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Abstract: In this paper, we study a nonparametric Bayesian inference on the family
of nonincreasing density functions on real positive data. One interesting problem is
the goodness of fit test in such a context. In other words, we consider nonparametric
Bayesian testing on the family of nonincreasing density in this domain. So, we define
nonparametric hypothesis testing and compare two different testing approaches. The
first approach is given based on the Bayes factor. This approach is the well-known
Bayesian approach for testing, although its computation is complicated. Decision-
theoretic considerations with the loss function drive the second approach for a given
distance. This second approach has the advantage of considering the distance to the
null hypothesis but needs the definition of a threshold. When no threshold is known
as a priori, a possibility exists to calculate a p-value, and the method becomes more
complicated to compute. We propose a hybrid algorithm to accelerate the computation
of the p-value. The comparison of both approaches is performed based on a simulation
study.

Keywords: Bayes factor; Loss function; Nonincreasing density; P-value; Testing hy-
potheses.
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1 Introduction
In many applied areas of research, the nonparametric Bayesian methods are used in-
creasingly, but their applications in hypothesis testing situations have become of inter-
est recently. In particular, the well-known problem of the goodness of fit testing has
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received negligible attention compared to the estimation problem, see among others
Verdinelli and Wasserman (1998), Robert and Rousseau (2003), and also Al labadi and
Zarepour (2013) study the Bayesian nonparametric goodness of fit test for right cen-
sored data, Hart and Choi (2017) and Al labadi and Berry (2022) by using the Dirichlet
process proposed the estimation of the extropy and consider the goodness of fit test
procedure. First, we consider a testing procedure based on the Bayes factor (BF), while
the latter, we use an approach based on loss functions. Improvement in Markov Chain
Monte Carlo (MCMC) simulation methods has increased the use of Bayesian tech-
niques in more complex and realistic models than was previously possible. Despite the
significant development of these algorithms, the computation of Bayesian tests remains
an issue, especially in large dimensional frameworks, as encountered in the goodness
of fit tests. In particular, BF requires the computation of marginal likelihood, which
is difficult, see for instance, Basu and Bery (2003). In this work, we are interested in
goodness of fit tests where the density is known to be monotone nonincreasing on R+.
Testing uniformity versus a monotone density has been studied by Woodroofe and Sun
(1999) from a frequentist perspective. More precisely, they consider the problem of
testing H0 : f = 1 versus H1 : f ̸= 1 where f is monotone and nonincreasing function
on [0, 1].

The presented method, which involves nonparametric Bayesian inference and good-
ness -of-fit testing for nonincreasing density functions on real positive data, finds ap-
plication in various fields where understanding the distribution of continuous, positive-
valued variables is crucial. Here, there are some practical examples to illustrate its
application:

Analysis of Environmental Data: Suppose we are interested in modeling the con-
centration of a pollutant (measured in parts per million, ppm) in a river over time.
We hypothesize that the concentration levels should follow a nonincreasing trend as
the pollutants disperse downstream. We want to test whether the observed pollutant
concentrations at these stations follow a nonincreasing density function over time.

Analysis of Drug Dissolution Rates in Pharmaceutical Research: In pharmaceutical
research and development, understanding the dissolution rates of drugs is critical for
ensuring their effectiveness and safety. The dissolution rate refers to how quickly
and completely a drug substance dissolves in the gastrointestinal tract, influencing its
bioavailability and therapeutic efficacy. Investigate whether the observed dissolution
rates follow a nonincreasing pattern over time. We hypothesize that as time progresses,
the dissolution rates may decline due to factors such as saturation of the dissolution
medium or changes in drug particle size.

Modeling Cell Growth Rates in Biotechnology: In biotechnology, understanding and
modeling the growth rates of cells is crucial for optimizing processes such as fermenta-
tion or cell culture. Cell growth rates are typically positive values that decrease over
time due to factors like nutrient depletion or waste accumulation. We can test the
hypothesis if the observed cell growth rates follow a nonincreasing pattern over time.

We study Bayesian nonparametric testing on the family of monotone nonincreasing
density functions on R+. Nonparametric estimation of the monotone nonincreasing
density is a well-known problem and has been considered from theoretical and applied
perspectives in the frequentist literature. In particular, the estimation of monotone
density functions has applications in reliability and serves as a preliminary analysis in
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survival analysis. Monotone nonincreasing densities on R+ have a mixture represen-
tation, allowing for likelihood-based inference. See, for instance, the introduction in
Balabdaou and Wellner (2007) for a review on the subject. Let F0 be the set of all
monotone nonincreasing densities on R+ and Π is the prior probability measure on F0.
Similar to Woodroofe and Sun (1999) given observations x = (x1, ...., xn) supposed to
be Independent and identically distributed (i.i.d.) from some monotone nonincreasing
density, f . Our goal is to consider the following test

H0 : f = f0 against H1 : f ̸= f0 and f ↘, (1)

where f0 is a given monotone nonincreasing density. Note that we do not restrict
ourselves to f0 = 1, although this is a trivial generalization. We compare two different
approaches to test the above hypotheses. One is based on the BF, which is related to
the penalized likelihood ratio test and can be written as

BF0/1 =
f0(x)

m(x)
, m(x) =

∫
F0

f(x)dΠ(f), f(x) =

n∏
i=1

f(xi). (2)

The prior probability measure is the most commonly used in the Bayesian approach
for testing, although its computation remains an open problem, given its complicated
issue. Sections 2 and 3 verify this approach to test the defined hypothesis. Decision
theoretic considerations drive the second approach. Consider for a given metric,d, the
loss function

L(f, δ) = δ(ϵ− d(f, f0))Id(f,f0)<ϵ + (1− δ)(d(f, f0)− ϵ)Id(f,f0)>ϵ, (3)

where in this paper, d is the L1 distance. From Robert and Rousseau (2003)

δΠ = 1 iff EΠ (d(f, f0)|x) > ϵ,

where EΠ (d(f, f0)|x) denotes the posterior expectation of d(f, f0).
The second approach has the advantage of considering the distance to the null

hypothesis but needs the definition of a threshold ϵ. In the case where there is
no prior knowledge on the tolerance threshold ϵ, Robert and Rousseau (2003) and
Rousseau (2007) calibrate it by computing a p-value associated with the test statistic
H(x) = EΠ[d(f, f0)|x] and Rousseau (2007) studies what it means in term of thresh-
old. In other words, it is proved in Rousseau (2007) that using the p-value defined by
p0(x) = Pn

0 [H(X) ≥ H(x)|x] and accepting H0 if p0(x) ≤ α with α fixed corresponds
to choosing a threshold of order the posterior concentration rate for estimating f0 un-
der the alternative. For a discussion on the implications of such a result, see Rousseau
(2007).

The p-value approach is computationally more demanding. We propose a hybrid
algorithm following McVinish et al. (2009) to accelerate the computation of the p-value.
This method is described in Section 4, and then the comparison of both approaches is
based on a simulation study.
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2 A nonparametric prior on the set of monotone non-
increasing densities on R+

To define a Bayesian procedure either based on the BF0/1 in (2) or on some other loss
functions as in (3), one needs to define a prior on F0. To do so, we use the well-known
representation of monotone nonincreasing densities on R+. By Williamson (1956) and
Lévy (1962) it is known that a density function f is monotone nonincreasing if and
only if there exists P a probability measure on R+ such that f = fP with

fP (x) =

∫ ∞

0

I(x≤θ)
1

θ
dP (θ). (4)

Remember that we denoted F0 = {monotone nonincreasing densities on R+} = {fP :
P ∈ M} where M is the set of probability measures on R+ and θ ∈ R+.

Hence, a monotone nonincreasing density is a mixture of uniform distributions on
R+, and a natural nonparametric family of priors is the Dirichlet Process Mixture
(DPM) of uniform distributions corresponds to considering a Dirichlet Process (DP)
on the mixing P on R+. The Dirichlet process Mixture of uniform distributions has
the following hierarchical representation

Xi|θi
ind.∼ G(.|θi) = U(0, θi) for i = 1, ..., n,

θ1, ..., θn|P
i.i.d∼ P,

P ∼ DP (.|α,G0), (5)

where 0 < α < ∞, G0 is a probability distribution on R+ and DP (α,G0) denotes
the distribution of Dirichlet process with base measure αG0. Note that the density of
G(.|θi) is given by g(x|θi) = 1

θi
I0≤x≤θi . Using the stick-breaking representation of the

DP by Sethuraman (1994), If Vj
i.i.d∼ Beta(1, α), j = 1, 2, ..., we can write

P (.) =

∞∑
j=1

πjδθj (.), θj
i.i.d∼ G0, (6)

where π1 = V1, πj = Vj

∏j−1
i=1 (1−Vi) for j = 2, 3, ... and the δθj (.) stands for the Dirac

massing on θj . Then fP in (4) can be defined as

fP (x) =

∞∑
j=1

πj
1

θj
Ix≤θj (x),

emphasizing the discrete nature of the DPM. Alternatively using Blackwell and Mac-
Queen (1973) we can express the marginal distribution of θ1, ..., θn in the hierarchical
representation (5), integrating out P . This leads to θ1 ∼ G0 and for all i = 2, ..., n the
conditional distribution of θi given θ1, ..., θi−1 is

P (θi ∈ .|θ1, ..., θi−1) =
α

n+ i− 1
G0(.) +

k[i−1]∑
j=1

nj,i−1

n+ i− 1
δθ∗

j,i−1
(.), (7)
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where {θ∗1,i−1, ...θ
∗
k[i−1],i−1} are the set of k[i−1] distinct values in {θ1, ..., θi−1} and

nj,i−1 is the number of points in {θ1, ..., θi−1} equal to θ∗j,i−1.
In this section, we are interested in hypothesis testing (1). A first possibility is to

compute a BF using a prior H1 like DPM of uniform distributions described above.
The BFs are the Bayesian answers to 0-1 types of loss functions and are, therefore,
better suited for well-separated hypothesis testing problems. The BF for testing (1)
based on observation x = (x1, ..., xn) is the ratio of the marginal likelihood under the
null hypothesis to the marginal likelihood under the alternative hypothesis as defined
by (2) with marginal likelihood, m(x) =

∫
M

(∏n
i=1

∫∞
xi

1
θdP (θ)

)
dΠ(P ). Hence, it is

necessary to compute the marginal likelihood to calculate the BF. Note that in the
case of the BF approach, it is also easy to extend the hypothesis test to

H0 : f0 ∈ G0 versus H1 : f0 /∈ G0, f0 ↘, (8)

where G0 is a given parametric model composed of monotone nonincreasing densities
such as G0 = {fλ(x);x > 0, λ ∈ Λ, fλ ∈ F} and Λ is infinite dimensional space. Indeed,
in this case, the marginal likelihood on G0 is relatively easy to compute, particularly
when the prior belongs to a conjugate family of the model (fλ, λ ∈ Λ). Then we can
write the BF as BF0/1 =

∫
R+ fλ(x)dΠ0(λ)/m(x) where Π0 is prior on R+. For the

observations x = (x1, x2, ..., xn) large values of the BF0/1 shows that there is strong
evidence for H0 based on the data, small values of BF0/1 show otherwise. As n, the
sample size increases indefinitely, we would expect to obtain appropriate information
about the sampling density, say f0, and the BF should also correctly be able to decide
between H0 and H1. Dass and Lee (2006) showed that under weak conditions on the
prior of the model and if the null model G0 consists of a single density f0, the BF
is consistent. Consistency of the BF when G0 is a parametric family is not so clear,
especially under H0, see Rousseau (2007) for a discussion on these issues. In the special
case where λ = 1, and f0(x) is the exponential distribution with parameter one, the
BF0/1 is given by

BF0/1(x) =
e−nx̄

m(x)
x > 0. (9)

Taking the logarithm of both sides of the expression (9), we have that

logBF0/1 = −nx̄− logm(x) and ̂logBF0/1 = −nx̄− ̂logm(x),

where ̂logm(x) is an estimation of logm(x). The difficulty here lies in the computation
of m(x).

2.1 Computation of the marginal likelihood m(x)

In a statistical model, estimation of the marginal likelihood can be a provocative task.
In general, the marginal likelihood does not have a closed form solution except in some
special cases where there exists a conjugate prior and also in practice there are some
difficulties that hampers the estimation of the marginal likelihood. Even in reason-
ably simple statistical models computing the marginal likelihood can be difficult, see
Calderhead and Girolami (2009). Mixture models are a typically case of this situation.
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Especially, in high dimensional models it becomes a crucial issue. Since F0 is infinite
dimensional, m(x) as defined in (2) cannot be obtained analytically. Recall that under
the DP (α,G0) prior on P which we denote Π(.|G0, α) the marginal distribution of x
has the form

m(x) = mG0,α
(x) =

∫
fP (x)dΠ(P |G0,α), (10)

where fP (x) =
∏n

i=1

∫∞
xi

1
θdP (θ). Clearly, analytical or exact calculation mG0,α(x) is

not possible when n becomes large.
In the Ferguson (1973) they did some exact calculation for small sample sizes,

which were extended by Brunner and Lo (1989), but in large sample sizes this is
not feasible. In this work we use the method of Basu and Chib, see Basu and Bery
(2003). The method of Basu and Chib is based on Importance Sampling, hereafter
denoted (IS) approach. We first explain how the marginal likelihood function can
be obtained as a by product of the Sequential Importance sampling (SIS) method.
Recall that x = (x1, ..., xn) and that θ(n) = (θ1, ..., θn) is a decomposition of θ in
the hierarchical formulation of the DPM model (5) and set G0 the Inverse Gamma
distribution IG(a, b), a > 0, b > 0 and denote its density by g0. By the sequential
method of Kong et al. (1994), we obtain an unbiased estimate of the marginal likelihood
function, mG0,α(x), in the following way : We first generate θ1 from the conditional
predictive density

π(θ1|x1) =
f(x1|θ1)g0(θ1)

m(x1)
=

ba

Γ(a) (
1
θ1
)a+2e

−b
θ1

m(x1)
I(x1≤θ1), (11)

where m(x1) is the marginal likelihood function at x1. x(i) = (x1, ..., xi), θ(i) =
(θ1, ..., θi). From (7), we compute f(xi|x(i−1), θ(i−1))

f(xi|x(i−1), θ(i−1)) =
α

αi

∫ ∞

xi

ba

Γ(a)

e−
b
θ

θa+2
dθ +

K[i−1]∑
j=1

nj,i−1

αi
(
I(xi<θj)

θj
), (12)

and then we compute the conditional probabilities by

π(θi|x(i), θ(i−1)) = ci

 α

αi
(
I(xi<θi)

θi
)g0(θi) +

K[i−1]∑
j=1

nj,i−1

αi
δθ∗

j,i−1
(θi)

 , (13)

where g0 is Inverse-gamma density function with parameter a and b, where αi = α+i−1
, nj,i−1 and k[i−1] are defined in (7) and ci is the normalizing constant and we simulate
θi from (13). Set w1(θ0) = w1 and for i = 2, ..., n,

wi(θ(i−1)) = wi−1(θ(i−2))f(xi|x(i−1), θ(i−1)).

Then wn(θ(n)) = m(x1)
∏n

i=2 f(xi|x(i−1), θ(i−1)). In fact this kind of computation is
commonly referred to as peeling. We repeatedly compute the predictive conditional
probabilities (12) and the conditional probabilities (13) independently M times. Choice
of suitable M , the number of replications, is discussed at the end of this section. For
m = 1, ...,M , we consider the results of the above computations as θm = (θm1 , ..., θmn )



21 S. Khazaei

and w
(m)
n = wn(θ

m). Here we note that θm is a sample coming from a proposal dis-
tribution π∗(θm|x), which is not equal to the actual conditional distribution π(θm|x),
see Kong et al. (1994). Hence, w(m)

n can be rewritten as π(θm|x)
π∗(θm|x) =

w(m)
n

mG0,α
(x) and then

w(m)
n =

π(θm|x)
π∗(θm|x)

mG0,α
(x), (14)

where mG0,α(x) is given by (10) and π∗(θm|x) = π(θm1 |x1)
∏n

i=2 π(θ
m
i |x(i), θ

m
(i−1)).

Since mG0,α
(x) in (14) is independent of θm, the expression (14) can be used to

obtain an estimate of the marginal likelihood function mG0,α
(x). By a simple calcula-

tion we obtain Eπ∗[w(m)(θm)] =
∫
w(m)(θm)π∗(θm|x)dθm = mG0,α

(x). So, an unbiased
estimate of marginal likelihood function for mG0,α

(x) is given by

m̂G0,α(x) =
1

M

M∑
m=1

w(m)(θm).

Hence, the mean of the w(m) is a consistent Monte carlo estimate of the marginal
likelihood function. We can apply this basic idea to the DPM model, but in applying
SIS method to the DPM model.

The weights w(m) are highly variable, see Basu and Bery (2003) . To overcome this
problem they consider the collapsed Sequential Importance Sampling(SIS) approach
developed in the context of a DPM model and later the method extended to multinomial
and non-exchangeable beta-binomial models by Quintana and Newton (1998). The
idea of the collapsed SIS method is to integrate out the θi’s for i = 1, ..., n which
collapses the space in which the sequential sampling operates to the set of possible
cluster memberships. Since the θi’s integrate out analytically given the clustering
structure, this approach has less variability due to the Rao-Blackwellization effect,
see MacEachern et al. (1999). Now, we estimate the marginal likelihood function
mG0,α

(x) using the collapsed SIS as described in Basu and Bery (2003). Denote by ki
the membership index of θi, i.e. ki = j if and only if θi = θj j, i = 1, ..., n and k1 = 1
and k(n) = (k1, ..., kn). The idea is to simulate k(n) in the place of θ = (θ1, ..., θn). Let
s1 = m(x1) =

∫∞
x1

ba

Γ(a) (
1
θ )

(a+2)e−
b
θ dθ and for i = 2, ..., n we compute sequentially the

prequential predictive density of xi in following step 1 of the collapsed SIS approach.
We set xi−1

j = {xl; l ⩽ i − 1, kl = j}, N i−1
j = max{xl; l ⩽ i − 1, kl = j} and ni−1

j the
cardinal of the set xi−1

j , then Ki−1
j (θ|xi−1

j ), the posterior distribution of θ, based on
the prior and on xi−1

j those latent observations in the jth cluster is

Ki−1
j (θ|xi−1

j ) =

∏
l∈xi−1

j

1
θ I(xl≤θ)g0(θ)∫ ∏

l∈xi−1
j

1
θ I(xl≤θ)g0(θ)dθ

=
I(θ⩾Ni−1

j )(
1
θ )

n∗+1e−
b
θ∫

Ni−1
j

( 1θ )
ni−1
j +a+1e−

b
θ dθ

, (15)

where n∗ = ni−1
j + a. Using (13) and (15) we then consider:

1. Compute for each i = 2, ..., n,

si = f(xi|x(i−1), k(i−1), G0)
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=
α

αi

∫ ∞

0

f(xi|θ)dG0(θ) +

k[i−1]∑
j=1

ni−1
j

αi

∫ ∞

0

f(xi|θ)Ki−1
j (θ|xi−1

j )dθ.

Now we move to the next step of the collapsed SIS method, where we apply the method
to drew a ki from the following joint distribution:
2. Let ki−1

max = max{kl; l ⩽ i− 1} drew ki from

p(ki = j|x(i), k(i−1)) =


nj,i

αi

∫
xi

1
θdK

i−1
j (θ|xi−1

j ), 1 ⩽ j ⩽ ki−1
max

α
αi

∫
xi

1
θdG0(θ), j = ki−1

max + 1

=


(n∗)ni−1

j

b(αi)

PG0(n∗+1,b)(θ⩾Ni−1
j ∨xi)

PG0(n∗,b)(θ⩾Ni−1
j )

, 1 ⩽ j ⩽ ki−1
max

αaPG0(a+1,b)(θ⩾xi)

(αi)b
, j = ki−1

max + 1.

(16)

In other words either the ki’s come from the set of current individual cluster
labels with probabilities given in the first line of the (16) or is equal to ki−1

max + 1
(a new cluster label) with probability given in the second line of (16). Start with
k
(0)
(n) an initial value and iterate for m = 1, ...,M . By step 1 and step 2 we obtain

(k
(1)
(n), ..., k

(M)
(n) ) and s

(m)
i = f(xi|x(i−1), k

(m)
(i−1), G0), i = 1, ..., n. Then we compute

w(m)(k
(m)
(n) ) = s

(m)
1

∏n
i=2 s

(m)
i and finally m̂G0,α(x) = w̄ = 1

M

∑M
m=1 w

(m)(k
(m)
(n) ). Fig-

ure 1 illustrates the stabilization of the estimate of the marginal likelihood estimation
of the DPM model based on the collapsed SIS method. As the graph shows the es-
timate stabilizes up to the second decimal place quite quickly. For M = 100000 and
n = 10, 100, 500, 1000 we perform the algorithm and we compute estimation of the
logarithm of the BF to perform the goodness of Fit test (1). In the simulation study
we generate the repeated samples xt = (xt

1, ..., x
t
n), t = 1, ..., T from fθ(x) = θe−θx

so that θ = 1 corresponds to H0 and for all θ ̸= 1, fθ is in H1. Then to esti-
mate Eθ[logBF0/1(x)], we have iterated the algorithm for T = 50 times to compute
Eθ[logBF0/1(x)] =

1
T

∑T
t=1 log B̂F 0/1(x

t). These estimates are listed in Table 1. As it
is shown when the observations are generated from the exponential distribution with
parameter θ = 1, the logarithm of the BF takes maximum value and it decreases much
more slowly in n for values of θ that are close to 1 and for θ = 1.2 the logBF0/1 is
still increasing between n = 100 and n = 1000 whereas for θ = 0.2, 2 it has strongly
decreased. When n = 10 the estimation of logBF0/1 under H0 for all parameters is
negative although for θ = 1 it takes maximum value. In this case we can compute
exactly the logarithm of the BF and compare it with the estimation from collapsed
sequential method. The calculation shows that the Collapsed sequential method ac-
curately estimates the logBF0/1 with maximum digression 0.002 which it is defined
by | logBF0/1

logBFe
− 1|, where logBFe is the exact value of logarithm of the BF. Therefore

when the sample size is small we would reject the null hypothesis whatever the value
of θ, even when θ = 1 (at least on average). This is a surprising result since one would
expect that the smaller n the harder it is to detect departure from the null.

histograms of the logarithm of BF’s over repeated samples under fθ, when n =
100, 500, 1000, these are shown in Figures 2-4 respectively. Although the means have
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Table 1: Estimate of logarithm of the BF to test the model (1) when the observations
are generated from exponential distribution with different parameter values θ.

θ
n 0.2 0.8 0.9 1 1.2 2
10 -25.77 -1.74 -1.08 -0.42 -1.58 -2.13
100 -153.56 1.19 1.94 3.14 2.43 -10.34
500 -181.04 0.74 10.79 14.85 6.40 -28.34
1000 -253.56 0.26 6.40 128.14 8.88 -114.34
5000 −∞ -7.34 -1.40 +∞ -6.18 -201.21

increased slowly the histograms for θ = 1.2 and 0.8 have shifted slightly towards neg-
ative values, in the sense that the left hand tails of the histograms are more spread
out when n = 500 and n = 1000 than when n = 100. But as we see in Table 1 when
n = 5000 the logBF0/1 makes a clear distinction between the models even if the values
of θ are close to one. According to Jeffreys’ scale of evidence when θ = 0.8, 0.9, 1 or 1.2
we accept the null hypothesis for 10 < n ≤ 1000, since that there is not enough reason
to reject the H0.

Figure 1: The logarithm of marginal likelihood estimation of the DPM model versus number of
iteration when n = 1000 and f0(x) = e−x, x > 0.

We now present the approach based on the loss function in (3).

3 The loss function approach
In the goodness of fit setting measures of goodness of fit typically summarize the dis-
crepancy between observed values and the expected values under the model in question,
when there does not exist visible separation between the models and BF might not be
the most appropriate answer. In this section we consider an alternative to the BF for
the testing problem (1) using a loss function which also takes into account the distance
between f and f0 so that accepting H0 if f is close to f0 is not as serious as accepting
when it is very different. In this section we investigated testing procedure which is
the Bayesian answer to a distance based on loss function (3) which is a prior more
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satisfying in cases where the usual question is: Is f0 a reasonable approximation of f?
Consider the L1 distance on densities, d(fP , f0) =

∫
|fP − f0|dx. Often the problem of

interest is to check if a given f0 is a reasonable model for the observations, i.e.

H0 : d(fP , f0) ≤ ϵ, H1 : d(fP , f0) ≥ ϵ, (17)

so that ϵ determines what reasonable means. In the goodness of fit framework the
second definition of hypothesis will be more specifically studied, however we encounter
with the question, how we can choose ϵ small enough? Choosing ϵ is difficult. Berger
and Delampady (1987) obtained a bound in term of ϵ and Rousseau (2007) obtained
a range of value of ϵ corresponding to the use of defined p-value in three different
situations.

To answer (17), we consider loss function in (3). The Bayesian answer to the loss
function in (3) is given by

δΠ(x) = 1 iff H(x) ⩾ ϵ

where H(x) = EΠ[d(f, f0)|x] and d(f, f0) = |f − f0|1, i.e. we accept H0 if and only if
H(x) ≤ ϵ and reject H0 if and only if H(x) ≥ ϵ. To decide which hypothesis will be
accepted we need to define the threshold ϵ, when such threshold is unknown a priori,
one possibility is to consider a p-value associated to the test statistic H(x) to calibrate
the threshold problem as proposed by Robert and Rousseau (2003). Hence, we compute

P (x) = P0(H(X) ≥ H(x)|x), (18)

where P0 is the model under f0 and x is the observed values. This allows for the
calibration of the test statistics H(x) into a known scale. We now describe how to
compute such p-values in the context of monotone nonincreasing decreasing densities.

3.1 Computation of the Bayesian p-values
To compute the p-value, P (x), described above we need first to compute the test
statistic H(x) for a given data set x = (x1, ..., xn), under the nonparametric prior Π
on F0 the set of non increasing densities or M the set of probability measures on R+.
Recall that the prior is defined by

fP (x) =

n∏
i=1

∫
1

θ
Ixi≤θdP (θ), P ∼ DP (α, IG(a, b)). (19)

Since H(x) =
∫
M d(fP , f0)dΠ(P |x), we cannot use samples of the posterior of P

which are only based on the marginal representation of the Dirichlet Process (Blackwell
and Mackqueen). We therefore consider simulations of the posterior based on the
retrospective sampling algorithm by Papaspiliopoulos and Roberts (2008) and the slice
sampler of Kalli et al. (2011). The output of the retrospective sampling are in the form
(Kt, V t, Zt)Tt=1 where Kt = (Kt

1, ...,K
t
n), V

t = (V t
1 , ..., V

t
kt
max

) and Zt = (Zt
1, ..., Z

t
kt
max

)

where T is the number of iteration and ktmax = max(Kt). We represent (19) for
x = (x1, ..., xn) as

xi|Z,K
ind.∼ g(xi|ZKi) = U(0, ZKi) for i = 1, ..., n,
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Ki|π
i.i.d.∼

∞∑
j=1

πjδj(·),

Zj
i.i.d.∼ G0 = IG(a, b) a, b > 0 for j = 1, 2, ...,

π1 = V1, πj = Vj

j−1∏
i=1

(1− Vi), Vj
i.i.d.∼ Beta(1, α), for j = 2, ..., (20)

P (·) =

∞∑
j=1

πjδZj (·).,

where we can derive simple expressions for the full conditional distributions of K|x, Z, V
and Z, V |K,x and thus use a Gibbs algorithm. The parameters in (20) are the classi-
fication variable K = (K1, ...,Kn) ( that is Ki is an allocation variable related to Xi,
where Ki = j if and only if θi = Zj) the cluster parameters Zj , the cluster probabilities
πj , j = 1, 2, ... and finally the random measure P .

To generate (Kt, V t, Zt) we use the algorithm proposed by MacEachern et al.
(1999). Now, to be able to compute d(fP , f0) at each iteration we need to compute
(f t

P (yj))
J
j=1 where (y)Jj=1 is a grids on R+ at each iteration t. To compute f t

P (y) we
use Papaspiliopoulos and Roberts (2008) which

f t
P (yj)

d
=

max(Kt)∑
j=1

πt
j

Zt
j

I(yj⩽Zt
j)
+ f̃ t

P (yj)

max(Kt)∏
j=1

(1− V t
j ), (21)

where πt
j = V t

j

∏j−1
i=1 (1 − V t

i ), Z
t
j ∼ IG(a, b), a, b > 0 and f̃ t

P is draw from the prior.
Thus, when the output (Kt, V t, Zt)Tt=1 come from the retrospective sampling algo-
rithm and (f̃ t

P )
T
t=1 are drown independently from the prior, this representation of f t

P

are asymptotically distributed from the posterior. We thus need to simulate f̃P from
the prior , which is done using Guglielmi and Tweedie (2001). Also for computing
H(x) one of the difficulties in the above computation comes from the fact that the
Zt
j ’s, t = 1, ..., T are truncated IG(a, b) random variables. To generate Zt

j ’s from trun-
cated IG(a, b) so we use Damien and Walker (2001) describe. Obviously, for a given
data set x, obtaining H(x) is computationally demanding. It is thus not feasible to
compute H(x) for many different data sets x as would be necessary to compute the
p-value P (x). To do so, we use an IS approximation in a similar manner to McVinish
et al. (2009). Consider for m = 1, ...,M,xnew,m = (xnew,m

1 , ..., xnew,m
n ) samples inde-

pendently distributed from the model defined by H0 in (17), that is, xnew,m ind.∼ exp(1).
Since the support of the posterior distribution given new data is the same as the support
of the posterior distribution given old data, we can use two data sets to approximate
H(xnew,m) by a MCMC run under the posterior dΠ(P |xnew,∗). Choose the data set
xnew,∗ such that min(xnew,∗

1 , ..., xnew,∗
n ) ≤ min(xnew,m

1 , ..., xnew,m
n ) for m = 1, ...,M .

Hence
H(xnew,m) =

∫
d(fP , f0)W (xnew,m,xnew,∗)dΠ(P |xnew,∗)∫

W (xnew,m,xnew,∗)dΠ(P |xnew,∗)
,

where

W (xnew,m,xnew,∗) =
fP (x

new,m)

f0(xnew,∗)
=

∏n
i=1 fP (x

new,m
i )∏n

i=1 fP (x
new,∗
i )

, (22)
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fP (x
new,m
i ) =

∫
xnew,m
i

1

θ
dP (θ), for m = 1, ...,M and fP (x

new,∗) ̸= 0.

According to McVinish et al. (2009), an estimation of the expected value is given by

ÊΠ[d(fP , f0)|xnew,m] =

∑T
t=1 d(f

t
P , f0)Wt(x

new,m,xnew,∗)∑T
t=1 Wt(xnew,m,xnew,∗)

, (23)

where T is the number of MCMC iteration. As a result of the strong law of large num-
bers this IS estimator with normalized weights is consistent for EΠ[d(fP , f0)|xnew,m]
see Tierney (1994).

Let x0 = (x0
1, ..., x

0
n) be a vector of observations comes from model (17) under

null hypothesis, that is x0 i.i.d∼ exp(1) and also xnew = (xnew
1 , ..., xnew

n ) be a future
observation where xnew i.i.d∼ exp(1). Since the parameter under H0 is known, the
p-value is defined by

P (x0) = PH0
[H(xnew) ≥ H(x0)|x0].

Thus a proper approximation to the p-value can be obtained as

P̂ (x0) =
1

M

M∑
m=1

I(Ĥ(xnew,m) ≥ Ĥ(x0)). (24)

Let we choose G grids on [0, 1] and define G[0,1] = {y1, ..., yG} and GR+ = {x1 =

F−1
0 (y1), ..., xG = F−1

0 (yG)} be a grids on R+. To estimate the H(x1) or H(xnew,m)
it is necessary estimate

d̂(f t
P , f0) =

1

G

G∑
g=1

| f̂
t
P (xg)

f0(xg)
− 1|. (25)

To do this we use retrospective MCMC sampling following to generate the samples
Zt, V t, P t for number of iteration T = 500000. We use the thinning-Burnin to make
a new T=10000. we propose the following Pseudo-code representation to compute the
estimation of H(x). ∀j ∈ N we generate Z, V and update the K. By algorithm 2 from
Papaspillopoulos and Roberts( 2008).

Algorithm 3.1. Retrospective MCMC to estimate H(xnew,m).
Step 1 Initialisation of Z0, V 0 and K0

Step 2
Step 2.1 For t ∈ {0, 1, ..., T − 1} by using Papaspiliopoulos and Roberts (2008):
Step 2.2 Generate (Zt, V t) given Xn and Kt.
Step 2.3 Generate Kt given (Xt, Zt, V t).
Step 2.4 Generate f̃P (xg) from the prior.
Step 2.5 Generate (f t(xg))

G
P .

Step 3
Step 3.1Compute the estimated loss d̂(f t

P , f0) using (25). Using the thinning +
Burnin based on a very long MCMC chain to make a much small chain independently
new T .
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Figure 2: Histograms of p-values when n = 100 observations are generated from an exponential
distribution with parameter θ.
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                                       PV                                                                                                                                     PV Figure 3: Histograms of p-values when n = 500 observations are generated from an exponential
distribution with parameter θ.

Step 3.2 xm from the null hypotheses for m = 1, ...,M .
Step 3.3 W (xnew,m,xnew,∗) using (22).
Step 3.3 H(xnew,m) using (23).

To do so we generate repeatedly samples xm = (xm
1 , ..., xm

n ) for m = 1, ...,M
where M = 1000 and with different sample sizes n = 100, 500, 1000 from the density
f0(x) = θe−θxIx>0 so that when θ = 1 it corresponds to null hypothesis and we use
empirical estimation of p-value is given by (24). The result of estimation of the p-value
for different sample size under H0 are listed in Table 2 as we see according to the values
of the p-value we don’t have enough reasons to reject H0 when n = 10, 100, 500, 1000.
The distribution of the p-value is uniform on [0, 1] when H0 is true and this uniformity
defines a proper p-value which allows for its common interpretation across problems.
Hence as we see in the Figures (a) for 5-7 the histograms seem to be uniform. We
therefore investigate better the behavior of the p-value around θ = 1 that is when
θ = 0.8, 0.9 and 1.2. In fact in these cases we compute the P-value under H0 and we
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Figure 4: Histograms of p-values when n = 1000 observations are generated from an exponential
distribution with parameter θ.

see that the distribution of the p-value is not uniform on [0, 1] and this nonuniformity is
more clearer when the sample size increases see Figures (b), (c) and (d) of the Figures
5-7.

Table 2: Estimation of the expected p-value for different values of the parameter θ.
θ

n 0.8 1 1.2
10 0.5923 0.4441 0.3534
100 0.3702 0.4541 0.3885
500 0.1412 0.5432 0.1399
1000 0.0536 0.5780 0.0487
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Figure 5: Histogram of the logarithm of the BF when n = 100 observations are generated from an
exponential distribution with parameter θ.
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 Figure 6: Histogram of the logarithm of the BF when n = 500 observations are generated from an
exponential distribution with parameter θ.
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Figure 7: Histogram of the logarithm of the BF when n = 100 observations are generated from an
exponential distribution with parameter θ.

4 Discussion and conclusions
In this paper, we have studied the goodness of fit test where the density is known to be
monotone nonincreasing on R+. To do that we compare two different approaches. The
two approaches we have studied are the BFs and loss function approach, calibrated by a
p-value. The former is the most common Bayesian testing procedure. The range of this
factor is considered a degree of credibility of the hypotheses. The BFs are consistent
for hypothesis testing and model selection. This property of the BF is basic; that
is, if one of the models under consideration is true, then statistical methods should
guarantee the selection of the true model if enough information is observed. The use
of the BF guarantees consistency, while the use of classical selection tools like p-value
does not guarantee consistency under H0. The BF will choose the model that is closest
to the true model in terms of the Kullback-Leibler divergence. The above results on
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the BF for goodness of fit test of the model versus nonparametric family show that the
logarithm of the BF takes maximum value when the observations are generated from
the null hypotheses. The marginal likelihood estimation decreases much more slowly
in n for values of θ that are close to one than for values of θ that are further away.
When the sample size increases the logarithm of the BF tends to increase while when
the sample size is small for instance for n = 10 in average the BF’s cannot distinguish
the difference between H0 and H1 even for θ far from θ = 1(H0). When n becomes
larger, logBF on average still cannot differentiate H0 and H1 while θ is close to 1
(0.8, 1.2) since on average its logarithm is still positive. Hence in this case n has to be
greater than 5000 for logBF to see the difference. As Table 2 shows, the results of the
second method for goodness-of-fit testing between the model and the alternative model
indicate that estimations of the frequentist expectation of the posterior risk decrease
at a rate that seems to be slightly slower than n1/3. Looking at the average of the
p-value is not enough to see if it gives a discriminating method between H0 and H1

since for n ≤ 500 the means of p-values under θ = 0.8 or 1.2 are greater than 0.1.
However for n = 1000 the means under θ = 0.8 and θ = 1.2 are smaller than 0.05. To
refine the comparisons we have looked at the histograms of both, p-value and logBF .
These histograms show quite significantly that the p-values are more discriminating for
smaller values of n. Hence, we propose the following scale of evidence: i. If n < 5000
the p-value is better than the BF approach, ii. If n ≥ 5000 the BF is better than the
p-value approach.
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