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Abstract: The main objective of this article is to solve stochastic delay differential
equations via Haar wavelets. We present fundamental concepts of stochastic process,
Haar, block pulse functions, and their operational matrix relevant to time-delayed
Haar. Analytic solutions of two examples are solved for the first time to approximate
two kinds of single time-delayed stochastic differential equations with additive and
multiplicative noise. This orthogonal basis function not only simplifies the problem
but also speeds up the computations and lessens the computational complexity of the
stochastic delay differential equations to a lower triangular system of linear algebraic
equations. The equation can be solved via forward substitution, such as lower-upper
decomposition method. Finally, we examine the order of convergence and error anal-
ysis of two visual samples to validate the efficiency and effectiveness of the suggested
procedure.
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1 Introduction
The entrance of random influences into differential equations (DEs) resulted in two
specific equation categories, respectively, for which the sample path of the solution
process is differentiable and non-differentiable. The first class is random differential
equations and occurs when an ordinary differential equation (ODE) has random coeffi-
cient, an initial random value, or a fairly regular stochastic process with a differentiable
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sample trajectory. However, the second class, called stochastic differential equations
(SDEs), usually happens when an irregular stochastic process is forcing Gaussian white
noise. Their solution inherits the non-differentiability in stochastic integrals of sam-
ple paths from the Wiener process Klebaner (2005). Observations of stock prices in
finance, diffusing particle locations in microelectronics, and several processes recorded
at the moment are formulated mostly through computer simulations like stochastic
differential equations or stochastic integro-differential equations.

Alternatively, there are also many processes that require time to mature, react,
feed, grow, digest, and so on. The treatment of such equations not only needs the
present condition information but also some data regarding the preceding situation
Kuang (1993). These problems are called stochastic delay differential equations (SD-
DEs) and are generated form of SDEs. So a more logical model must include some
of the system’s past history of the system which neglecting such factor is to ignore
reality. Various numerical methods have been dedicated over the past decade to the
development of delay differential equations (DDE) approach with time delay Marzban
and Razaghi (2006), Hosseini and Marzban (2011), Behroozifar and Yousefi (2013),
Tang et al. (2017), Wang et al. (2015), Buckwar (2000), Falbo (2006), Baker et al.
(2005). Nouri and Maleknejad (2016) obtained the solution of delay integral equations
(DIEs) by BPFs, numerically. Hafashjani et al. (2011) applied the Legendre wavelet
method for DDEs. Heydari et al. (2013) discussed a Volterra multiple-delay integral
equation with a large domain via operational matrices of Chebyshev cardinal functions.
Umer (2016) combined the method of steps with the RBF networks to solve DDEs.
Mohammadi (2015) described a method for solving multi-dimensional stochastic Ito
-Volterra integral equations (SVIEs) relying on the stochastic operational matrix of
Haar wavelets. Recently, Kiaee et al. (2022, 2024) presented a new scheme based on
theoperational matrix of integration block pulse and triangular function to solve SD-
DEs. Overall, SDDEs display much more complex mechanics than SDEs since time
delay could cause a stable equilibrium to be unstable and cause the populations to vary.
Furthermore, any template of species dynamics is at best an approximation without
delays. Since analytical solutions to such equation, in many cases are not available,
numerical approximation becomes a logical way of tackling this challenge. Beginning
in 1991 onwards, various orthogonal functions, like Fourier series, Haar, Block pulse,
Walsh functions, orthogonal polynomials, and wavelets have been used to solve these
problems.

Hariharan et al. (2013) introduced the concept of wavelets, which has since been
expanded into various applications. This theory allows the representation of functions
through a combination of step functions and wavelets within specific interval widths.
The Haar wavelet transform is an early example of a compact, orthonormal wavelet
transform. Haar wavelets consist of pairs of piecewise constant functions and are the
simplest mathematically among all wavelet families. One advantageous feature of Haar
wavelets is the ability to analytically integrate multiple times. They are particularly
effective in handling singularities, as they can be seen as intermediate boundary con-
ditions. A short investigation of these papers can be found in Graps (1995).

In the following, we consider the integral form of single time delay SVIEs with
multiplicative noise
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u(υ) = u0(υ) +

∫ υ

0
k1 (s, υ) f(s, u(s− τ)) ds υ ∈ [0,Υ) ,

+
∫ υ

0
k2 (s, υ) g(s, u(s− τ)) dW (s),

u(υ) = µ(υ), υ ∈ [−τ, 0) ,

(1)

where u(υ), u0(υ), k1(s, υ),k2(s, υ) and 1D Wiener process named W (υ) for s, υ ∈ [0,Υ)
are the stochastic processes defined on the same probability space with a filtration Fυ

satisfying the usual conditions, i.e. The filtration (Fυ)υ≥0 is right-continuous, Fυ,
(υ ≥ 0) and F0 covering all P-null sets in F . u(υ) is unknown and the second integral
is in Itô integral sense Klebaner (2005). If g(s, u(s− τ)) in the 2nd integrand is equal
to 1, we are studying additive noise instead of multiplicative ones.

In order to investigate the effect of Haar wavelet to approximate single time delay
SVIEs, we obtain the analytic solution named method of steps Smith (2011) which used
to convert DDEs to ODEs. The main way in approximate the equation, is to convert
the integral form of SDDEs to an algebraic form through the use of Haar function’s
operational matrices of integration.

The overall paper structure would be as follows: Section 2 provides an overview
of block pulse and Haar functions and a definition of delay. Section 3 describes the
concept of our problem. Section 4 investigates error analysis and rate of convergence.
Section 5 is devoted to numerical examples that depict the accuracy of the approach
recommended. Section 6 finalizes the result of the paper.

2 Fundamental concepts
We study particular classical description of the stochastic calculus, orthogonal basis
function like block pulse and Haar functions, and operational matrix of delay Haar
function.

2.1 Stochastic calculus
In this section we will clarify some of the relevant information respectively Klebaner
(2005).

Definition 2.1. Wiener process is a real valued process with independent increments,
W (0) = 0 and W (υ + h)−W (h) ∼ N(0, h).

Definition 2.2. Let {W (υ), υ ≥ 0}, be Wiener process with equation of the form,

du(υ) = µ(u(υ), υ)dυ + σ(u(υ), υ) dW (υ). (2)

where µ(u(υ), υ), σ(u(υ), υ) are given coefficients and u(υ) is unknown process, is called
a stochastic differential equation driven by Wiener process. They are called diffusion
type SDEs where coefficients depend on the whole past of process.

Definition 2.3. Strong solution of the SDE in (2) is called process u(υ) if for all υ > 0
the integrals of coefficients exists, with the second being an Ito integral, and

u(υ) = u0(υ) +

∫ υ

0

µ(u(s), s)ds+

∫ υ

0

σ(u(s), s)dW (s).



Solving SDDEs via Haar functions 36

u(υ) is strong solution of some function (functional) of F (υ, (W (υ), s ≤ υ)) of the
given Wiener process W (υ).

Theorem 2.4. (Existence and Uniqueness) 1. Coefficiens are locally Lipschitz in x
uniformly in υ that is, for every Υ and N , there is a constant L depending only on Υ
and N , such that for all |x| , |y| ≤ N and all 0 < υ ≤ Υ

|µ(x, υ)− µ(y, υ)|+ |σ(x, υ)− σ(y, υ)| ≤ L|x− y|.

2. Coefficiens satisfy the linear growth condition

|µ(x, υ)|+ |σ(x, υ)| ≤ L(1 + |x|).

3. u(0) is independent of (W (υ), 0 ≤ υ ≤ Υ) and E(u2(0)) < ∞. Then there exists a
unique strong solution u(υ) of the SDE. u(υ) has continuous paths, moreover

E

(
supu2(υ)
0≤υ≤Υ

)
< C(1 + E(u2(0))),

where constant depends only on L and Υ.

Remark 2.5. TIf there is a strong solution, it is adapted to the filtration of the given
Wiener process, by definition, and it is intuitively clear that it is a path function of
(W (s), s ≤ υ).

Theorem 2.6. (Yamada-Watanabe) Suppose that µ(υ) satisfies the Lipshitz condition
and σ(υ) satisfies a Holder condition of order α ≥ 0.5. There is a constant L such that

|µ(x)− σ(y)| ≤ L|x− y|α.

Then there is the strong solution and is unique.

Lemma 2.7. (The Gronwall inequality) Let α, β ∈ [υθ,Υ] → R be integral with

θ ≤ α (υ) ≤ β (υ) + L(

∫ υ

υθ

α (s) ds,

for υ ∈ [υθ,Υ] where L > 0. Then

α (υ) ≤ β (υ) + L(

∫ υ

υ0

eL(υ−s)β (s) ds), υ ∈ [υ0,Υ] .

For more details see Klebaner (2005).

2.2 Block pulse functions
Numerous researchers have discussed BPFs and aimed to solve various problems. In
this section we remind description and certain properties of BPFs Behroozifar and
Yousefi (2013), Mohammadi (2015), Maleknejad et al. (2012). Consider

Φ(υ) = [φi(υ)]
T
, i = 1, . . . ,m, (3)
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with m component. Each φi(υ) is defined as

φi(υ) =

{
1, (i− 1)h ≤ υ < ih,

0, o.w.,

where h =
Υ

m
.

Properties. BPFs has some properties in υ ∈ [0,Υ) and for i, j = 1, . . . ,m like:
1. Disjointness:

φi (υ) .φj (υ) =

{
φi (υ) , i = j

0, i ̸= j.

2. Orthogonality: ∫ Υ

0

φi(υ).φj(υ)ds =

{
h, i = j,

0, i ̸= j.

3. ΦT (υ).Φ(υ) = 1, and

Φ(υ).ΦT (υ) =


φ1(υ) 0 0 · · · 0
0 φ2(υ) 0 · · · 0
0 0 φ3(υ) · · · 0
...

...
... . . . ...

0 0 0 · · · φm(υ)


m×m

.

Every f(υ) real bounded and square integrable function can be expanded with m-term
block pulse functions

f (υ) ≃
m∑
i=1

fi.bi (υ) = FΥ.Φ(υ) = ΦT (υ) .F,

where F = [f1, f2, . . . , fm]
T and can be calculated as

fi =
1

h

∫ Υ

0

φi (υ) . f (υ) dυ =
1

h

∫ (i+1)h

ih

f (υ) dυ, i = 1, 2, . . . ,m.

Each k (s, υ) is 2D-function can be expanded as

k (s, υ) = ΦT (υ) .K.Φ(υ) ,

where Km×m is Haar coefficient matrix with (i, j) th components calculated as

kij =
1

h2
(

∫ Υ1

0

∫ Υ2

0

k (s, υ) . bi (υ) . bj (s) dυ ds), i, j = 1, 2, . . . ,m.

For simpilicity, we let Υ1 = Υ2 = Υ.
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2.3 Haar wavelets
In 1930 a physicist Paul Levy studied a kind of random signal titled Brownian motion,
who used a scale-varying basis function called Haar function. He found that the study
of small, complicated details is greater than the Fourier functions in the Brownian
motion. Major benefits of Haar wavelets are simple, orthogonality, compact support,
sparse representation and possibility of implementation of fast algorithm in matrix rep-
resentation. Unfortunately, they are not continuously differentiable which constrains
their usages somewhat. Haar wavelet with the lowest computational cost arises when
the polynomial degree is zero in the spline wavelet.

Mathematically, Haar wavelets hi (υ) includes a set of square orthogonal waves
represented below Mohammadi (2015), Smith (2011):

hi (υ) =


√
2j , k

m ≤ υ ≤ k+0.5
m ,

−
√
2j , k+0.5

m ≤ υ ≤ k+1
m ,

0, o.w.,

each hi (υ) has compact support in
[

k
2j ,

k+1
2j

)
where

M = 2J , j = 0, 1, . . . , J, (j ≥ 0) ,

m = 2j , Wavelet level,
k = 0, 1, . . . ,m− 1, transition parameter 0 ≤ k < 2j ,

m = 2M = 2× 2J = 2J+1,

i = m+ k + 1, m, j, k ∈ N,

and for i = 1, we have

h1 (υ) =

{
1, 0 ≤ υ < 1

0, o.w.,

by the pairwise orthonormality property, we have∫ 1

0

hi (υ) .hj (υ) dυ =

{
1, i = j,

0, i ̸= j.

Any f (υ) square integrable function in the interval [0,Υ) can be extended in terms of
Haar wavelets series as f (υ) =

∞∑
i=1

fi.hi (υ) , each fi can be calculated as

fi = 2j(

∫ Υ

0

f (υ). hi (υ) dυ) = 2j(

∫ (i+1)h

ih

f (υ) dυ),

or can be expressed as vector form,

f (υ) ≃ FT .H (υ) = HT (υ) .F, (4)

in which F and H (υ) are Haar coefficient and wavelets vectors respectively as

F = [f1, . . . , fm]
T
, (5)
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H (υ) = [h1 (υ) , . . . , hm (υ)] . (6)

Any 2D function k (s, υ) ∈ L2 [0,Υ) × L2 [0,Υ) can be expanded with regard to Haar
wavelets as

k (s, υ) . ∈ HT (υ) .K.H (υ) ,

where Km×m is Haar wavelets coefficients matrix with (i, l)−th element can be obtained
as

kil =

∫ Υ

0

∫ Υ

0

k (s, υ) .Hi (υ) .Hl
(s) ds, i, l = 1, 2, . . . ,m.

2.4 Delay Haar function
Based on Tang et al. (2017), delay Haar function is shift of the m-set of H(υ) by
τ = (k + λ)h for a non-negative integer k = 1, . . . ,m, h = Υ

m and 0 ≤ λ < 1. Let

H(υ − τ) = [h1(υ − τ) h2(υ − τ) · · · hi(υ − τ)]
T
, i = 1, . . . ,m,

where [. . .]
T , denotes transpose and each

hi(υ − τ) = hi(υ − (k + λ)h) =

{
1, (i− 1)h ≤ υ − (k + λ)h < ih,

0, o.w.

=

{
1, (i+ k + λ− 1)h ≤ υ < (i+ k + λ)h,

0, o.w.

= hi+k+λ(υ).

Shift of Haar function can be declared as

H(υ − τ) = D.H(υ), 0 ≤ υ < Υ, υ > τ. (7)

Let

(k + 1) th− column
↓

D = (1− λ)Hk + λHk+1 =



0 · · · 0 1− λ λ 0 · · · 0
0 · · · 0 0 1− λ λ · · · 0
... · · ·

...
...

... . . . . . . ...
0 · · · 0 0 0 0

. . . λ
0 · · · 0 0 0 0 · · · 1− λ
0 · · · 0 0 0 0 · · · 0
... · · ·

...
...

...
... · · ·

...
0 · · · 0 0 0 0 · · · 0


m×m

,

in which 1− λ in the first row is (k + 1)th-column component. Here we set λ = 0.
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2.5 Relation between the BPFs and Haar wavelets
In this section, we will derive the relationship between the BPF and Haar wavelets.
We set Υ = 1 in the context of BPFs Mohammadi (2015), Maleknejad et al. (2012).

Theorem 2.8. Let H (υ) and Φ(υ) be the one dimensional Haar wavelets and BPFs
vector respectively, the vector H (υ) can be expanded by BPFs vector Φ(υ) as

H (υ) = Q.Φ(υ) , (8)

where Qil is (i, l)th component of Qm×m matrix.

Qil = 2
j
2 .hi.

(
2l − 1

2m

)
, 1, 2, . . . ,m; i = 2, . . . ,m. (9)

Remark 2.9. As shown in the matrix defenition Q in (8), it is convenient to consider

Q−1 =
1

m
.QT .

Remark 2.10. For a m-vector F,

H (υ) .HT (υ) .F = F̃ .H (υ) .

In which F̃m×m = Q.F̄ .Q−1 where

F̄m×m =

 F̄1 0 0

0
. . . 0

0 0 F̄m

 ; F̄i = diag
(
QT .Fi

)
m×1

.

Remark 2.11. Let an arbitrary matrix Fm×m, then for Haar wavelets vector H (υ),
we have

HT (υ) .F.H (υ) = F̂T .H (υ) = HT (υ).F̂ ,

where F̂T
1×m and diagonal of any square matrix, is m× 1 vector

F̂T
1×m =

(
diag

(
QTFQ

))T
.Q−1.

2.6 Operational matrix of stochastic Haar wavelets integration
We derive the operational matrix for Haar Wavelets in stochastic integration. The
main characteristic of operational matrices is that they reduces these stochastic delay
Volterra integral equations (SDVIEs) to those of solving a linear system of algebraic
equations, thus greatly simplifying the problem and speeds up the computation. We
remember some relevant results for block pulse and haar functions (Marzban and Raza-
ghi, 2006; Hosseini and Marzban, 2011; Mohammadi, 2015; Maleknejad et al., 2012).

Lemma 2.12. Let Φ(υ) be the BPFs vector defined in (3). Then Riemann and Ito
integration of this vector can be derived as∫ υ

0

Φ(s) ds ≃ P.Φ(υ) , (10)
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∫ υ

0

Φ(s) dW (s) ≃ Ps.Φ(υ) , (11)

where P, Ps are called the deterministic and stochastic operational matrix of integration
for BPFs and are given by

P =
h

2


1 2 2 · · · 2
0 1 2 · · · 2

0 0 1 · · ·
...

...
...

... . . . 2
0 0 0 · · · 1


m×m

, (12)

Ps=


W (h2 ) W (h) W (h) W (h)

0 W (3h
2 )−W (h) W (2h)−W (h) W (2h)−W (h)

...
... . . . ...

0 0 · · · W ((2m− 1) h
2 )−W ((m− 1)h)


m×m

.

(13)

Theorem 2.13. Suppose that H(υ) is the Haar wavelets vector defined in (5). The
Riemann and Ito integral of this vector can be derived as∫ υ

0

H (s) ds ≃ 1

m
QPQTH (υ) = Λ.H (υ), (14)∫ υ

0

H (s) dW (s) ≃ 1

m
QPs Qs

TH (υ) = Λs.H (υ), (15)

where Q is stated in (8), Λ, Λs are the operational matrix of integration for deterministic
and stochastic Haar wavelets derived in (14) and (15) and P, PS are the operational
matrix of integration for deterministic and stochastic BPFs (12) and (13).

3 Problem statement
Both normal and human frameworks are impacted by positive and negative feedback.
Such mechanisms push a system to a new state of equilibrium or back it to its primary
state Kuang (1993). Consider an ordinary delay equation over the time set R{

u′ (υ) = r (υ, s) . u (υ − τ) , υ ∈ [0,Υ) ,

u (υ) = µ (υ) , υ ∈ [−τ, 0) ,

where r (υ, s) > 0 defines growth rate and a positive feedback system. u (υ − τ)
shows the trajectory of the solution in the past. We shall refer to the function
{µ (υ) ; υ ∈ [−τ, 0)} as an initial data and Banach space of all continuous path from
[−τ, 0) → R equipped with the supremum norm. Case τ = 0 corresponds to no delay,
and recovers the ODEs. SDDEs arise as a randomly perturbed ODDEs coefficients
by Gaussian white noise ξ (υ) = dW (υ)

dυ by b (υ, s) noise intensity to r (υ, s) + b ξυ or
u (υ − τ) + b ξυ and therefore additive and multiplicative noise occur respectively.
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3.1 Solving SDVIEs based on Haar functions with additive noise
In what follows, we consider the integral form of a linear SDDE with single time delay
and obtain the Haar coefficients of U(υ) in the interval υ ∈ [0,Υ],

u (υ) = u0(υ) +
∫ υ

0
k1(s, υ). u(s− τ) ds+

∫ υ

0
k2(s, υ) dW (s), υ ∈ [0,Υ),

u(0) = u0,

u(υ) = µ (υ) , −τ ≤ υ < 0,

(16)

where u0(υ) is a specified constant vector, and k1(s, υ), k2(s, υ) are known matri-
ces, µ (υ) is an arbitrary function known to the initial history. We approximate the
u (υ) , u0(υ), k1(s, υ) and k2(s, υ) functions by Haar functions as mentioned below,

u(υ) ≃ u(υ) ≈ UT .H(υ) = HT (υ). Uυ, τ ≤ υ < Υ, (17)
u0(υ) ≃ UΥ

0 .H(υ) = HT (υ) .U0, (18)
k1 (s, υ) ≃ HT (s) .K1.H(υ) = HT (υ).KT

1 .H (s) , (19)
k2 (s, υ) ≃ HT (s) .K2 .H(υ) = HT (υ) .KT

2 .H (s) , (20)

u(υ − τ) =


µ (υ − τ) , −τ ≤ υ − τ < 0,

UT .H(υ − τ) = UT .D.H(υ),

(H(υ − τ))
T
U = (D.H(υ))

T
U = HT (υ).DT .U, 0 ≤ υ − τ < Υ− τ,

(21)

where the vectors U,U0 and matrices K1,K2 are Haar functions coefficients of u (υ) ,
u0 (υ) , k1 (s, υ), k2 (s, υ), respectivly. With replacement of the above approximation
(17)-(21) into (16), we arrived to

HT (υ).U ≃ HT (υ).U0 +HT (υ).KT
1 .

(∫ τ

0

H (s) .µ (s− τ) ds

)
+HT (υ) .KT

1

(∫ υ

τ

H (s) .HT (s).DT .U ds

)
+HT (υ) .KT

2

(∫ υ

0

H (s) dW (s)

)
,

also

HT (υ).U ≃ HT (υ).U0 +HT (υ).KT
1 .I1 +HT (υ) .KT

1 .I2 +HT (υ) .KT
2 .I3, (22)

where I1, I2 and I3 are defined as follows,

I1 =

∫ τ

0

H (s) .µ (s− τ) ds =

∫ τ

0

H (s) ds =

(
1

m
.Q.P.QT

)
.H (υ) = Λ.H (υ) ,

I2 =

∫ υ

τ

H (s) .HT (s).
(
DT .U

)
ds =

(∫ υ

τ

Z̃.H (s) ds

)
= Ũ .

(∫ υ

τ

H (s) ds

)
= Ũ .Λ.H (υ) ,

I3 =

∫ υ

0

H (s) dW (s) ≃
(

1

m
.Q.PS .Q

T

)
.H (υ) = ΛS .H (υ).
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Λ,ΛS are defined in (14), (15), DT , Q, Ũ and Ū are matrices. We put I1, I2 and I3 in
(22)

HT (υ).U ≃ HT (υ).U0 +HT (υ).
(
KT

1 .Λ
)
.H (υ) +HT (υ).

(
KT

1 .Ũ .Λ
)
.H (υ)

+HT (υ).
(
KT

2 .ΛS

)
.H (υ) . (23)

In (23) we multiply both sides on H(υ) and write it as an algebraic equation as follows,(
U − Â2

)
≃
(
U0 + Â1 + Â3

)
,

then by setting ≃ with = in (23), we solve algebric equation and obtain Uυ. finally by
substituting in (17), Haar function coeficients of uυ are fulfilled.

3.2 Solving SDVIEs based on Haar functions with multiplica-
tive noise

Consider 
u(υ) = u0(υ) +

∫ υ

0
k1(s, υ) . u(s− τ) ds τ ∈ [0,Υ),

+
∫ υ

0
k2(s, υ). u(s− τ)dW (s),

u(0) = u0,

u(υ) = µ (υ) , −τ ≤ υ < 0.

(24)

With substituting function’s approximation (17)-(21) into (24), we get

HT (υ).U ≃ HT (υ).U0 +

(∫ τ

0

HT (υ).KT
1 .H (s) .µ (s− τ) ds

)
+

(∫ υ

τ

HT (υ) .KT
1 .H (s) .HT (s− τ)U ds

)
+

(∫ τ

0

HT (υ).KT
2 .H (s) .µ (s− τ) dW (s)

)
+

(∫ υ

τ

HT (υ) .KT
2 .H (s) .HT (s− τ)U dW (s)

)
,

HT (υ).U ≃ HT (υ).U0 +HT (υ).KT
1 .G1 +HT (υ) .KT

1 .G2 +HT (υ) .KT
2 .G3

+HT (υ) .KT
2 .G4, (25)

we assume that {µ (υ − τ) = c : 0 ≤ υ < τ, c ∈ R} and,

G1=

∫ τ

0

µ (s− τ) H (s) ds = c

(∫ τ

0

H (s) ds

)
= c.Λ.H (υ) ,

G2= I2 =

∫ υ

τ

H (s) .HT (s− τ). U ds =

∫ υ

τ

H (s) .HT (s).
(
DT . U

)
ds = Ũ .Λ.H (υ) ,

G3=

∫ τ

0

H (s) . µ (s− τ) dW (s) = c

(∫ τ

0

H (s) dW (s)

)
= c.ΛS .H (υ) ,

G4=

∫ υ

τ

H (s) .HT (s− τ). U dW (s) =

∫ υ

τ

H (s) .HT (s).
(
DT . U

)
dW (s)
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= Ũ .ΛS .H (υ) .

We substitute G1, G2, G3 and G4 into (25),

HT (υ).U ≃ HT (υ)U0 +HT (υ).
(
KT

1 cΛ
)
.H (υ) +HT (υ).

(
KT

1 .Ũ .Λ
)
.H (υ)

+HT (υ).(KT
2 .c.ΛS).H(υ) +HT (υ) .

(
KT

2 .Ũ .ΛS

)
.H (υ) ,

By the aid of Remark 2.11, we put

A = HT (υ).
(
KT

1 .Λ
)
.H (υ) = HT (υ).Â1,

B = HT (υ) .
(
KT

1 .Ũ .Λ
)
.H (υ) = HT (υ).Â2,

C = HT (υ) .
(
KT

2 .ΛS

)
.H (υ) = HT (υ).Â3,

D = HT (υ) .
(
KT

2 .Ũ .ΛS

)
.H (υ) = HT (υ).Â4,

then,

HT (υ).U ≃ HT (υ).U0 +HT (υ).Â1 +HT (υ).Â2 +HT (υ).Â3 +HT (υ).Â4,

where

Â1 =
[({

diag
((
QT .KT

1 .Λ.Q
))})T

.Q−1
]T

,

Â2 =

[({
diag

((
QT .KT

1 .Ũ .Λ.Q
))})T

.Q−1

]T
,

Â3 =
[({

diag
((
QT .KT

2 .Λs.Q
))})T

.Q−1
]T

,

Â4 =

[({
diag

((
QT .KT

2 .Ũ .Λs.Q
))})T

.Q−1

]T
.

By multiplying H(υ) and rearranging the equation, we have(
U − Â2 − Â4

)
≃
(
U0 + Â1 + Â3

)
, (26)

U (υ) is obtained in (26). In both additive and multiplicative noise, we get the u (υ)
by relation (17) and the solution is completed.

4 Error analysis and rate of convergence
This part is allocated to the convergence rate proof. The result show a good level of
accuracy of order. We utilize two theorems of 4.1 and 4.2 bellow and assert theorems
from 4.3 and 4.4. It is essential that approximation of trajectories or sample paths be
near enough to their Ito process when filtering or testing estimators. Among this part,
the convergence and error analysis of the presented scheme for solving SDVIEs will be
discussed. We utilize the first two theorems Mohammadi (2016).
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Theorem 4.1. Assume the square integrable function u0(x) in the interval L2 [0, 1),
which is an arbitrary function with bounded first derivative, and em (υ) = u0(υ) −
u0(x)m x ∈ I = [0, 1) such that u0(x)m =

m∑
i=1

(u0)i. hi
(m)(x), where (u0)i is the Haar

function series of u0(x). Then,

∥em(υ)∥2 ≤ M√
3m

.

That means the Haar wavelets series will be convergent.

Theorem 4.2. Suppose that f (s, υ) ∈ L2 ([0, 1) , [0, 1)) is a function with bounded

partial derivative,
∣∣∣ ∂2f
∂s∂υ

∣∣∣ ≤ M and em (s, υ) = f(s, υ)−
m−1∑
i=0

m−1∑
j=0

fijhi(s)hj(υ), then

∥em(s, υ)∥2 ≤ M

3m2
.

By definition of error

∥em(s, υ)∥22 =

∫ 1

0

( ∞∑
i=m

∞∑
l=m

filhi(s)hi(υ)

)2

dυ =

m−1∑
i=m

∞∑
l=m

f2
il.

Theorem 4.3. Assume the square integrable function u(υ−τ) in the interval L2 [0, 1),
which is an arbitrary function with bounded first derivative, and em (υ − τ) = u (υ − τ)−
u(υ − τ)m , (υ − τ) ∈ I = [0, 1), such that u(υ − τ)m =

m∑
i=1

(u)i. hi
(m) (υ − τ) , where

(u)i is the Haar function series of u(υ − τ). Then,

∥em(υ − τ)∥2 ≤ M√
3m

.

This means that the Haar wavelets series will be convergent.

Proof. Let em (υ − τ) = u (υ − τ)−
m−1∑
i=0

ui. hi(υ − τ) =
∞∑

i=m

ui. hi(υ − τ), when,

∥em (υ − τ)∥22 =

∫ 1

0

|ei (υ − τ)|2dυ =

∫ 1

0

( ∞∑
i=m

ui.hi(υ − τ)

)2

dυ

=

∫ 1

0

∞∑
i=m

(ui)
2
. (hi(υ − τ))

2
dυ =

∞∑
i=m

(ui)
2

(∫ 1

0

(hi(υ − τ))
2
dυ

)

=

∞∑
i=m

(ui)
2
,

ui =

∫ 1

0

hi(υ − τ)u(υ) dυ

=

(∫ k+0.5

2j

k

2j

√
2j u(υ) dυ +

∫ k+1

2j

k+0.5

2j

(−
√
2j) u(υ) dυ

)
.
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There exist ηj1, ηj2 in
(

k
2j ,

k+0.5
2j

)
and

(
k+0.5
2j , k+1

2j

)
, respectively.

ui = 2
j
2

(∫ k+0.5

2j

k

2j

u(ηj1) dυ −
∫ k+1

2j

k+0.5

2j

u(ηj2) dυ

)

= 2
j
2

(
u (ηj1)

k + 0.5− k

2j
− u (ηj2)

k + 1− k − 0.5

2j

)
= 2−

j
2−1 (u (ηj1) − u (ηj2)) .

Furthermore there exist

∃ ηj ηj1 < ηj < ηj2 ; ui = 2−
j
2−1 (ηj1 − ηj2) u

′ (ηj)

this result,

∥em (υ − τ)∥22 =

∞∑
i=m

(ui)
2
=

∞∑
i=m

(
2−

j
2−1 (ηj1 − ηj2) u

′ (ηj)
)2

=

∞∑
i=m

2−j−2(ηj1 − ηj2)
2
(u′ (ηj))

2 =

∞∑
i=m

2−j−2
(
2−j
)2

M 2

=
M2

4

∞∑
j=J

2j−1∑
k=0

2−3j =
M2

4

∞∑
j=J

2−3j

2j−1∑
k=0

1


=

M2

4

∞∑
j=J

2−2j =
M2

3
2−2J ,

since m = 2j , we have ∥em (υ − τ)∥2 ≤ M√
3m

.

Theorem 4.4. Let u (ν) and ū (ν) be exact and approximated solutions respectively
which are calculated in (1) and (17), ∥u (ν − τ) ∥ < C and ∥Ki∥ < C , i = 1, 2. Then

E
(
∥u (ν)− ū (ν)∥2

)
≤ O (h) ν ∈ [0, 1) .

Proof. Let

u(ν)− ū(ν) = u0(ν)− ū0(ν) +

∫ ν

0

k1 (s, ν)u(ν − τ)− k̄1 (s, ν) ū (ν − τ) ds

+

∫ ν

0

k2 (s, ν)u(ν − τ)− k̄2 (s, ν) ū (ν − τ) dW (s),

based on Iso Ito property and Fubini theorem,

E

∣∣∣∣∫ ν

0

k2 (s, ν)u(ν − τ)− k̄2 (s, ν) ū(ν − τ)dW (s))

∣∣∣∣2 =

∫ ν

0

E|k2 (s, ν) u(ν − τ)

−k̄2 (s, ν) ū(ν − τ)|2ds,
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then,

E∥u(ν)− ū(ν)∥2 ≤ 3
(
E ∥u0(ν)− ū0(ν)∥2

+E

∥∥∥∥∫ ν

0

k1 (s, ν)u(ν − τ)− k̄1 (s, ν) ū(ν − τ)ds

∥∥∥∥2
+E

∫ ν

0

∥∥k2 (s, ν)u(ν − τ)− k̄2 (s, ν) ū(ν − τ)
∥∥2 ds) ,

where∥∥ki (s, ν) u(ν − τ)− k̄i (s, ν) ū(ν − τ)
∥∥2 = 2∥ki (s, ν) (u(ν − τ)− ū(ν − τ))∥2

+2
∥∥(ki (s, ν)− k̄i (s, ν)

)
ū(ν − τ)

∥∥2
≤ C.∥u(ν − τ)− ū(ν − τ)∥2

+C.
∥∥ki (s, ν)− k̄i (s, ν)

∥∥2, i = 1, 2.

Furthermore, ∥∥ki (s, ν)− k̄i (s, ν)
∥∥2 = O(h2), i = 1, 2.

∥z(ν − τ)− z̄(ν − τ)∥2 = O(h2),

hence,

E∥u(ν)− ū(ν)∥2 ≤ CO(h2),

E∥u(ν)− ū(ν)∥ = O(h).

5 Illustrative examples
In this section, we solve the integral form of two types of linear SDDEs using Haar
basis function analytically and numerically for the first time. The related computations
were performed using Matlab (2015a). Let
ui: Haar function coefficient of analytic solution.
ūi: Haar function coefficient of approximated method.
e: Absolute error computed by ∥e∥∞ = max1≤i≤m |ui − ūi| .
n: Number of iterations.
ūe: Mean absolute error.
Se: Standard deviation of error.
UB: Upper bound.
LB: Lower bound.
The numerical results of mean and standard deviation with 95 percent confidence
interval for some different values of υi in the points h = 1

m ,m = 2k are shown in
tables. We compare the results ūe, Se, UB and LB iterations with analytical solution
respectively. Time delayed equations are mostly solved analytically in a step wise
procedure called the method of steps with given initial condition (Mohammadi, 2016).
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Example 5.1. Consider a linear stochastic Volterra integral equation with additive
noise input and constant time delay


u(υ) = u(0) +

∫ υ

0
4u(s− 0.25) ds+ 4b

∫ υ

0
dW (s), υ ∈ [0, 1) ,

u(υ) = 1, υ ∈ [−0.25, 0) ,

u(0) = 1,

where u(υ) is an unknown stochastic processes on the probability space (Ω, F, P ), and
W (υ) is a Wiener process. The analytical solution is as bellow:

u(υ) =



1 + 4bW (υ), 0 ≤ υ < 1
4 ,

1 + 4(υ − 1
4 ) + 4b

(
4
(∫ υ

1
4
W (s− 1

4 )ds
)
+W (υ)

)
, 1

4 ≤ υ < 2
4 ,

1 + 4
(
υ − 1

4

)
+ 8(υ − 1

2 )
2 2

4 ≤ υ < 3
4 ,

+4b
[
16(υ − 1

2 ) +
(∫ υ− 1

4
1
4

W (s− 1
4 )ds

)
+4
(∫ υ

1
2
W (u− 1

4 )du
)
+ 4

(∫ 1
2
1
4

W (s− 1
4 )ds

)
+W (υ)

]
,

1 + 4
(
υ − 1

4

)
+ 8
(
υ − 1

2

)2
+ 32

3 (υ − 3
4 )

3 3
4 ≤ υ < 1,

+4b

 43

2 (υ − 3
4 )
(∫ υ− 1

2
1
4

W (s− 1
4 )ds

)
4
(∫ υ

3
4
W (v − 1

4 )dv
)
+ 8(1 + 2(υ − 3

4 ))
(∫ 2

4
1
4

W (s− 1
4 )ds

)
+42(υ − 3

4 )
(∫ υ− 1

4
1
2

W (u− 1
4 )du

)
+W (υ)

+4
(∫ 3

4
1
2

W (u− 1
4 )du

)  .

Table 1: Approximation of SDDE via Haar functions with (additive noise), k = 1,
σ = 0.99, b = 0.95, m = 4.

υi ūe Se LB UB
0 0 0 0 0

0.25 -0.0010967 0.03535 -0.00103 -0.0011633
0.5 -0.00043463 0.01401 -0.00040821 -0.00046104
0.75 0.00070197 0.022627 0.0006593 0.00074463

1 0.0039387 0.12696 0.0036993 0.0041781

Example 5.2. Consider a linear stochastic delay Volterra integral equation with mul-
tiplicative noise input and intensity of b as follows


u(υ) = u(0) +

∫ υ

0
4, u(s− 0.25) ds+

∫ υ

0
b u(s− 0.25) dW (s), υ ∈ [0, 1) ,

u(υ) = 0, υ ∈ [−0.25, 0) ,

u (0) = 1.

The analytical solution is obtained as follows:
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u(υ) =



1, 0 ≤ υ < 1
4 ,

1 + 4(υ − 1
4 ) + b.

(
W (υ)−W ( 14 )

)
, 1

4 ≤ υ < 2
4 ,

1 + 4
(
υ − 1

4

)
+ 8(υ − 1

2 )
2 + 4b

[(∫ υ
1
2
W (s− 1

4 )ds
)

2
4 ≤ t < 3

4 ,

−
(∫ υ

1
2
W (s) ds

)
+υ.

(
W (υ)−W ( 14 )

)]
+b.

[
b.
(∫ υ

1
2
W (s− 1

4 )dW (s)
)
− (1 + b.W ( 14 ))W (υ)

+W ( 14 )(1 + b.W ( 12 ))
]
,

1 + 4
(
υ − 1

4

)
+ 8
(
υ − 1

2

)2
+ 32

3 (υ − 3
4 )

3 3
4 ≤ υ < 1,

+4b.
[(
3 + b.W ( 14 )

) (∫ υ
3
4
W (u)du

)
−
(
b
(
W (υ)−W ( 34 )

)
+ 4(υ − 3

4 )
) (∫ υ− 1

4
1
2

W (s)ds
)

×
(∫ 3

4
1
2

W (s) ds
)
+
(
3 + b.W ( 14 )

) (∫ υ
3
4
W (u) du

)
−
(∫ 3

4
1
2

W (s) ds
)

−(2 + b.W ( 14 ))
(∫ υ

3
4
W (u− 1

4 )du
)
+
(∫ 3

4
1
2

W (s− 1
4 )ds

)
+2υ2

(
W (υ)−W ( 14 )

)
+
(
b.
(
W (υ)−W ( 34 )

)
+4(υ − 3

4 )
) (∫ υ− 1

4
1
2

W (s− 1
4 )ds

)
+ b.

(∫ υ
3
4
uW (u− 1

4 )dW (u)
)

− 7
8W ( 14 ) + υ

((
2 + bW ( 12 )

)
W ( 14 )−

(
2 + bW ( 14 )

)
W (υ)

)
−
(
b
(
W (υ)−W ( 34 )

)
+ 4(υ − 3

4 )
) (∫ υ− 1

4
1
2

W (s)ds
)]

+b2.
((

b.(
(
W (υ)−W ( 34 )

)
+ 4(υ − 3

4 )
) (∫ υ− 1

4
1
2

W (s− 1
4 )dW (s)

)
+
(∫ 3

4
1
2

W (s− 1
4 )dW (s)

)
− (2 + b.W ( 14 ))

(∫ υ
3
4
W (u− 1

4 )dW (u)
)

+
(
2W ( 14 ) + b.W ( 14 ).W ( 12 ) +

7
2b
)
W (υ)

−W ( 12 ).W ( 14 ).
(
2 + b.W ( 34 )

))
.

Table 2: Approximation of SDDEs via Haar functions (multiplicative noise), k = 1,
σ = 0.99, b = 0.95, m = 4.

υi ūe Se LB UB
0 0 0 0 0

0.25 0.00088243 0.028444 0.0008288 0.00093607
0.5 -0.0020305 0.065452 -0.0019071 -0.002154
0.75 0.0010416 0.033574 0.00097827 0.0011049

1 0.00025052 0.0080751 0.00023529 0.00026574

6 Discussion and conclusions
A numerical method based on the Haar wavelets and their stochastic operational matrix
was proposed for solving the integral form of linear SDDEs with constant time delay.
The main characteristic of orthogonal basis functions like Haar wavelets is to reduce
the computational burden of SDDE to a linear triangular lower algebraic equation
which simplifies and speeds up the computations as well. The algorithm is simple and
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Figure 1: SDHDEs, additive noise (left) and multiplicative noise (right) with k = 1,m = 4 .

clear to use and can be implemented easily. The convergence and error analysis were
investigated.

Samples illustrate the profitability and accuracy of the method with a O(h) rate of
convergence. Moreover, the running times of the algorithm were in a reasonable range
and the mean absolute errors quantitatively confirmed that the method is convergent.
As a result,the implementation of the method was quite general, without limitation.
Therefore, it can be used for numerically solving an extensive variety of linear SDDEs.
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