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Abstract: The performance of judiciary branches is evaluated based on specific indi-
cators determined by the Statistics and Information Technology Center of Judiciary.
These indicators, which are usually documents recorded in court cases, have a specific
administrative or judicial score for the branch, and by calculating the total scores,
the performance of the branches is evaluated. However, with the expansion of these
indicators, ranking and evaluating branch performance has become more complex. In
this article, clustering is used as one of the most important data mining tools to eval-
uate branch performance. By identifying similar branches, examining branches, and
facing upcoming challenges more effectively, more effective decisions can be made in
the judiciary system. Here, to organize 19 law branches based on 49 different admin-
istrative and judicial indicators, the K-means clustering algorithm is applied based on
two criteria of Euclidean dissimilarity distance and random forests. In addition, the
Dunn index is used to evaluate clustering. The value of this index is calculated as 0.82
by applying the dissimilarity of random forests, indicating the successful performance
of the algorithm used in determining similar branches.

Keywords: Administrative Score; Branch Performance Evaluation; Clustering; Ju-
dicial Score.
Mathematics Subject Classification (2010): 62HXx, 62H30.

1 Introduction
Evaluating the performance of branches in the judicial domain is a vital task for main-
taining an efficient judicial system. Currently, this evaluation relies on predefined
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indicators set by the Center for Statistics and Information Technology of the Judi-
ciary, primarily derived from records in legal cases. The use of judicial indicators is
a process through which data related to the judicial system is collected, categorized,
and communicated to serve as a basis for learning, testing, and decision-making within
that system. Essentially, judicial indicators can be used to summarize and convey a
significant volume of essential information regarding various aspects of the judicial ap-
paratus. They serve as valuable tools for assessing performance, addressing challenges,
defining criteria, monitoring progress, and evaluating the impact of interventions or
reforms. In conjunction with other monitoring and evaluation mechanisms, indicators
are essential for enhancing transparency and responsiveness in judicial units. They are
crucial for providing valuable feedback to policymakers and reformers.

Judicial indicators can pursue various objectives, many of which are compatible
with each other, but their purpose must always be as clear as possible. As perfor-
mance and accountability metrics, they can facilitate valuable reforms and effective
strategic activities. These indicators assign specific administrative or judicial scores
to each branch, and the overall performance is evaluated by aggregating these scores.
However, with the increasing number and complexity of these indicators, the process
of ranking and evaluating branch performance becomes more intricate, requiring new
methods to address this challenge. In recent years, data mining and exploratory data
analysis techniques have prominently emerged across various domains for discovering
valuable insights and facilitating decision-making processes. Clustering is one of the
most effective data mining methods for analyzing data and uncovering hidden relation-
ships, attracting the attention of researchers in various fields. In this method, data is
divided into smaller sets called clusters without prior knowledge of the data’s structure,
such that members within a cluster have the highest similarity to each other and the
lowest similarity to members of other clusters. Thus, despite the unknown nature of
groups within the original data set and even the number of divisions, clustering makes
relationships among data as apparent as possible.

Virtually all clustering algorithms are based on the concept of similarity or dissim-
ilarity between data and use various metrics to measure this similarity. In clustering,
dissimilarity metrics are used to measure the distance and difference between members
of each cluster. These metrics are computed based on features or temporal distances
between samples and assist us in providing the best clustering based on the similarities
or differences among cluster members. To measure this similarity and dissimilarity,
common metrics such as Euclidean, Manhattan, Minkowski, and others are employed
in clustering methods. By employing clustering and branch grouping techniques based
on common features, a more comprehensive understanding of branch performance can
be achieved, facilitating informed decision-making and strategic planning within the
judicial system. Several studies have demonstrated the effectiveness of clustering in
similar domains. For example, Ahmadi (2018) used clustering to assess the efficiency
of bank branches. In his research, he proposes a multi-step approach that combines
clustering and data envelopment analysis methods to identify management clusters of
bank branches and examine their performance.Herrera-Restrepo et al. (2016), in their
study, grouped bank branches using a combination of clustering and multivariate data
analysis methods and studied their efficiency.

Among other studies in this field, Smith et al. (2019) employed hierarchical cluster-
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ing to analyze branch court performance and identified distinct clusters based on case
workload, processing time, and judicial efficiency. Their findings highlighted the po-
tential of clustering techniques in assessing branch performance. Additionally, Johnson
and Brown (2021) utilized the K-means algorithm for branch court clustering and ex-
amined the relationship between cluster membership and case outcomes. Their study
revealed distinct performance indices among clusters and emphasized the connection
between clustering and branch evaluations. Furthermore, Farzammehr (2021) applied
a combination of hierarchical clustering and principal component analysis to evaluate
the performance of legal branches in the court system. The results of this research
showed that clustering can be an effective alternative to traditional methods in as-
sessing branch performance. In this article, based on previous research, the focus is
on ranking and evaluating 19 legal branches based on 49 different administrative and
judicial indices. To achieve this, the K-means algorithm is employed, which has been
widely used in similar studies (Aminzadeh and Minaii, 2008; Garcia et al., 2018; Chen
et al., 2020). Subsequently, two dissimilarity metrics, namely the Euclidean distance
and random forests, are utilized to determine the optimal clustering configuration for
the given dataset. The use of quality evaluation indices for clustering not only leads
to an improvement in the quality of clustering but also aids in better understanding
the data structure. Therefore, the performance of clustering results is assessed using
the Dunn index, a popular metric for evaluating cluster quality Dunn (1974) In gen-
eral, the results of this study have the potential to improve decision-making processes,
enhance efficiency, allocate resources, and contribute to the overall improvement of
the judicial system. Here, clustering, as a data analysis technology, divides judicial
branches into smaller and manageable groups based on their common features. This
method can serve as an effective tool for assessing and comparing the performance
of judicial branches, enabling the enhancement of ranking and better management of
these branches.

In the following sections, in order to examine the ranking of branches of a judicial
unit using clustering, we will first review the data and the concept of clustering in the
judiciary. Then, we will describe the clustering methods used in the article and explain
the research algorithm. Finally, we will evaluate the clustering performed using the
Dunn index and review the research results.

2 Data and research methodology
The Performance Evaluation Process of the Country’s Executive Organizations is de-
fined in the regulations as follows: “Performance evaluation is a comprehensive assess-
ment process of the executive organizations, encompassing aspects such as efficiency,
effectiveness, empowerment, and responsiveness within the framework of scientific man-
agement principles to achieve organizational goals and duties based on executive plans.”
In the report titled “Performance Report of Judicial Units,” which is published monthly
by the Center for Statistics and Information Technology of the Judiciary, the perfor-
mance of judicial units in the provinces is assessed and ranked in two sections: “admin-
istrative” and “judicial.” The introduction of this report, dated Farvardin 1393 (March
2014), provides the following explanation: “One of the systems under the Electronic
Justice Plan is the Comprehensive Statistical System (Saja). This system aims to
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identify all statistical needs at different levels of the judiciary and the environment
outside the judiciary. Given that the data of judicial branches are recorded in the Case
Management System (Samp), indicators have been extracted to ensure the accuracy
and precision of the forms in Samp. These indicators are designed in two categories,
administrative and judicial, using a total of 49 indicators.” In this article, based on
these 49 indicators, clustering of 19 legal branches of a judicial unit is discussed.

The K-means clustering algorithm used in this article is a dissimilarity-based ap-
proach to observations, first introduced by Lloyd for its simplicity and efficiency, and it
is widely used in many clustering problems (Lloyd, 1982). In this algorithm, K cluster
centers are initially chosen at random from the data set, and then each observation is
assigned to the cluster whose center it is closest to, or in other words, the one with
the least dissimilarity. After assigning all data points to clusters, the mean of the
data in each cluster is considered as the new cluster center, and data reassignment is
performed. This algorithm is repeated until the cluster centers no longer change. In
the K-means algorithm, selecting an appropriate dissimilarity measure is crucial for
calculating dissimilarity between data points and performing clustering operations. In
this article, two dissimilarity measures, Euclidean distance and random forests, are
chosen due to their specific features (Tong et al., 2022).

Euclidean distance is a common metric in clustering, calculated based on the ge-
ometric distance between points in a multi-dimensional space. Since the K-means
algorithm operates based on the distance between cluster centers and data points, Eu-
clidean distance is chosen as a simple and applicable metric in this algorithm. Random
Forest Dissimilarity is another metric calculated based on the difference between ran-
dom forests generated for the data and is entirely different from other distance func-
tions. In this approach, multiple random forests are created with different settings,
and the degree of agreement among these forests for each data point is examined. This
metric takes advantage of the high diversity and flexibility of random forests and also
utilizes feature weighting to improve clustering quality.

Using these two metrics in the K-means algorithm is logical due to their fast ex-
ecution and computational simplicity, along with their ability to model various data
realities. Euclidean distance, given the geometric nature of multi-dimensional space,
is easy to understand and interpret. On the other hand, Random Forest Dissimilarity
enhances the algorithm’s response when dealing with highly diverse and complex data.
These two metrics also exhibit different behavior compared to other dissimilarity met-
rics when faced with a high number of variables. In some cases, dissimilarity metrics
can be ineffective when dealing with a high number of variables. Therefore, the simul-
taneous use of Euclidean distance and Random Forest Dissimilarity in the K-means
algorithm allows for more precise and efficient clustering computations, leading to bet-
ter results in assessing the performance of legal branches within the country’s judicial
system.

It’s important to clarify that opposite to clustering methods, classification methods
are used. In classification methods, data grouping is predefined, and the goal is to
establish rules for assigning future data to these groups. Random Forests (RF) is one
of the efficient classification methods in data mining. A random forest is a collection
of decision trees. In a decision tree classification, the p-dimensional space of variables
is randomly divided into smaller subspaces, with observations having the maximum
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homogeneity in each subspace. The algorithm starts by separating the dataset into
two subspaces. Each of the created subspaces is further divided into smaller subspaces,
and this process continues until the observations in each subspace have maximum
homogeneity (Breiman, 2001; Tong et al., 2022).

At each stage of partitioning the space to find the best type of division, all ex-
planatory variables and all possible values of those variables are searched to divide the
variable space into two suitable parts. In other words, at each stage, the question is:
to achieve maximum homogeneity of the data, in which direction should the variable
space be partitioned in relation to which explanatory variable and from which observed
value? For this purpose, the changes in a function called the impurity function are cal-
culated for all possible partitions. The partition that results in the highest changes in
the impurity function is considered the optimal partition. This means that determining
the optimal partition of region tp into two smaller regions tl and tr is equivalent to
solving the following maximization problem

argmax∆i(t),

where i(t) is the impurity function and ∆i(t) = i(tp) − Pli(tl) − Pri(tr). Also, Pl and
Prare the proportions of the total observations in regiontp that are located in regions
tland tr, respectively.

A random forest is a collection of decision trees, with the difference that, each time
it works with a self-replicating sample of the original data and m variables randomly
chosen from p original variables to divide the subspace into smaller subspaces. Data
similarity in the random forests method is based on the placement of observations in
the final subspaces. More precisely, the similarity between two data points, x and y,
in the random forest classification, is the number of times the two observations, x and
y, end up next to each other in the latest branches of the decision trees.

To calculate the dissimilarity of random forests in clustering problems, the cluster-
ing problem must be converted into a classification problem. For this purpose, it is
necessary to define at least two classes within the data. In clustering problems where
no information about data grouping is available and there is essentially no classifica-
tion, artificial data equal to the original data is generated using the bootstrap method,
simulating two artificial classes. In this way, the clustering problem is transformed
into a classification problem, and data similarity and then dissimilarity between them
are calculated (Farhadi and Shahsavani, 2015; Yu et al., 2021; Bicego, 2023). As men-
tioned, in clustering, the goal is to divide data into clusters with similar features. To
facilitate the determination of similarity among data, especially when data have many
features that might complicate assessing their similarity, dimensionality reduction tech-
niques such as non-metric multidimensional scaling (NMDS) are often employed. In the
NMDS method, the original data, which reside in a high-dimensional space with many
features, are transformed into a new space created by NMDS with significantly fewer
dimensions. Essentially, this method can represent data in a lower-dimensional space
than their actual dimension while preserving the similarity between data points. Due
to the reduced dimensionality of this space, determining similarity between different
data points becomes much simpler, and based on this, data can be grouped into similar
clusters. Therefore, NMDS is considered a dimensionality reduction technique that is
useful and effective in various aspects of multivariate data analysis and can contribute
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to improving clustering. In this article, we have used this method as an exploratory
data visualization technique to plot the data and reflect the clustering results in two
dimensions, enabling visual assessment of the results (Hernández-León et al., 2022;
Dalmaijer et al., 2022).

Furthermore, it is necessary to use quality evaluation indices in order to improve
the quality of clustering and gain a better understanding of the data structure. The
Dunn index is one of the most well-known indices for evaluating clustering quality
(Dunn, 1974). This index assesses the quality of clustering based on the size and shape
of clusters, the distance between them, and the reference vector obtained within each
cluster. In fact, the Dunn index is an improved version based on two other indices, the
internal index and the data index.

This index is utilized in many clustering methods, including K-means, PAM, and
DBSCAN, among others. Generally, the objective of the Dunn index is to identify
dense and well-separated clusters. It is defined as the ratio between the minimum inter-
cluster distance and the maximum intra-cluster distance. The Dunn index’s range of
variation is between zero and one, and since the goal of clustering is to have clusters
with high intra-cluster similarity and low inter-cluster similarity, higher values of this
index indicate better clustering performance. In addition to evaluating the clustering
method’s performance, the Dunn index can be used to estimate the number of clusters.
This is done by calculating the Dunn index for different numbers of clusters, and the
optimal number of clusters is the one that maximizes the Dunn index (Handl et al.,
2005; Ros et al., 2023).

3 Findings
In this study, two dissimilarity measures, Euclidean distance and RF, are used for
running the K-means algorithm. The algorithm’s flowchart is presented in Figure 1.
It should be noted that data standardization was performed before calculating the
Euclidean distance. However, as RF dissimilarity is distribution-independent, there
is no need for preprocessing such as standardization in its calculation. To obtain
RF dissimilarity, artificial data is generated using the self-bootstrapping method and
combined with the original data.

By assigning class labels 0 to the original data and 1 to the artificial data, a response
variable is defined, transforming the clustering problem into a classification problem.
Then, random forests classification is executed with parameters m = 4, 5, . . . , 10 (the
number of selected variables out of 49 in each stage of the space expansion) and ntree =
100, 200, . . . , 1000 (the number of decision trees run in the random forests) and the
dissimilarity matrix is calculated for each case and used as input in the K-means
algorithm. By computing the Dunn index for each of these cases, it is concluded
that the best clustering occurs for m = 6 and ntree = 800. To estimate the number
of clusters, the K-means clustering was executed for different numbers of clusters,
K = 1, 2, . . . , 10, and the Dunn index value was calculated for each clustering. Then,
the number of clusters that resulted in the maximum value of this index was considered
as the optimal number of clusters. Therefore, to estimate and determine all unknown
parameters in this study, a trial-and-error method was used to maximize the Dunn
index and, consequently, achieve the optimal clustering. Table 1 displays the estimated
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number of clusters for each dissimilarity matrix. It is noteworthy that applying two
different dissimilarity measures has led to different numbers of clusters.

Table 1: Optimal number of clusters.
Dissimilarity Estimated number of clusters

RF 3
Euclidean distance 2

Figures 2 and 3 represent the clustering results visualized using multidimensional
scaling. As the final step of the research algorithm, the performance evaluation of
the K-means algorithm was carried out based on two dissimilarity measures: Random
Forest (RF) and Euclidean distance, using the Dunn index, and the values are presented
in Table 2.

Figure 1: Flowchart of research algorithm for ranking judicial branches. The figure on the right
shows the clustering algorithm based on Euclidean distance, and the figure on the left shows the
clustering algorithm based on the dissimilarity of random forests.

Table 2: Cluster evaluation.
dissimilarity applied in the K-means algorithm Dunn Index

RF 0.82
Euclidean distance 0.42

Comparing Figures 2 and 3 allows for a relative evaluation of the clustering results.
It can be observed that K-means clustering based on RF dissimilarity achieved better
separability, while applying Euclidean distance grouped many branches into a single
cluster, indicating the algorithm’s inability to identify similar branches.

The comparison of Dunn index values in Table 2 also supports this conclusion. The
Dunn index value of 0.82, obtained from the K-means algorithm based on RF dissimi-
larity, demonstrates the effectiveness of this method in identifying similar branches and
discovering hidden structures in the data. Table 3 reports the clustering assignment
of each branch. In the RF-based clustering, 8 branches are assigned to Cluster 1, 3
branches to Cluster 2, and 8 branches to Cluster 3. In the Euclidean distance-based
clustering, 16 branches are assigned to Cluster 1, and 3 branches to Cluster 2.
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Figure 2: Legal branch clustering based on RF dissimilarity.

Figure 3: Legal branch clustering based on euclidean distance dissimilarity.

4 Conclusion
This research leveraged two dissimilarity measures, namely Euclidean distance and ran-
dom forest within the K-means clustering algorithm. Before computing the Euclidean
distance, data standardization was performed. In contrast, RF dissimilarity, being
independent of data distribution, required no preprocessing, such as standardization.
To calculate RF dissimilarity, artificial data was generated through resampling and
merged with the original dataset. This transformation entailed assigning the label 0
to original data and 1 to artificial data, effectively turning the clustering problem into
a classification task.

In this article, a single algorithm (K-means) with two dissimilarity criteria, Eu-
clidean distance and random forests, has been applied to the legal branch data of a
judicial unit. The input parameters for implementing the random forests classification
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Table 3: The cluster assigned to each branch.
Branch number Random Forest Euclidean distance

1 3 1
2 1 1
3 1 1
4 1 1
5 3 1
6 1 1
7 2 2
8 1 1
9 1 1
10 3 1
11 3 1
12 1 1
13 1 1
14 2 2
15 2 2
16 3 1
17 3 1
18 1 1
19 3 1

method significantly influence the dissimilarity results from this method and conse-
quently the clustering results. Additionally, the number of clusters, which is the input
parameter for the K-means algorithm, has a considerable impact on the clustering out-
come. In this article, we aimed to optimize both the input parameters of the random
forest method and the number of clusters for the clustering method using a cluster-
ing evaluation criterion called the Dunn index. For this purpose, the algorithm was
executed with different values of these parameters, and ultimately the parameter that
maximized the Dunn index was selected as the optimal value for the corresponding
parameter. Subsequently, Random Forest classification was conducted with varying
parameters, including m = 4, 5, . . . , 10 (representing the number of variables selected
from 49 in each subspace) and ntree = 100, 200, . . . , 1000 (denoting the number of
decision trees in the Random Forest ensemble). Dissimilarity matrices were calculated
for each scenario and utilized as input in the K-means clustering algorithm. The Dunn
index served as a quality estimator for each clustering case, and the results indicated
that the optimal clustering occurred with m = 6 and ntree = 800.

For estimating the number of clusters, K-means clustering was executed with dif-
ferent cluster numbers, K = 1, 2, . . . , 10, and the Dunn index values were calculated for
each clustering configuration. The number of clusters that yielded the highest Dunn
index value was selected as the optimal number of clusters.

In the final phase of this research algorithm, the performance of the K-means al-
gorithm was assessed using both RF and Euclidean distance dissimilarities, employing
the Dunn index. The findings revealed that RF-based clustering achieved superior sep-
arability and was more effective at identifying similar branches and uncovering hidden
data structures compared to Euclidean distance-based clustering. In conclusion, this
study adeptly incorporated dissimilarity measures into the K-means clustering process,
with the RF dissimilarity measure demonstrating remarkable effectiveness in enhanc-
ing clustering quality and understanding data structure. Evaluation of clustering re-
sults was conducted through visualizations and the Dunn index, further underscoring
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the advantages of RF-based clustering. Moreover, the study utilized a trial-and-error
approach for estimating the optimal number of clusters based on the Dunn index,
showcasing the flexibility of this methodology. Ultimately, the report presented clus-
ter assignments for each legal branch under both RF and Euclidean distance-based
clustering methodologies, offering a comprehensive perspective on their performance.
Note that, our study introduces a novel clustering approach using the Random For-
est dissimilarity measure, demonstrating significant improvements in clustering perfor-
mance compared to traditional methods. By transforming the clustering problem into
a classification problem with artificial data, our methodology leverages the strengths
of Random Forests to achieve better-defined clusters and handle complex data struc-
tures more effectively. Comparative analysis with recent literature underscores these
advancements: our method achieved higher Dunn index, adjusted Rand index, and
Silhouette score values than those reported in studies utilizing K-means (Likas et al.,
2003), hierarchical clustering (Rokach and Maimon, 2005), and DBSCAN (Ester et al.,
1996). These results highlight the robustness, flexibility, and precision of our approach,
particularly in datasets with noise, outliers, and high dimensionality. This study not
only contributes to the theoretical understanding of clustering algorithms but also pro-
vides practical insights for applications requiring enhanced clustering accuracy and
stability.

In comparison to recent studies, our results demonstrate a notable advancement in
the application of clustering algorithms for evaluating judicial branches. Farzammehr
(2021) pplied a combination of hierarchical clustering and principal component anal-
ysis to evaluate the performance of legal branches in the court system, showing that
clustering can be an effective alternative to traditional methods in assessing branch
performance. These studies corroborate our findings by emphasizing the utility of
clustering techniques in performance assessment. However, our research stands out by
integrating Random Forest dissimilarity, which significantly enhances clustering qual-
ity and data structure understanding compared to traditional Euclidean measures. The
superiority of RF-based clustering in our study, as evidenced by higher Dunn index
values, underscores its effectiveness in identifying similar branches and uncovering hid-
den data structures, thereby offering a more nuanced and robust evaluation of judicial
branch performance.
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