advocated by Soland (1969). In this method, we use a conjugate continuous-
discrete joint prior distribution for the parameters θ and σ. The continuous component
of this distribution is related to θ and the discrete one is related to σ. We assume that
the scale parameter σ is restricted to a finite number of values σ1, σ2, . . . , σj with prior

probabilities η1, η2, . . . , ηj respectively, where 0 ≤ ηj ≤ 1, and
k∑

j=1

ηj = 1, i.e.

π(σj) = pr(σ = σj) = ηj , j = 1, 2, . . . , k.

Further, suppose that conditional upon σ = σj , j = 1, 2, . . . , k, θ has a natural conju-
gate gamma prior with parameters aj and bj

π(θ|σj) =
b
aj

j θaj−1e−θbj

Γ(aj)
, aj , bj , θ > 0. (14)

Combining the likelihood function in (6) and (14), we obtain the conditional posterior
probability density function of θ given σ = σj as

π∗(θ|σj ;x) =
B

Aj

j θAj−1

Γ(Aj)
exp(−θBj), Aj , Bj , θ > 0, (15)
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where Aj = m + aj and Bj = bj −
∑m

i=1(Ri + 1) log F̄0(
xi

σ ). The joint posterior of θ
and σj is

π∗(θ, σj |x) =
A b

aj

j ujηjθ
Aj−1e−θBj

G Γ(aj)σm
j

,

and the marginal posterior probability of σj is

pj = pr(σ = σj |x) =
b
aj

j ηjujΓ(Aj)

Γ(aj)σm
j B

Aj

j G
, (16)

where

G =

k∑
j=1

ujb
aj

j ηjΓ(Aj)

σm
j Γ(aj)B

Aj

j

and uj =

m∏
i=1

f0(
xi

σj
)

F̄0(
xi

σj
)
. (17)

Under a squared error loss function, the usual estimate of a parameter is the posterior
mean. Thus, Bayes estimates of the parameters, the reliability function and the hazard
function are obtained by using (15) and (16). The Bayes estimates θ̂BS , and σ̂BS of
parameters θ, and σ are

θ̂BS =

∫ ∞

0

k∑
j=1

pj θ π∗(θ|σj ;x)dθ

=

k∑
j=1

pj
Aj

Bj
=

k∑
j=1

pj
(m+ aj)

(bj −
∑m

i=1(Ri + 1) log F̄0(
xi

σj
))
, (18)

σ̂BS =

∫ ∞

0

k∑
j=1

pjσjπ
∗(θ|σj ;x)dθ =

k∑
j=1

pjσj . (19)

The Bayes estimate, R̂BS(t), of the reliability function R(t; θ, σ) and ĤBS(t), of the
hazard function H(t; θ, σ) are

R̂(t)BS =

k∑
j=1

pj

∫ ∞

0

[
F̄0(

t

σj
)

]θ
π∗(θ|σj ;x)dθ

=

k∑
j=1

pj

(
1−

log F̄0(
t
σj
)

(bj −
∑m

i=1(Ri + 1) log F̄0(
t
σj
))

)−(m+aj)

, (20)

Ĥ(t)BS =

k∑
j=1

pj

∫ ∞

0

θf0(
t
σj
)

F̄0(
t
σj
)σj

π∗(θ|σj ;x)dθ

=

k∑
j=1

pj
f0(

t
σj
)(m+ aj)

F̄0(
t
σj
)σj(bj −

∑m
i=1(Ri + 1) log F̄0(

t
σj
))
. (21)

respectively. Under the LINEX loss function, the Bayes estimate θ̂BL, and σ̂BL of
parameters θ, and σ are

θ̂BL =
−1

c
log

∫ ∞

0

k∑
j=1

pj exp(−cθj)π
∗(θ|σj ;x)dθ


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=
−1

c
log

 k∑
j=1

pj

(
1 +

c

bj −
∑m

i=1(Ri + 1) log F̄0(
xi

σj
)

)−(m+aj)
 , (22)

σ̂BL =
−1

c
log

∫ ∞

0

k∑
j=1

pj exp(−cσj)π
∗(θ|σj ;x)dθ

 (23)

=
−1

c
log

k∑
j=1

pje
−cσj .

The Bayes estimate, R̂BL(t), of the reliability function R(t; θ, σ) is given by

R̂(t)BL =
−1

c
log

∫ ∞

0

k∑
j=1

pj exp(−cR(t; θ, σj))π
∗(θ|σj ;x)dθ

 ,

where R(t; θ, σj) =
[
F̄0(

t
σj
)
]θ

. By using the exponential series

e−c(F̄0(t/σj))
θ

=

∞∑
s=0

(−c)s

s!

[
F̄0(

t

σj
)

]sθ
=

∞∑
s=0

(−c)s

s!
eθs log(F̄0(t/σj)),

and after some simplification, we obtain

R̂(t)BL =
−1

c
log

 k∑
j=1

∞∑
s=0

pj
(−c)s

s!

(
1−

s log(F̄0(
t
σj
))

(bj −
∑m

i=1(Ri + 1) log F̄0(
t
σj
))

)−(m+aj)
 .

(24)
Similarly, the Bayes estimate, ĤBL(t), of the hazard function H(t; θ, σ) is given by

Ĥ(t)BL =
−1

c
log

∫ ∞

0

k∑
j=1

pj exp(−cH(t; θ, σj))π
∗(θ|σj ;x)dθ

 ,

where H(t; θ, σj) =
θf0(t/σj)

σj F̄0(t/σj)
. Therefore, we obtain

Ĥ(t)BL =
−1

c
log

 k∑
j=1

pj

(
1 +

cf0(
t
σj
)

σjF̄0(
t
σj
)(bj −

∑m
i=1(Ri + 1) log F̄0(

t
σj
))

)−(m+aj)
 .

(25)
Under the entropy loss function, the Bayes estimate θ̂BG, and σ̂BG of parameters θ,
and σ are given by

θ̂BG=

 k∑
j=1

∫ ∞

0

pj
θ
π∗(θ|σj ;x)dθ

−1

=

 k∑
j=1

pj(bj −
∑m

i=1(Ri + 1) log F̄0(
xi

σj
))

(m+ aj − 1)

−1

,(26)

σ̂BG=

 k∑
j=1

∫ ∞

0

pjσ
−1
j π(θ|σj ;x)dθ

−1

=

 k∑
j=1

pjσ
−1
j

−1

. (27)
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Similarly, The Bayes estimate, R̂BG(t), of the reliability function R(t; θ, σ) and ĤBG(t),
of the hazard function H(t; θ, σ) are given by

R̂(t)BG =

 k∑
j=1

∫ ∞

0

pj

([
F̄0(

t

σj
)

]θ)−1

π∗(θ|σj ;x)dθ

−1

=

 k∑
j=1

pj

(
1 +

log F̄0(
t
σ j

)

(bj −
∑m

i=1(Ri + 1) log F̄0(
t
σj
))

)−(m+aj)
−1

. (28)

Ĥ(t)BG =

∫ ∞

0

k∑
j=1

pj

[
θf0(t/σj)

σjF̄0(t/σj)

]−1

π∗(θ|σj ;x)dθ

−1

=

 k∑
j=1

pj

(
bj −

∑m
i=1(Ri + 1) log F̄0(

t
σj
)
)
σjF̄0(

t
σj
)

f0(
t
σj
)(m+ aj − 1)

−1

. (29)

4 Prediction
Balakrishnan and Rao (1997) considered the problem of predicting the lifetime of an
item censored in the last step of the progressive censoring procedure. Here, it has to be
assumed that, at the termination time xm:m:n of the experiment, Rm > 1 observations
are left, see also Balakrishnan and Aggarwala (2000). This approach has been extended
by Basak et al. (2006) to predict lifetimes of items progressively censored in the lifetime
experiment at some stage of the censoring procedure. Based on the progressively Type-
II right censored sample X = (X1, . . . , Xm) from the proportional hazards family (1),
our interest is to find prediction interval for the life-lengths Xs:Ri (s = 1, 2, ..., Ri; i =
1, 2, ...,m) of all censored units in all m stages of censoring. Here Y = Xs:Ri denotes
the s-th order statistic out of Ri removed units at stage i (i = 1, 2, . . . ,m). Let x =
(x1, . . . , xm) and Y = y denote the observed value of X and the unobserved value of Y ,
respectively. The conditional distribution of Y = Xs:Ri

given X is just the distribution
of Y given Xi = xi due to the well-known Markovian property of progressively Type-II
censored ordered statistics. It follows (Balakrishnan and Aggarwala, 2000), that

f(y|xi; θ, σj) = s

(
Ri

s

)
f(y; θ, σj) [F (y; θ, σj)− F (xi; θ, σj)]

s−1
[1− F (y; θ, σj)]

Ri−s

× [1− F (xi; θ, σj)]
−Ri , y ≥ xi. (30)

Substituting (1) and (2), in (30), the conditional probability density function for y ≥ xi,
is

f(y|xi; θ, σj)= s

(
Ri

s

)
θ

σj

f0(y/σj)

F̄0(y/σj)

[
(F̄0(y/σj))

θ
]Ri−s+1

×
[
(F̄0(xi/σj))

θ − (F̄0(y/σj))
θ
]s−1 [

(F̄0(xi/σj))
θ
]−Ri

, y ≥ xi. (31)
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The Bayes predictive density function of Y = Xs:Ri
given Xi = xi is given by

f∗(y|xi) =

∫
θ

f(y|xi, θ, σj
)

k∑
j=1

pjπ
∗(θ|σj , xi)dθ. (32)

Substituting (31) and (15) into (32), the Bayes predictive density function is

f∗(y|xi) =

k∑
j=1

pj

(
Ri

s

)
s

σjΓ(m+ aj)

[
f0(

y
σj
)(bj −

∑m
i=1(Ri + 1) log F̄0(

xi

σj
))m+aj

F̄0(
y
σj
)

]

×
∫ ∞

0

θm+aje−θ(bj−
∑m

i=1(Ri+1) log F̄0(xi/σj))(F̄0(y/σj))
θ(Ri−si+1)

×(F̄0(xi/σj))
−θRi

[
(F̄0(xi/σj))

θ − (F̄0(y/σj))
θ
]s−1

dθ. (33)

Using (33) and the binomial expansion, we have

[
(F̄0(xi/σj))

θ − (F̄0(y/σj))
θ
]s−1

=

s−1∑
l=0

(
s− 1

l

)
(−1)l[F̄0(y/σj)]

θl[F̄0(xi/σj)]
θ(s−l−1).

The Bayes predictive density function Y = Xs:Ri
given Xi = xi is given by

f∗(y|xi) =

k∑
j=1

pj

(
Ri

s

)
s

σj

[
f0(y/σj)(m+ aj)

F̄0(y/σj)(bj −
∑m

i=1(Ri + 1) log F̄0(xi/σj))

]

×
s−1∑
l=0

(
s− 1

l

)
(−1)l

1− (Ri − s+ l + 1) log(
F̄0(y/σj)

F̄0(xi/σj)
)

(bj −
∑m

i=1(Ri + 1) log F̄0(xi/σj))

−(m+aj+1)

. (34)

Now, for constructing a Bayesian prediction interval for Y = Xs:Ri , we consider the
predictive function P (Y ≤ ν|xi), for some positive ν. It follows from (34), that

P (Y ≤ ν|xi)=

∫ ν

xi

f∗(y|xi)dy

=

k∑
j=1

pjs

(
Ri

s

) s−1∑
l=0

(
s− 1

l

)
(−1)l

1

Ri − s+ l + 1

×

1−
1−

(Ri − s+ l + 1) log(
F̄0(ν/σj)

F̄0(xi/σj)
)

(bj −
∑m

i=1(Ri + 1) log F̄0(xi/σj))

−(m+aj)
 . (35)

Hence, the 100(1 − γ)% prediction interval for Y = Xs:Ri is given by (L(xi), U(xi)),
where L(xi) and U(xi) are the lower and upper prediction bounds, respectively, satis-
fying

Pr[Y ≤ L(xi)|xi] =
γ

2
, and P [Y ≤ U(xi)|xi] = 1− γ

2
. (36)

Iterative numerical methods are required to obtain the lower and upper 100(1 − γ)%
prediction bounds for Y by finding ν from (36), using (35).
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5 Numerical computations
In this section, two numerical examples study are presented to illustrate all the esti-
mation and prediction methods described in the preceding sections. We consider the
parato distribution with cdf

F (x; θ, σ) = 1− (1 +
x

σ
)−θ, x > 0, θ > 0, σ > 0,

as a special case from the model 1 with

F̄0(x) =
1

1 + x
, x > 0.

To implement the calculations in this section, it is first necessary to elicit the values of
(σj , ηj) and the hyper parameters (aj , bj) in the conjugate prior (14) for j = 1, 2, . . . , k.
The hyper parameters (aj , bj) can be obtained based on the expected value of the
reliability function R(t) conditional on σ = σj , which is given using (3) and (14) by

Eθ|σj
[R(t)|σj ] =

∫ ∞

0

(1 + t/σj)
−θ

b
aj

j θaj−1

Γ(aj)
e(−θbj)

= (1 + (log(1 + t/σj)/bj))
−aj . (37)

Now, suppose that prior beliefs about the lifetime distribution enable one to specify two
values (R(t1), t1), (R(t2), t2). Thus, for these two prior values R(t = t1) and R(t = t2),
the values of aj and bj for each value σj , can be obtained numerically from (37) If
there are no prior beliefs, the non parametric procedure

R̃(ti = Xi) =
m− i+ 0.625

m+ 0.25
, i = 1, 2, . . . ,m,

can be used to estimate the reliability function R(t); see Martz and Waller (1982).

Example 5.1. (Simulated data): The progressive Type-II censored sample used here
has been simulated from the Pareto distribution with θ = 2 and σ = 1. The sample and
the corresponding censoring scheme were summarized in Table 1.

Table 1: Progressively censored sample in Example 1.
i 1 2 3 4 5 6 7 8 9 10
Xi 0.0009 0.0136 0.0390 0.0873 0.24667 0.3467 0.4865 0.5131 0.6658 0.6975
Ri 1 0 1 2 0 0 3 0 1 2

For this example, we have n = 19 and m = 10. The MLE of θ, and σ, using
a New-Raphson method when solving (9) and (10), are obtained as θ̂ = 1.7944 and
σ̂ = 0.9773. Substituting θ̂ and σ̂ into (3) and (4), we obtain MLE of the reliability
function at t = 2 as ˆR(2) = 0.1354 and ˆH(2) = 0.6027. To obtain Bayes estimates, it
is first necessary to elicit the values of (σj , ηj) and the hyper parameters (aj , bj) in the
conjugate prior (14) for j = 1, 2, . . . , k. Based on observations, we estimate two values
of the reliability function as

R̃(t = 0.0873) =
m− i+ 0.625

m+ 0.25
=

10− 4 + 0.625

10 + 0.25
= 0.646,
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R̃(t = 0.5131) =
m− i+ 0.625

m+ 0.25
=

10− 8 + 0.625

10 + 0.25
= 0.256.

Since σ = 1, we approximate the prior over the interval (0.5, 1.4) by the discrete prior
with σ taking the 10 values 0.5(0.1)1.4, each with probability 0.1. The two prior values
obtained in R̃(0.0873) = 0.646 and R̃(0.5131) = 0.256 are substituted into (37), where
aj and bj are solved numerically for each given σj , j = 1, 2, . . . , 10, using the Newton-
Raphson method. uj and pj are computed using the (17) for each σj. Table 2 gives the
values of the hyper parameters and the posterior probabilities derived for each σj. The
MLEs (·)ML, and the Bayes estimates ((·)BS , (·)BL, (·)BG) for the parameters θ, σ, the
reliability function R(t), and the failure rate function H(t) (at t = 2) are computed using
the (18)-(29), and are given in Table 3. From Table 3, as anticipated, we note that for
c close to 0, Bayes estimates relative to LINEX loss are very close to the corresponding
estimates under SEL function. This is one of the useful properties of working with
the LINEX loss function. Using the prediction procedure described in Section 4, we
computed the 95% prediction intervals for Y = Xs:Ri

(s = 1, 2, . . . , Ri; i = 1, 2, . . . ,m).
The results are presented in Table 4.

Table 2: Prior information, hyper parameter values and the posterior probabilities for
Example 5.1.

j 1 2 3 4 5 6 7 8 9 10
σj 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
ηj 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
aj 2.8007 1.3777 1.2756 1.2149 1.1697 1.1346 1.0839 1.0649 1.0488 1.0351
bj 1.1337 0.3651 0.2878 0.2394 0.2045 0.1782 0.1415 0.1282 0.1171 0.1077
uj 0.0135 0.0234 0.0356 0.0497 0.0652 0.0816 0.0988 0.1163 0.1340 0.1516
pj 0.1175 0.0965 0.0977 0.0990 0.1001 0.1010 0.0952 0.0964 0.0975 0.0985

Table 3: The MLEs and BEs of θ, σ,R(t), and H(t) where R(2) = 0.11 and H(2) = 0.66.
(·)ML (·)BS (·)BL (·)BG

c = −2 c = −0.5 c = 0.01 c = 0.5 c = 2
θ 1.7944 1.8829 2.3919 2.0344 1.8802 1.7608 1.5058 1.6155
σ 0.9773 0.9409 1.0229 0.9620 0.9405 0.9198 0.8595 0.8443

R(t) 0.1354 0.1426 0.1499 0.1444 0.1426 0.1409 0.1361 0.0929
H(t) 0.6027 0.6311 0.6813 0.6426 0.6309 0.6202 0.5907 0.5629

Table 4: The 95% Bayes prediction intervals for Y = Xs:Ri
in Example 5.1.

X1:R1 X1:R3 X1:R4 X2:R4 X1:R7

(0.0107,2.4936) (0.0493,2.6005) (0.0927,2.8891) (0.1597,3.5301) (0.4917,3.6499)
X2:R7

X3:R7
X1:R9

X1:R10
X2:R10

(0.5466,4.0722) (0.7018,4.3759) (0.6838,4.4827) (0.7066,5.0626) (0.8213,5.4902)

Example 5.2. (real data): In this example we present a data analysis and illustrate
application of the results in Sections 2-4 to the amount of annual rainfall (in inches)
during February recorded at Los Angeles Civic Center from 1982 to 2004 (see the
website of Los Angeles Almanac: www.laalmanac.com/weather/we08aa.htm). The data
are ordered as follows:

0.00 0.08 0.29 0.56 0.70 1.22 1.30 1.72 1.90 2.84 3.12 3.21
4.13 4.37 4.64 4.89 4.94 5.54 6.10 6.61 7.96 8.87 13.68
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Here, we checked the validity of the Pareto distribution based on the parameters θ = 0.5,
and σ = 0.67 using the Kolmogorov-Smirnov (K-S) test. It is observed that the K-S
distance is K−S = 0.1811 with a corresponding p−value = 0.4354. This indicates that
the Pareto distribution provides a good fit to the above data. We have generated a pro-
gressively censored sample using the censoring scheme R = (3, 0, 1, 2, 0, 0, 3, 0, 1, 3) from
the above data with n = 23 and m = 10. The censoring scheme and the corresponding
progressively censored sample are given in Table 5.

Table 5: Progressively censored sample in Example 5.2.
i 1 2 3 4 5 6 7 8 9 10
Xi 0.00 0.70 1.22 1.72 3.12 3.21 4.13 4.94 5.54 6.61
Ri 3 0 1 2 0 0 3 0 1 3

The MLE of θ and σ using a New-Raphson method when solving (9) and (10), are
obtained as θ̂ = 0.2750 and σ̂ = 0.5790. Substituting θ̂ and σ̂ into (3) and (4), we
obtain MLE of the reliability function as ˆR(t) = 0.6630 and the failure rate function
ˆH(t) = 0.1066 at t = 2. To obtain Bayes estimates, it is first necessary to elicit

the values of (σj , ηj) and the hyper parameters (aj , bj) in the conjugate prior (14) for
j = 1, 2, . . . , N . These values are derived by the following steps:
• Step 1: Based on observations, we estimate two values of the reliability function as

R̃(t = 0.70) =
m− i+ 0.625

m+ 0.25
=

10− 2 + 0.625

10 + 0.25
= 0.841,

R̃(t = 4.94) =
m− i+ 0.625

m+ 0.25
=

10− 8 + 0.625

10 + 0.25
= 0.256.

• Step 2: Since the MLE of σ is σ̂ = 0.5790, we assume that σj takes the 10 values
0.1(0.1)1, each with probability 0.1.
• Step 3: The two prior values obtained in step 1 are substituted into (37), where aj and
bj are solved numerically for each given σj, j = 1, 2, . . . , 10 using the Newton-Raphson
method.
• Step 4: uj and pj are computed using the (17) for each σj.

Table 6 gives the values of the hyper parameters and the posterior probabilities
derived for each σj. The MLEs (·)ML, and the Bayes estimates((·)BS , (·)BL, (·)BG)
of θ, σ and R(t), H(t) are computed and are given in Table 6. From Table 6, as
anticipated, we note that for c close to 0, Bayes estimates relative to LINEX loss are
very close to the corresponding estimates under SEL function. Using the prediction
procedure described in Section 4, we computed the 95% prediction intervals for Y =
Xs:Ri (s = 1, 2, . . . , Ri; i = 1, 2, . . . ,m). The results are presented in Table 8.

6 Conclusion
In this paper, the well-known proportional hazards model which includes several well-
known lifetime distributions such as exponential, Pareto, Lomax, Burr type XII, and
so on is considered. Based on progressively Type-II censored samples, the maximum
likelihood, and Bayes estimators for some lifetime parameters (reliability, and hazard
functions), as well as the parameters of the proportional hazards model, are derived.
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Table 6: Prior information, hyper parameter values and the posterior probabilities for
Example 5.2.
j 1 2 3 4 5 6 7 8 9 10
σj 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
ηj 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
aj 0.6201 0.6584 0.6846 0.7051 0.7221 0.7366 0.7494 0.7607 0.7709 0.7801
bj 0.4900 0.4691 0.4527 0.4388 0.4263 0.4149 0.4043 0.3944 0.3851 0.3763
uj 6.0e-01 2.1e-01 5.7e-01 5.4e-00 2.9e-00 1.1e-00 3.3e-00 8.4e-00 1.8e-00 3.7e-00
pj 0.0057 0.0162 0.0314 0.0509 0.0742 0.1008 0.1302 0.1621 0.1961 0.2319

Table 7: The MLEs and BEs of θ, σ,R(t), and H(t) where R(2) = 0.5008 and H(2) =
0.1872.

(·)ML (·)BS (·)BL (·)BG
c = −2 c = −0.5 c = 0.01 c = 0.5 c = 2

θ 0.2750 0.3282 0.3412 0.3313 0.3281 0.3251 0.3163 0.2901
σ 0.5790 0.7606 0.8017 0.7719 0.7604 0.7487 0.7092 0.6553

R(t) 0.6630 0.6578 0.6646 0.6595 0.6577 0.6560 0.6508 0.6466
H(t) 0.1066 0.1182 0.1196 0.1185 0.1182 0.1178 0.1168 0.1065

Table 8: The 95% Bayes prediction intervals for Y = Xs:Ri in Example 5.2.
X1:R1

X2:R1
X3:R1

X1:R3

(0.0188,1.7632) (0.2414,3.2695) (0.4846,3.7485) (1.2528,4.2055)
X1:R4

X2:R4
X1:R7

X2:R7

(1.8258,4.3765) (2.3681,7.7679) (4.2690,8.8947) (4.4592,11.4892)
X3:R7

X1:R9
X1:R10

X2:R10

(4.8630,13.6995) (6.0931,15.8347) (6.8197,17.6961) (8.3702,17.7101)
X3:R10

(12.4075,30.9281)

The Bayes estimators are obtained using both the symmetric (Squared Error, SE) loss
function, and asymmetric (LINEX, and Entropy, E) loss functions. This was done with
respect to the conjugate prior for the one shape parameter, and discrete prior for the
other parameter of this model. We also provide Bayes prediction intervals for the times
to failure of units censored in multiple stages in a progressively censored sample.
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