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1 Introduction

Type-I and Type-II censoring schemes are the most prominent censoring schemes in
the data censoring theory. In both cases, the experiment is terminated when a pre-
chosen number out of items are failed, or when a pre-determined time on the experi-
ment has been reached, respectively. A hybrid censoring scheme, denoted by Epstein
(1954) is a mixture of the two above schemes. Here, the experiment is terminated at
T* = min{X,;,.n,, T}, where X,,., is the m-th failure times from n items and T > 0.
Since none of the above schemes can omit active units during the experiment, the
progressive scheme is introduced. Type-II progressive scheme is a mixture of Type-
IT and progressive censoring schemes, which has become very popular over the last
decade among various censoring schemes. It can be described as follows: Consider
N units are on a life test, and the experimenter determines the quantity n before-
hand; then, the number of failures can be observed. At the time of the first fail-
ure, R; units are randomly removed from the experiment. At the time of the second
failure, Ry of the remaining N — R; — 2 units are randomly removed from the ex-
periment, and so on. At the time of the n-th failure, all the remaining surviving
units R, = N —n — Ry —--- — R,_1 are removed from the experiment. There-
fore, a progressive Type-II censoring scheme consists of n and {Ry, ..., Ry}, such that
Ry +---+ R, = N —n. Clearly, this scheme includes the conventional Type-II right
censoring scheme (when R, = N—nand R; = --- = R,,_1 = 0) and complete sampling
scheme (when N =n and Ry = --+- = R, = 0). Quite recently, Ahmed et al. (2024)
considered the new and efficient estimators of reliability characteristics for a family of
lifetime distributions under progressive censoring. Also, estimation for the reliability
characteristics of a family of lifetime distributions under progressive censoring is con-
sidered by Safariyan and Arabi Belaghi (2021). For further details on progressively
censoring and relevant references, the reader may refer to the book by Balakrishnan
and Aggarwala (2000).

Herein, the two-parameter Rayleigh distribution (tRD) with one location parame-
ter (p) and one scale parameter (A) has the probability density function (PDF) and
cumulative distribution function (CDF) as follows

fl@) = 2Mx —p)e e g sy (1)
F(z) = 1- e_)‘(””_“)Z, x> [ (2)

Henceforth, a tRD with the pdf (1) will be denoted by tR(u, A). tRD has an increasing
failure rate function. Thus, if empirical research indicates an increasing failure rate
function of the underlying distribution, the tRD may be used to analyze such datasets.
Recently, Kohansal and Rezakhah (2019) have considered stress-strength parameter
estimation in progressively censored data for tRD.

Inference on the stress-strength model is one of the most attractive topics in the
reliability theory. The stress-strength parameter can be defined as follows

R- / T (1 Fy(y)dFv (y). (3)

where Y and X denote stress and strength, respectively. An active system is reli-
able when the applied stress is less than its strength. The idea of this model was
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introduced by Birnbaum (1956). Safariyan et al. (2019) studied improved point and
interval estimation of the stress-strength reliability based on ranked set sampling.

Recently, multi-component stress-strength (MCSS) models have attracted great
attention from researchers. A multi-component system is composed of k independent
and identical strength components and a common stress component. The system fails
when s (1 < s < k) or more of k components simultaneously damage. This model
was first developed by Bhattacharyya and Johnson (1974) and can be mathematically
defined as follows

k e k—
Rop=Y" (p) [ 0= Few) (7)), (1)
p=s -
where the independent and identically distributed random variables (X, ..., X}) are

the strengths, and Y is the stress random variable. In what follows, several recent
works on MCSS models are discussed. Nadar and Kizilaslan (2016) estimated relia-
bility in an MCSS model based on the Marshall-Olkin bivariate Weibull Distribution.
Moreover, Kizilaslan and Nadar (2018) estimated reliability in an MCSS model based
on a bivariate Kumaraswamy distribution. Kohansal (2019) published the first paper
on data censoring. She discussed reliability estimation in an MCSS model for the Ku-
maraswamy distribution based on a progressively censored sample. Also, Kohansal and
Shoaee (2021) studied the Bayesian and classical estimation of reliability in an MCSS
model under adaptive hybrid progressive censored data for the Weibull distribution.
Very recently, Makhdoom et al. (2023) studied E-Bayesian and hierarchical Bayesian
estimation of reliability in an MCSS model based on inverse Rayleigh distribution.
Moreover, Singh et al. (2024) considered estimation in an MCSS model for progres-
sive censored lognormal distribution. Kumari et al. (2024) studied the Bayesian and
likelihood estimation of MCSS reliability from power Lindley distribution based on
progressively censored samples.

Rk = i % (f[l (ﬁ)) /OO ﬁ ((1 ~ Fi(y)" (Fi(y))k"_p") dFy (y). (5)

P1=351 Pm=5m T =1

2

Roee 303 (H (ﬁ)) [ (- R Ee)" ™) v w. o

p1=81 p2=sa \i=1 =1

This model can be studied without having to consider other cases, such as stress-
strength and MCSS parameters. Indeed, it is a general model from which two essential
stress-strength parameters can be derived:

o If k = (k,0) then R, is converted to R, in (4).

o If k = (1,0) then R j is converted to R in (3).

While the MCSS parameter with two non-identical-component strengths has been
estimated by some researchers for uncensored samples, scant research has been done
on its estimation for censored samples. Meanwhile, different censoring schemes should
be dealt with in certain practical situations. Recently, Kohansal et al. (2021) has
studied an MCSS model with two non-identical-component strengths in bathtub-shaped
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distribution under adaptive hybrid progressive censoring samples. This paper considers
the MCSS parameter with two non-identical-component strengths in tRD under a
progressive censoring scheme.

The remainder of this paper is structured as follows: Section 2 obtains the statis-
tical inference of Rsj for common and unknown location parameters by computing
its maximum likelihood estimate (MLE) and Bayes estimates. In Bayesian estimation,
Lindley’s approximation and Markov Chain Monte Carlo (MCMC) method are em-
ployed under the squared error loss function. Corresponding asymptotic confidence
intervals (ACIs) and highest posterior density (HPD) credible intervals are also con-
structed. Section 3 obtains the statistical inference of Rs ) for common and known
location parameters by deriving its MLE, asymptotic confidence interval, exact Bayes
estimate, HPD credible interval, and uniformly minimum-variance unbiased estimator
(UMVUE). Section 4 presents simulation and data analysis results.

2 Inference on R;j; when location parameter is un-
known

2.1 Maximum likelihood estimation of R

Let Xy ~ tR(u, ), Xo ~ tR(u,) and Y ~ tR(u,«) be independent random vari-
ables. Now, using (1) and (2), the MCSS reliability with two non-identical-component
strengths can be obtained as follows

k1 ko

Rej= Z Z <k1> (kQ)/O e AW P1 (] _ oA Yhr—p

P1=S81 p2==52

xe BU=mp2(1 _ = Bu=m \k2=p20(y — 1)e= W1 gy (Put: t = e~ W—M)7)

k1 ko k k 1
Z Z ( 1>< 2)04/ t>\P1+5P2+06*1(17t>\)k1*:01(17tﬁ)k2*172dt

P1=81 p2=52 0
EEEEOEECR
p1=s1 p2=s2 q1=0 ¢2=0 P2 Q@ d2

1
% (_1)q1+qza/ t>x(p1+q1)+5(p2+q2)+ozfldt
0

P pop b NI Enp ey

p1=s1p2=s2 ¢1=0 ¢2=0
(_1)Q1+QQa
X
Ap1+q1) + B(p2 + ¢2) + «

(7)

The MLE of R,y can be obtained by initially measuring MLEs of A, 8, a and p.
Now, as we have n system on the life-testing experiment, the likelihood function can
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be constructed based on the following samples

Observed stress variables Observed strength variables
Y, U ... Uy Vit ... Vi,
Y = . and X; = . . , X9 = . .
Y, U .. Up, Vi oo Vi,

n k1
LOWrespldata) = ] < [T 1wl F1<um>1Rm)
i=1

Jji=1

k2
x (03 [T felwin)lt - Fz(vijz)]Q”?)f(yi)[l — F(y)]”

J2=1

Generality is one of the most important advantages of this likelihood function. By
making a few symbol modifications, the likelihood function can be obtained for R, in
Type-II censored and complete samples. It can also be derived for R, j and reliability
parameter R in progressive censored, Type-II censored, and complete samples.

Based on the observed data, the likelihood function can be derived as follows

n ki n  ka
L(X, B,a, pldata) o Ao (TT T (wigy — ) (T TT (i — »)

i=1j1=1 i=1 jo=1
X(ﬁ(yi — u))e—AA(u)—BB(u)—aC(u), (8)
i=1
where
n Jo
A(,LL) = Z Z Rij, + )(uzjl :U’>2’ (9)
L
B(/“L) = Z . (Qijz + 1)(Uij2 - /1')2’ (10)
Clp) = Z(Si + 1)y — p)* (11)

Il
-

K3

Ignoring the constant value in (8), the log-likelihood function can be derived as

(N, B, a, p|data) =nky log(A\) + nke log(8) + nlog(a) + Z Z log(u;j, —

=1 j1=1

n ko n
+3 ) log(viy, —p) + Y log(y; —
i=1

i=1 jo=1

“MA(n) - BB() - aC(p),
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Thus, A, B and &, MLEs of A\, 8 and « can be obtained by

nko n
B(p)’

Moreover, [, MLE of y is derived using the Newton-Raphson numerical on the following
equation:

n n ko
— —2/\2 Z Rijy 4+ 1)(uij, — 1) +28Y > (Qijy + 1) (vij, — 1)

Blp) =

i=1j1=1 i=1 jo=1
n k1 n n
+2QZ(5i+1)(yi—u)—ZZ —ZZ — =
i=1 =1 j—1 Y T i1 jo—1 Vg2 T H H

After obtaining A, 3, & and fi, the MLE of Ry, say Riw,fE , is derived using the
invariance property as follows

we - £ ST OO0

p1=s1p2=s2 ¢1=0 ¢2=0 42
(_1)¢Z1+qza

Apr+ @) + B2+ q2) + a

2.2 Asymptotic confidence interval

This section derives ACIs for R; using the asymptotic distribution of ]%S,k' To this

end, the asymptotic distribution of 5\, B , & and fi should be derived using the inverse of
the expected Fisher information matrix J = [J;;] = _[E(%a%jﬂ’ where 4,7 =1,2,3,4
and © = (01,05,03,04) = (A, B,a, p). Dey et al. (2014) show that if X ~ tR(u, A), not

all elements of matrix J are finite. Hence, the observed Fisher information matrix is
220
[80i69j]’

used by dropping the expectation operator E, represented by I = [I;;] = —
instead of J. The elements of symmetric matrix I can be obtained as follows

nk nk
hi="5 D=0, hs=0 In="2 In=0, Is=_5
n k1
Ly= —22 Z (Rijy + D) (uig, — ),
i=1 j1=1
n ko
Iy = —QZ Z (Qijo + 1) (vij, — )
i=1 jo=1
Isy = =2 (Si+ 1)(yi — ),
i=1

n ky n
Ly =223 Y (Ryj, +1 +2522 Qijp +1) +2aZS +1)

i=1 j1=1 i=1 jp=1
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n kp n

I P ED D) DTS e

2
i=1j1=1 i=1 jo= 1 J2 - \Yi “)

Using the multivariate central limit theorem (CLT), the asymptotic distribution of
(A, B, 4, 1) can be obtained as follows

R R ) . AppD _

[(A=X) B=8) (@—a) (A—w]" "7 N0, I (N, B, a, ),
where “ZP denotes “approximately distributed as” and I(\, 3, o, ) and I=1(\, 8, o, )
are two symmetric matrices that can be derived by

Iy 0 0 Iy

_ Ios 0 Ipy
I(A,/B,OZ,M) - _[33 I34 )
Iy
) b11 212 213 214
I—l by — 22 23 24
R (PN RN] b bas |
byq
where
by = Ioolsglyy — 13,133 — Inol3,, bio = I14loalss, b1z = Laloolzy, by = —I14ls0133,
boo = Iils3lus — I3yIs33 — I1113y, bog = Iiiloalz, bog = —I11124133,
bss = Diilooluy — I3y Ioo — I11 13y, bsg = —I111ao134, bay = 11120133,
IT(\, B, a, )| = Ty TooIszlay — T11 134033 — Iyi Ioo 3, — I3 Ino 133,
Theorem 2.1. If RéVIkLE is the MLE of R 1, then
RMEE — Ry, 2P N(0,V),
where
| ORe ko s ORs 1 ORs 1 ORs 1
vV = : b b b- 2
IO B | an ) ot g+ (8 P+ 238)
a]%s k a]%s k a-Rs k a-Rs k aRs k
)] 2 : b 2 ’ ~Vbos | .
( 5 )bi2 + 2( B\ ) 90 )bis + 2( 5 ) D0 )b23

Proof. Using the delta method, the asymptotic distribution of I%g/[kLE can be derived

as:
AppD

RMEE — Ry "7 N(0,V),
where V = bTT~Y()\, B, a, 1)b, where

p_ [0Rsk ORsr ORer ORuk " [ORsr ORsi ORsp 0 T
| oA 0B Oa ou | oA 0B O ’

with

e £ EEEOOEC)

p1=s1p2=s2 q1=0 ¢2=0 2
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(—1)#*e= a(ps +q1)

) (13)
(A1 + q1) + B(p2 + @2) + 04)2
1 ko ki—p1 ka—p2
e S EEE OO
3ﬂ p1=s1p2=s2 q1=0 q2=0 £ 2
_ 1+q2+1
~ ( 1)(1 4 (p2 +Q2) , (14)
(A(p1 + 1) + B(p2 + g2) + @)?
k1 ko  ki—p1 ka—p2
3Rs,k . <k1) <k‘2> <k1 pl) </€2 P2>
Oa plzsl p;Z qlz—o qzz—o P2 a 92
(_1)q1+q2 ()\(p1 +q1)+ B(p2 + QQ)) (15)
(Ap1 +q1) + B(p2 + q2) + @)?
Therefore,
Tl B 1 ORs 1\ ORs ko \ o ORs ks \ 9
V=b'I"(\paub= T0.B.op)| ( B\ )2b11 + (—2= 95 )2b2g + (—2= D0 )%bss
ORs k., 0Rs 1 ORs i, , ORs i ORs i, ,0Rs 1
+2( R )( e )b12 4+ 2( B\ )( 90 )13 + 2( 95 )( 9 )b23 |-
Thus, the theorem is proved. O

By Theorem 2.1, the 100(1 — )% ACT of R, is constructed as:

(RMLE — Zl,g\/; RMLE + 21-1 \/a),

where z, is 1007-th percentile of N(0,1).

2.3 Bayes estimation of R,

This section discusses the Bayesian inference of R, when unknown parameters A,
B, a and p are random variables. If the location parameter p is known, the other
parameters have gamma conjugate priors. However, joint conjugate priors are non-
existent if all parameters are unknown. Thus, not all elements of the expected Fisher
information matrix are finite, even for the complete sample data. Hence, Jeffreys prior
does not exist in this case. So, the following priors are considered for A\, 8, o and p,

T (\) o ATTleThA gy b A >0,
m(B) o B2 le 2P ay by, B >0,
m(a) o a®™ teTY a5 bg, a0 > 0,
m3(p) o 1, 0<p<t.

Besides, these random variables are assumed independent. Therefore, based on the
observed sample, the joint posterior density function can be obtained as:

m(A, B, a, pldata) o< LA, B, a, pldata)my (A)ma (B8)ms () ma (i) (16)
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From (16), the Bayes estimates can not be shown in closed form. Thus, they are
estimated using two approximation methods:

e Lindley’s approximation,

e MCMC method.

2.3.1 Lindley’s approximation

Lindley’s approximation, which proposed by Lindley (1980), is among the most widely
used numerical methods to obtain Bayes estimates that can be explained as follows. If
U(©) is a function of O, its Bayes estimate under the squared error loss function is as
follows 0162046
u(©)e
E(u(0)|data) = ff(ecz)@m@’

where Q(0) = £(0)+p(0), £(0) and p(O) are logarithms of the likelihood function and
prior density ©, respectively. Using Lindley’s method, E(u(©)|data) is approximated
by

E(u(©)|data) = u + %Z Z(u” + 2uipj)oij + %Z Z Z Zfijkaijakpup o o
i g i 3 k p

(17)
where © = (04,...,0,), i,j,k,p = 1,...,m, © is the MLE of ©, u = u(0), u; =
3u/39i, U5 = 82’&/(69@69]), Eijk = 83£/(80189380k), pi = 8/)/80]», and 0i5 = (i,j)—th
element in the inverse of the matrix [—¢;;], all evaluated based on the MLE of the
parameters.

For the four parameters © = (61,62, 63,04), (17) can be simplified as follows:

E(u(@)|data) = u+ (urdy + ugds + uzds + usdy + ds + de,)

1
+-[A(u1011 + w2012 + uzo13 + Us014)

2
+B(u10921 + 2022 + U3023 + U1024)
+C(u1031 + u2032 + U3033 + Us034)
(

+D(u1041 + u2042 + Uz043 + Us044)],

where

di = prop + paoio + p30i3 + pacia, t=1,2,3,4,

ds = u12012 + 13013 + 14014 + U23023 + U24024 + U34034,

dg = §(U11011 + U22099 + U33033 + Ua4044),

A = lion + 2021012 + 20131013 + 20141014 + 20231093
+20241024 + 20341034 + L221022 + 331033 + £441044,

B = {19011 + 20190012 + 20130013 + 20140014 + 20932003
+20240024 + 20342034 + l222022 + U332033 + L4420 44,

C = lii3o11 + 20123012 + 20133013 + 20143014 + 20233023

+20243024 + 20343034 + L223022 + 333033 + L4430 44,
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D = lyaon + 20124012 + 20134013 + 20144014 + 202340923

+20244024 + 20344034 + £224022 + 334033 + L4440 44.

a1—1 CL2—1 a3—1

p1 = 5 b, p2= 3 —by, p3= \ —b3, ps=0,
nk

b = —TQI b1y =0 =14, U3 =0 = {3,
nk’g

lyy = o log = 0 = {32, 633=—¥7
n k1

by = QZ Z(Rij1 + 1) (uij, — 1) = Llas,
i=1 ja=1
n ko

log = 2 > (Qijp + D(vigy — 1) = laa,
i=1 jo=1

lay = 22(51'4-1)(?/1'—#):5437

n ki n
o = =23 > (By +1) _zﬁzZQerl _2azs+1

i—1j1—1 i= 112 1
n n n
zz zz -3 :
=1 j1= 1 Wi i=1 jo= 1 Vijs =1 (yz H)

Moreover, 0;;,%,7 = 1,2, 3,4 should be derived from ¢;;,7,j = 1,2,3,4. We also have,

2nk 2nk 2n
b = Tl, logy = 732, lsss = 3
n ky n ko n
laa==2> Y (Rijy +1), loas=-2> > (Qij+1), Llaaa=-2) (Si+1),
i=1 j171 i=1 jo=1 i=1
T ) DR D D) DECELIS e
i=1j1= 1 Wi i=1 jo—1 \ 12 i1 Wi T H

and other ¢;;;, = 0. Furthermore, u;, ug and ug are represented by (13), (14) and (15),
respectively, and uy = u;y =0, i = 1,2, 3,4. Moreover,

T o 30 i ol (3 TERTER T

p1=s1 p2=s2 q1=0 ¢2=0
2(_1)Q1+Q2a(p1+q1)2

(A(pr + @) + B(p2 + @2) +a)*

S op b b oY )] 1] G [ e

p1=81p2=s2 q1=0 ¢2=0
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x 2(—1)1+2a(py + go)?
(Alpr +q1) + B(p2 + q2) + @)?’

S35 3 35 641 W o

p1=s1p2=s2 q1=0 ¢2=0 42

2(-1) et (N(py + q1) + B(p2 + @2))
(Alp1 + q1) + B(p2 + q2) + )?

= XSS

p1=s1 p2=s2 q1=0 ¢2=0

)

« 2(—=1)1+2a(py + q1)(p2 + ¢2)
(Ap1 + @) + B(p 2+Q2)+04)3,

e 5 3 35 691 G o

p1=s1p2=s2 q1=0 ¢2=0 42

(=) 1+t (p + ¢)(Apr+ 1) + B2 + ¢2) — @)
Ap1+ @) + B(p2 + q2) + )3
k1 ko  ki—p1 ka—p2
B kq 1—D1 kg — pa
Ugz = pgﬂ;g q;o q;() (p1> <P2>( q1 )( q2 >
(=1)BF=H (py + g2) (MpL + a1) + Bp2 + @2) — a)
A1 + @) + Blpz + @2) + a)? '
Lin

Hence, the Bayes estimate of R, j based on Lindley’s approximation, denoted by R
becomes

)

1
RLm = Rap + [urdy + ugdy + usds + ds + dg] + 5[A(ulau + uz012 + uz0o13)
+B(u1091 + u2022 + u3023) + C(u1031 + w2032 + uz033)
+D(u1041 + u2042 + uz0o43)]. (18)

Remember that all parameters should be computed at (/A\7 B, a, ).

As shown, the credible interval cannot be constructed using Lindely’s approxima-
tion. Therefore, another approximation method (i.e., MCMC) is applied to obtain the
Bayes estimate and corresponding HPD credible interval.

2.3.2 MCMC method

The posterior PDFs of A\, 8, a, and p from (16) can be obtained as

Ap,data ~ T'(nky +a1,b1 + A(w)),
Blu,data  ~ D'(nkz+ az, bz + B(n)),
alp,data ~ T(n+as,bs+C(p)),

n

Al davdaa) (] T (o w) (H e n) <H<y m)

i=1j1=1 i=1jo2=1 =1
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Xe—M\(M)—ﬂfFf(u)—tDz(/‘(u)7

1. Start with an initial values (Ao), B(0), 0y, K(0))-

2. Set t=1.

3. Generate p from m(u|A¢—1y, Br—1), t—1),data) using the Metropolis-Hastings
method, with N(j;—1),1) as the proposal distribution.

4. Generate Ay from I'(nky + a1, b1 + A(pe—1)))-

5. Generate [ from I'(nka 4 ag, by + B(i—1))).

6. Generate oy from I'(n + as, by + C(p—1)))-

7. Evaluate the value:

R = 30 50 SESE(BY () () (e )

p1=s1 p2=s2 q1=0 ¢g2=0
(_1)q1+q2a(t)
Ay (p1+a1) + By (2 + @2) + oy

8. Sett=t+1.
9. Repeat steps 3-8, Tpayes times.
Thus, the Bayes estimate of Rsj based on MCMC method, which presented by

RMC becomes
Thayes

R s,k Z Rt)sk: (19)

T
bayes =1

Also, using the Chen and Shao (1999) method, the HPD credible interval of R is
constructed.

3 Inference on R, ) when location parameter is known

3.1 Maximum likelihood estimation of R,

Suppose {Y1,...,Y,} is a progressively censored sample from the tR(u, ) with the
scheme{S1,...,Su}, {Ui1, ..., Uik, } and {Vi1,..., Vig, }, @ = 1,...,n, are progressively
censored samples from tR(u,\) and tR(u, ) with the schemes {R;i,..., Ry, } and
{Qi1,-..,Qik, }, respectively. Now, R is considered when the location parameter p
is known. Like Subsection 2.1, the MLE of R, 1 can be obtained as follows:

e £ 5T

p1=s1p2=s2 q1=0 ¢2=0

k1C(p) kaC(p) -

From Theorem 2.1, the asymptotic distribution of RiWkLE , can be derived as

RMLE - Rs,k AI’)\I’)D N(07 V)a
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_ (ORsk\2 1 ORs k\2 1 ORsk\2 1 ORs k. ORsk ORs 1
where Vo = (555%)% 7, + (55°) o, + (55a)7 15> and =53, 55" and =52* are

presented in (13), (14) and (15), respectively. So, the 100(1—7)% asymptotic confidence
interval for Rsj can be constructed as

(RMLE 21— \/; RMLE + Zl—g \/5),

where z, is the 100n-th percentile of N(0,1).

3.2 Bayes estimation of R,

This section discusses the Bayesian inference of Rs, when unknown parameters A, 3
and « are random variables. The following priors are considered for A\, 8 and «

m(A) o A TreTMA g b A >0,
WZ(B) X Ba27167b25a a27627ﬂ>07

m3(a) o a®™ le7Y a5 by, > 0.

By the above selection, the joint posterior density function of A, 8 and a can be derived
as follows
b A nki+ai b B nko+tas b C n+as
7_[_()\767040’ data) _ ( 1+ (:u)) ( 2+ (:U‘)) ( 3 + (,LL)) Ank1+a171
[(nki + a1)T'(nke 4+ a2)l'(n + as3)
Xﬂnkﬁ'az—1a”'ﬂls—1e—>\(b1+A(H))—5(b2+B(H))—a(b3+C(H))7 (21)

where A(-), B(-) and C(-) are given by (9), (10) and (11), respectively. Under the
squared error loss function, the Bayes estimate of R, can be obtained by solving the
following triple integral

/ / / Rs (N, B, alp, data)dAdBdo

£ ST

p1=8$1p2=s2 q1=0 ¢2=0

@ data)dAdBda.
></o /o /o /\(Pl+Q1)+5(P2+Q2)+047T()\7B7am7 ata)drdfda. (22)

Now, by applying w(A, 8, a|u, data) from (21) to (22) and using the idea of Rasethuntsa
and Nadar (2018), the part of triple integral in (22) can be solved as

B
Rs,k:

A ol < Ll <1,
A2 wp < —1,w2 < —1,
A3 |’U.)1|<].,’(U2<—].,
Ay w < -1, |w2| <1,

M =

v3(1 —wi)" (1 — we)?
A = el )" 2) Fi(vy +va + s, 01,09, L+ 11 + vo + v3; w1, wa),
11 +V2 +V3
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Ay = ﬁFl(l,yl,u2,1+y1+,,2+yg;%’w:u;%
Ay = ;134(_11/724_335(1 vs + 1, V271+V1—|—y2+yg’w1’11_;u’l)‘;2)’
Ay %F1(1,1/171/3+1,1—|—1/1_|_V2+V3;1112_;uz}111,w2)’
and v1 = nky + a1, Vo = nks + ag, v3 = n + az, w; = 1_% and
wz =1- m Also,

1 ! ,
F e =—— [t la -1 — )P —ty) P dt.
08,8 3500) = g [ = )y

In this presentation, the function Fy(«a, 3,8’,v;x,y) is known as the hypergeometric
series. It can be quickly and readily evaluated using standard software like MATLAB.
Hence, the Bayes estimate of Rk, represented by Rs k- is obtained as

O 0 23 (1 ]| LU0 G IR

p1=81p2=s2 q1=0 ¢2=0 P2 Q@ q2

Also, the 100(1 — )% HPD credible interval of R, x can be constructed using the Chen
and Shao (1999) method.

3.3 UMVUE of R,

Suppose {Y7,...,Y,} is a progressively censored sample from ¢ R(u, @) with the scheme
{S1,...,Sn}, {Ui1,.- -, Ui, } and {Vi1,...,Vig,}, i@ = 1,...,n, are progressively cen-
sored samples from the tR(u, A) and the tR(u, ) with the schemes {R;1, ..., R, } and
{Qi1,...,Qik, }, respectively. When the location parameter u is known, the likelihood
function can be expressed as

n ki n ko
L(X, B,al0,data) o A" a2 (] T (wizy —w) (T] TT wiso — w)

i=1jy=1 i=1jo=1
n

~ ( H(yi _ M))efaA(u)fﬁB(u)ﬂ\C(#)’ (24)

i=1

where A(-), B(:) and C(-) are presented in (9), (10) and (11), respectively. When p is
known, from (24), it can be easily concluded that A(u), B(u) and C(u) are complete
sufficient statistics for \, 8 and «, respectively. By transforming Y;* = (Y —i—p)?, i =
1,...,n, a progressively censored sample is derived from the exponential distribution

with mean 1. Now, put
«

Z, = NY;,
Zy = (N—=8 —1)(Yy =Y,
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Zn

i=1

Using the idea of Balakrishnan and Aggarwala (2000), it can be concluded that 77, -

(N — ZS—n+1)(Y —Yr ).

“Zn

are iid random variables from an exponential distribution with mean 5 So, C(u )
Z Z; has a gamma distribution with the following PDF
i=1
a” n—1_—ac
fC'(p,) (C) = @c € , c> 0.
Lemma 3.1. Suppose U5 = (Ui, — p)?, V5, = (Vij, — )% g1 = 1,..., k1, jo =

ke, i=1,...

,n. By these transformations, the conditional pdfs of Y|* given

C(p) =c, Uy given A(p) = a and V7 given B(u) = b are respectively as follows

c— Ny)"—2
le*\C(u):c(y) = N(n-— 1)%7 0<y<c/N,
_ K nk:172
fog1aw=a(u) = Ki(nk: — 1)%, 0<u<a/Ki,
b — Kov)™k2—2
fvaiB=b(v) = Ky(nky - 1)%, 0<v<b/Ks.

Proof. The lemma can be proved using a similar method as in Kohansal (2019).

Theorem 3.2. Based on the complete sufficient statistics A(u),
A, B and «, respectively, the UMVUE of (X, B,a) =

represented by @U()\,B,a), is as follows

O

B(;L)aand C(w), for

Ap1+aq) +Bp2+ q2) +a’

R By,  Case I,
Yu(\ B,a) =< By Case Il
B3 Case III,
where
nki—1nko—1 1 nk,—1\ (mko—1
B ~ N 1)t clpr+a)\" (elz+ @)\ (") (M)
=YY : reyt CLOCED,
11=0 13=0 li+ly
nko—1 n—2 lo+1 (nka—1\ (n—2
B, — n—1 QZ Z 11+12( p2+‘J2)>1< a >2+ ("7 %)
nky (=S (P1+q1) c(p1 +aq) ()
nki—1n—2 lo+1 (nki—1\ (n—2
B, n—1 Zl: S z1+z2( p1+ql)> ( b >2+ " (%)
nk2 11=0 l2=0 p2+q2) C(pz-i-(h) (ll‘;ii_ﬁ:k2) 7
and

a b

c
Case I: — < min{
N (p

1+ @)N (p2 +q2)N

b
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a c b
Case I —2% <mind S, — 2 L
(p1+@1)N {N (p2 + (I2)N}

b c a
Case III: ——— <min{ —, ————— .
(p2 + q2)N {N (p1+(J1)N}

Proof. It can be easily proved that Y*, Uy I and V11 are random variables coming from
the exponential distributions with means — N, Vel K and , respectively. Therefore,
1 ﬁK

e e o 1 K\U{y > N(p+ @)Yy, KoV > N(p2 + ¢2) Y7
o(Ury, Vi, Y1) = .
0  Otherwise,
is an unbiased estimate of (X, 3, a). So

du(hB,a) = Elo(Uy, Vi1, Y1) A(w) = a, B(p) = b,C(u) = ¢]
// fus1a(y=a (W) fvy |B(w)=b (V) fyr |0 (u) = (y) dudvdy,
A

where

b
A = {(u,v,y):0<y<£,0<u< 0<v< K1u>N(p1+q1)y
N Ky’

Kyv > N(p2 + qz)y}-

Also, fus 1ag=a(W), fvzBw=b(v) and fy«c(u)=c(y) are defined in Lemma 3.1. For
Case I, we have

/ / Kl(nkl — 1)(a — Klu)”’“*z
(P2+92) o5 arki=2

(p1+q1) & x Y

Kg(nkg - 1)(b Kov)™2=2  N(n—1)(c— Ny)" 2
bnkg 1 X —1

o dudvdy

/Ji’ 1?1 1(7’Lk’1 - 1)(CL - Klu)”k1_2d
= u
0 (pr+a1) g7y am=t

b

><< Xz Ko(nks — 1)(b — Kov)™ke~ de> N(n—1)(c — Ny)"2

dy
nko—1 n—1
(p2+4q2) Kl ke ¢

)
n—l - ’I’Lk?lfl N ’I’Lk}271
= —(p1+q1) y 1—(p2+qz)3y
—2

N N
X (1 — y) dy {Put. t= y}
c c

=(n-1) /01(1 —t)"? (1 — (1 + m)gt)nklil (1 —(p2+ %)%t)nkrl dt

-1 [ (nkfl(—nh (") q1>§t>h>

2
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nko—1 . c
(i)

l15=0
k1—1nko—1 l lo (nki—1Y (nks—1
_ni: ”22: (—1)11+l2 (C(pl +Q1)> ' (C(pz +(J2)) : (n L )(n L )
- li+la+n—1 :
11=0 [>=0 a b (1 Iyt )
For the other cases, the results can be obtained similarly. O

Hence, RSU ks UMVUE of R, is derived by

=3 Y kaZ( )(p) (k ” pl) ('“Qq‘fz)<—1>q1+q2¢U<A,/3,a>.

p1=s1p2=s2 q1=0 ¢g2=0
(25)

4 Data analysis and comparison study

This section compares different methods described in previous sections in terms of
performance using Monte Carlo simulations. A real-world dataset is also analyzed and
discussed.

4.1 Numerical experiments and simulations

This section evaluates the performance of different estimates obtained by Monte Carlo
simulation by comparing point estimations based on MSEs. The performance of dif-
ferent interval estimations is also compared based on average confidence lengths and
coverage percentages. A simulation study is implemented based on different censoring
schemes, parameter values, and hyperparameters. The results are presented for 2000
repetitions. The censoring schemes employed in the simulation study are given in Table
1. In this Table, the notation a*® shows that a is repeated b times.Also, K; is the com-
plete sample size for the strength ¢, and k; is the observed sample size. For example,
when (k1, K1) = (5,10) and R; = (0*4,5), the complete sample is (K; =)10 for Xj.
Besides, using the censoring scheme (0*%,5), 5 data points are omitted; therefore, the
observed sample size becomes (k; =)5. In the simulation study, when the common
location parameter p is unknown, the results are obtained based on the parameter
values as (A, B,a, u) = (2.5,2,1,3). In addition, three priors are assumed to consider
the Bayesian inference as follows

Prior 1: a; =0, b; =0, 1 =1,2,3.
Prior 2 : a; =1, b; =1, 1 =1,2,3.
Prior 3 : a; =2, b; =2, 1=1,2,3.

In this case, the MLEs and Bayes estimates of R, j are calculated via Lindely’s ap-
proximation and MCMC using (12), (18) and (19), respectively. The results are listed
in Table 2. From Table 2, Bayes estimates outperform classical estimates, informative
priors outperform non-informative priors in Bayes estimates, and MCMC outperforms
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Table 1: Censoring schemes.

(k‘i,Ki), 1= 1,2 C.S. (n, N) C.S.
R (0°05) 5. (005)
(5710) Ry (570*4) (5710) SQ (570*4)
Rg (1*5) 3 (1*5)
R, (07,10) Sy (0°9,10)
(10,20) Rs (10,0) | (10,20) S5 (10,0*
R6 (1*10) (1*10)

Lindley’s approximation based on MSEs. Also, the 95% ACI and HPD credible inter-
vals (Thayes = 3000) for R, are derived. Average lengths and corresponding coverage
percentages are computed and given in Table 3. From Table 3, HPD credible intervals
outperform ACIs in all cases. Also, in Bayes estimates, informative priors outperform
non-informative priors based on the length of credible intervals and coverage percent-
ages. Furthermore, from Tables 2 and 3, with increasing n for fixed s and k or k for
fixed s and n, the performance of point and interval estimates has improved in all
cases.

Now, when the common location parameter p is known, the results are obtained
based on parameter values as(\, 8, a, u) = (2,3,1,2.5). Also, three priors are assumed
to consider the Bayesian inference as follows

Prior 4 : a; =0, b; =0, 1=1,2,3.
Prior 5 : a; =1, b;=1, 1=1,2,3.
Prior 6 : a; =2, b; =2, i1=1,2,3.

In this case, the MLEs, Bayes estimates, and UMVUE of R, are estimated using
(20), (23) and (25), respectively. The results are listed in Table 4. From Table 4,
Bayes estimates outperform classical estimates, and informative priors outperform non-
informative priors based on MSEs. Also, the 95% ACIs and HPD credible intervals are
derived for Ry k. Besides, average lengths and corresponding coverage percentages are
computed and given in Table 5. From Table 5, HPD credible intervals outperform ACIs
in all cases. Also, in Bayes estimates, informative priors outperform non-informative
priors based on the length of credible intervals and coverage percentages. Likewise,
from Tables 4 and 5, with increasing n for fixed s and k or k for fixed s and n, the
performance of point and interval estimates has improved in all cases.



Table 2:

|Biases| and MSE of the MLE and Bayes estimates of R, j under various censoring schemes when p is unknown.

(k1,k2,m,s1,52)

C.S.

MLE

Lindley

Bayes

Prior 1

Prior 2

Prior 3

Prior 1

Prior 2

Prior 3

[Bias| MSE

[Bias] MSE

[Bias] MSE

[Bias] MSE

[Bias] MSE

[Bias] MSE

[Bias] MSE

(5,5,5,2,2)

RlaRl 751
RlleaSQ
R1,R.,53
R27R27SQ
R3,R5,53
R3,R3,53

0.0134 0.0250
0.0248
0.0256
0.0236
0.0257
0.0256

0.0143 0.0229
0.0141 0.0220
0.0151 0.0226
0.0111 0.0225
0.0157 0.0224
0.0110 0.0226

0.0151 0.0215
0.0130 0.0215
0.0114 0.0219
0.0135 0.0210
0.0105 0.0212
0.0103 0.0219

0.0100 0.0202
0.0121 0.0206
0.0143 0.0201
0.0125 0.0207
0.0159 0.0204
0.0144 0.0202

0.0118 0.0204
0.0141 0.0201
0.0154 0.0207
0.0144 0.0208
0.0157 0.0213
0.0136 0.0207

0.0149 0.0188
0.0120 0.0198
0.0125 0.0195
0.0144 0.0189
0.0153 0.0195
0.0105 0.0182

0.0114 0.0154
0.0099 0.0149
0.0151 0.0162
0.0124 0.0147
0.0132 0.0159
0.0144 0.0154

(5,5,10,2,2)

R17R1 7S5
R17R1 756
R23R27S5
R27R2a56
R3,R5,56

0.0189
0.0185
0.0174
0.0177
0.0171
0.0176

0.0104 0.0163
0.0106 0.0144
0.0113 0.0146
0.0102 0.0156
0.0140 0.0150
0.0157 0.0164

0.0124 0.0125
0.0117 0.0136
0.0134 0.0138
0.0090 0.0134
0.0133 0.0128
0.0155 0.0131

0.0124 0.0091
0.0102 0.0098
0.0098 0.0094
0.0113 0.0108
0.0093 0.0091
0.0128 0.0109

0.0152 0.0137
0.0094 0.0127
0.0155 0.0128
0.0149 0.0133
0.0121 0.0135
0.0140 0.0126

0.0153 0.0082
0.0135 0.0102
0.0121 0.0085
0.0097 0.0089
0.0122 0.0100
0.0127 0.0097

0.0144 0.0066|
0.0132 0.0052
0.0159 0.0060
0.0151 0.0078
0.0127 0.0069
0.0159 0.0057

(10,10,5,2,2)

R47R4751
R43R47‘92
Ry, R4,S3
R5,Rs5,5;
R5,Rs5,53
Rs,Rs,53

0.0202
0.0196
0.0193
0.0206
0.0198
0.0207

0.0154 0.0173
0.0096 0.0165
0.0139 0.0159
0.0156 0.0177
0.0140 0.0172
0.0138 0.0181

0.0120 0.0130
0.0138 0.0135
0.0136 0.0140
0.0143 0.0139
0.0151 0.0149
0.0136 0.0136

0.0113 0.0106
0.0104 0.0112
0.0096 0.0116
0.0140 0.0102
0.0121 0.0109
0.0151 0.0107

0.0126 0.0125
0.0143 0.0122
0.0132 0.0133
0.0116 0.0124
0.0103 0.0130
0.0105 0.0121

0.0101 0.0094
0.0141 0.0090
0.0117 0.0103
0.0151 0.0093
0.0130 0.0095
0.0155 0.0101

0.0147 0.0070
0.0092 0.0079
0.0107 0.0072
0.0148 0.0075
0.0143 0.0088
0.0106 0.0083;

(10,10,10,2,2)

R47R4754
R4,R4,S5
R47R4756
R57R57S5
R5,Rs5,56
Re,R6,S6

0.0138
0.0131
0.0135
0.0132
0.0130
0.0135

0.0117 0.0115
0.0151 0.0112
0.0135 0.0127
0.0136 0.0100
0.0123 0.0127
0.0131 0.0114

0.0103 0.0080
0.0153 0.0092
0.0146 0.0082
0.0102 0.0089
0.0140 0.0098
0.0145 0.0080

0.0146 0.0073
0.0152 0.0079
0.0150 0.0071
0.0075
0.0074
0.0072

0.0092 0.0093
0.0119 0.0091
0.0093 0.0087
0.0134 0.0099
0.0098 0.0096
0.0113 0.0089

0.0145 0.0067
0.0118 0.0065
0.0148 0.0060
0.0127 0.0067
0.0113 0.0063
0.0114 0.0059

0.0112 0.0046
0.0132 0.0031
0.0115 0.0037
0.0156 0.0049
0.0094 0.0032
0.0148 0.0046

E
E
E
E
i

RlaRl 751
R17R1a52
RlaRl 7S3
R27R27SQ
Ry,R5,S;3
R3,R3,S3

0.0366
0.0371
0.0282
0.0371
0.0278
0.0302

0.0141 0.0243
0.0128 0.0252
0.0119 0.0240
0.0131 0.0244
0.0119 0.0255
0.0107 0.0257

0.0158 0.0227
0.0136 0.0215
0.0157 0.0222
0.0127 0.0218
0.0158 0.0220
0.0102 0.0225

0.0181
0.0188
0.0179
0.0152
0.0178
0.0191

0.0154 0.0236
0.0106 0.0230
0.0098 0.0227
0.0111 0.0238
0.0137 0.0224
0.0138 0.0234

0.0156 0.0200
0.0155 0.0195
0.0108 0.0185
0.0136 0.0215
0.0120 0.0207
0.0147 0.0194

0.0120 0.0170
0.0123 0.0156
0.0130 0.0159
0.0128 0.0159
0.0123 0.0168
0.0149 0.0163

€8
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Continuation of Table 2.

(k1,k2,n,s1,52)

C.S.

MLE

Lindley

Bayes

Prior 1

Prior 2

Prior 3

Prior 1

Prior 2

Prior 3

[Bias]

MSE

[Bias]

MSE

[Bias]

MSE

[Bias]

MSE

[Bias]

MSE

[Bias]

MSE

[Bias]

MSE

(5,5,10,4,4)

RlaRlaS4
RlaRl 755
R17R1 756
R27R27S5
R23R27S6
R3,R3,56

0.0120
0.0101
0.0128
0.0131
0.0111
0.0122

0.0144
0.0150
0.0158
0.0142
0.0158
0.0148

0.0104
0.0103
0.0148
0.0139
0.0119
0.0139

0.0107
0.0116
0.0101
0.0113
0.0119
0.0121

0.0118
0.0091
0.0109
0.0123
0.0155
0.0111

0.0093
0.0091
0.0085
0.0087
0.0094
0.0084

0.0157
0.0113
0.0109
0.0118
0.0123
0.0156

0.0057
0.0056
0.0059
0.0062
0.0065
0.0058

0.0104
0.0108
0.0153
0.0150
0.0141
0.0147

0.0073
0.0079
0.0094
0.0088
0.0080
0.0093

0.0126
0.0110
0.0137
0.0111
0.0144
0.0135

0.0060
0.0045
0.0046
0.0051
0.0064
0.0046

0.0129
0.0140
0.0100
0.0100
0.0091
0.0111

0.0034
0.0036
0.0038
0.0039
0.0030
0.0035

(10,10,5,4,4)

R47R4751
R47R4752
R43R4753
R57R5,SQ
Rs5,R5,S3
Re,Re,S3

0.0137
0.0099
0.0112
0.0105
0.0109
0.0150

0.0171
0.0167
0.0173
0.0170
0.0163
0.0180

0.0091
0.0106
0.0128
0.0118
0.0099
0.0090

0.0143
0.0136
0.0148
0.0147
0.0150
0.0157

0.0109
0.0155
0.0128
0.0133
0.0103
0.0098

0.0110
0.0115
0.0120
0.0114
0.0117
0.0116

0.0133
0.0151
0.0102
0.0144
0.0108
0.0159

0.0089
0.0087
0.0093
0.0097
0.0096
0.0094

0.0100
0.0105
0.0129
0.0108
0.0133
0.0149

0.0100
0.0103
0.0107
0.0114
0.0100
0.0112

0.0090
0.0150
0.0147
0.0130
0.0100
0.0125

0.0096
0.0081
0.0098
0.0086
0.0089
0.0087

0.0110
0.0155
0.0152
0.0098
0.0130
0.0147

0.0066
0.0052
0.0062
0.0061
0.0052
0.0072

(10,10,10,4,4)

Ry, Ry,54
R4,Ry,S5
R4,R4,S6
R5,Rs5,55
R57R5756
R¢,Rs,56

0.0127
0.0126
0.0156
0.0112
0.0104
0.0097

0.0038
0.0035
0.0037
0.0037
0.0034
0.0039

0.0127
0.0098
0.0108
0.0128
0.0137
0.0144

0.0032
0.0031
0.0031
0.0032
0.0032
0.0033

0.0144
0.0093
0.0122
0.0090
0.0091
0.0094

0.0029
0.0027
0.0028
0.0027
0.0028
0.0029

0.0142
0.0127
0.0146
0.0111
0.0140
0.0118

0.0022
0.0021
0.0025
0.0023
0.0026
0.0024

0.0159
0.0118
0.0112
0.0096
0.0139
0.0105

0.0029
0.0028
0.0027
0.0026
0.0026
0.0027

0.0127
0.0143
0.0135
0.0140
0.0091
0.0090

0.0020
0.0024
0.0021
0.0023
0.0022
0.0020

0.0128
0.0143
0.0108
0.0142
0.0140
0.0129

0.0017
0.0011
0.0015
0.0012
0.0017
0.0015
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Table 3:

of Rs  under various censoring schemes when p is unknown.

Average confidence/credible length and coverage percentage for estimators

(kl,kQ,ﬂ 31752

C.S.

MLE

Bayes

Prior 1

Prior 2

Prior 3

Length CP

Length CP

Length CP

Length CP

(5,5,5,2,2)

RlvRI)SI
Rl,RhSQ
R1,R,,53
R27R2;SQ
R2,R5,53
R3,R3,53

0.5639
0.5600
0.5541
0.5904
0.5550
0.5852

0.895

0.5376 0.943
0.5266
0.5388
0.5246
0.5276
0.5290

0.5038 0.948
0.5043
0.5032
0.5100
0.5025
0.5004

0.4785 0.952
0.4769
0.4852
0.4832
0.4889
0.4887

(5,5,10,2,2)

Ry1,R1,54
R17R17S5
R17R1756
R27R2)S5
RZ,RQ;SG
R3,R5,56

0.4156
0.4002
0.4135
0.4126
0.4037
0.4006

0.3998
0.3892
0.3817
0.3826
0.3861
0.3859

0.3753
0.3719
0.3734
0.3609
0.3680
0.3708

0.3454
0.3444
0.3553
0.3438
0.3431
0.3414

(10,10,5,2,2)

R47R4751
R47R4552
R4,R4;S3
R5,Rs5,5;
R5,R5,53
R¢,Rs,53

0.4465
0.4411
0.4497
0.4465
0.4442
0.4473

0.4286
0.4227
0.4378
0.4334
0.4269
0.4250

0.3994
0.3917
0.4001
0.3962
0.3914
0.4063

0.3644
0.3791
0.3612
0.3628
0.3696
0.3600

(10,10,10,2,2)

Ry,R4,5,
R47R4)SS
R47R47S6

5,415,95
R5,Rs5,56
R¢,R¢,56

0.4083
0.3938
0.3965
0.3979
0.4086
0.3831

0.3716
0.3772
0.3754
0.3675
0.3770
0.3795

0.3363
0.3454
0.3400
0.3355
0.3405
0.3395

0.3068
0.3052
0.3087
0.3133
0.3181
0.3069

(5,5,5,4,4)

R17R17 1

1,411,002
R1,Ry,53
R27R2;SQ
R2,R5,53
R3,R3,53

0.5456
0.5454
0.5582
0.5599
0.5438
0.5508

0.5204
0.5326
0.5224
0.5280
0.5249
0.5374

0.4899
0.4816
0.4995
0.4913
0.4994
0.4873

0.4699
0.4619
0.4504
0.4685
0.4531
0.4584

(5,5,10,4,4)

Ri,R.,5,
R1,R1,55
R1,R1,56
R27R27S5
R2,R5,56
R3,R3,5

0.4073
0.4158
0.4190
0.4132
0.4118
0.4180

0.3409
0.3387
0.3407
0.3418
0.3320
0.3401

0.3171
0.3116
0.3116
0.3138
0.3147
0.3206

0.2856
0.2869
0.2866
0.2902
0.2822
0.2852

(10,10,5,4,4)

R47R4751
R47R4732
R4,R4;S3
R5,R5,55

R5,R5,53
R¢,Rs,53

0.4215
0.4260
0.4238
0.4220
0.4249
0.4195

0.3769
0.3775
0.3753
0.3767
0.3611
0.3660

0.3435
0.3366
0.3488
0.3371
0.3412
0.3414

0.3033
0.3020
0.3019
0.3179
0.3170
0.3090

(10,10,10,4,4)

E
E
|
-
E
|
E
|

R4,R4;S4
R4,R4,S5
R47R4;S6
R57R5755
R5,R5,56
Rs,R¢,S6

0.3336
0.3312
0.3384
0.3484
0.3458
0.3392

0.3079
0.3045
0.2971
0.3091
0.3088
0.2933

0.2795
0.2860
0.2775
0.2759
0.2825
0.2866

0.2487
0.2480
0.2547
0.2478
0.2535
0.2463




Table 4:

|Biases| and MSE of the MLE and Bayes estimates of R, j under various censoring schemes when p is known.

(k17k27n 51752

C.S.

MLE

Bayes

Prior 4

Prior 5

Prior 6

UMVUE

[Bias] MSE

[Bias] MSE

[Bias] MSE

[Bias| MSE

[Bias| MSE

R17R1751
Ri,Ry,5;
R1,R,,53
Ry,R5,5;
R23R27S3
R3, 13,53

0.0132 0.0248
0.0100 0.0252
0.0104 0.0244
0.0152 0.0255
0.0148 0.0243
0.0098 0.0246

0.0097 0.0203
0.0144 0.0213
0.0091 0.0204
0.0152 0.0206
0.0154 0.0215
0.0150 0.0216

0.0123 0.0196
0.0103 0.0189
0.0132 0.0186
0.0122 0.0189
0.0140 0.0199
0.0135 0.0180

0.0123 0.0159
0.0149 0.0152
0.0147 0.0165
0.0156 0.0148
0.0150 0.0157
0.0154 0.0165

0.0112 0.0250
0.0104 0.0258
0.0094 0.0249
0.0130 0.0260
0.090 0.0249
0.0142 0.0252

(5,5,10,2,2)

N N NN N |

RlaRl 7S4
R17R1 7S5
RlaRl 756

27 5

R2, 2,96
R3,R3,56

0.0139 0.0173
0.0109 0.0159
0.0156 00163
0.0141 0.0167
0.0134 0.0165
0.0109 0.0170

0.0147 0.0119
0.0149 0.0117
0.0135 0.0123
0.0134 0.0116
0.0102 0.0127
0.0096 0.0119

0.0153 0.0088
0.0147 0.0100
0.0095 0.0105
0.0090 0.0106
0.0136 0.0107
0.0121 0.0101

0.0090 0.0067
0.0095 0.0075
0.0107 0.0061
0.0127 0.0063
0.0095 0.0069
0.0146 0.0075

0.0120 0.0182
0.0098 0.0180
0.0106 0.0190
0.0134 0.0175
0.0102 0.0182
0.0120 0.0183

(10,10,5,2,2)

R43R47 1
R47 4, 2
Ry,Ry,53
R53R57SQ
R57R57S-3
Re, 6753

0.0145 0.0222
0.0131 0.0227
0.0128 0.0220
0.0135 0.0217
0.0137 0.0218
0.0120 0.0216

0.0098 0.0148
0.0093 0.0132
0.0158 0.0130
0.0096 0.0122
0.0142 0.0144
0.0095 0.0135

0.0141 0.0101
0.0120 0.0107
0.0094 0.0106
0.0119 0.0102
0.0112 0.0100
0.0128 0.0116

0.0125 0.0081
0.0106 0.0077
0.0127 0.0088
0.0115 0.0072
0.0128 0.0076
0.0116 0.0083

0.0108 0.0241
0.0135 0.0239
0.0143 0.0230
0.0153 0.0228
0.0159 0.0228
0.0108 0.0230

UOTINLIISIP I PUe §OJ YHM *'5] U0 90UdIfU]

(10,10,10,2,2)

Ry,Ry,54

Ry,R4,S6
R5,Rs755
Rs,Rs, 6
Rs,Rs,56

0.0112 0.0131
0.0094 0.0136
0.0155 0.0134
0.0090 0.0130
0.0116 0.0129
0.0129 0.0133

0.0104 0.0082
0.0153 0.0094
0.0102 0.0090
0.0136 0.0092
0.0151 0.0095
0.0093 0.0099

0.0112 0.0074
0.0107 0.0058
0.0136 0.0052
0.0137 0.0060
0.0143 0.0074
0.0146 0.0055

0.0109 0.0048
0.0141 0.0040
0.0091 0.0046
0.0119 0.0031
0.0155 0.0048
0.0099 0.0046

0.0127 0.0140
0.0128 0.0142
0.0134 0.0145
0.0147 0.0140
0.0128 0.0144
0.0133 0.0143

-l
:
5
E
.l

Ry, R1,5,
R13R17SQ
R17R17 3
Ry,R5,5;
R23R27 3
R3,R3,53

)
)
)
)
)
)
)
3
)
R4aR47S5)
3
)
)
)
)
)
)
)

0.0137 0.0314
0.0151 0.0295
0.0114 0.0323
0.0158 0.0284
0.0136 0.0317
0.0098 0.0325

0.0108 0.0234
0.0150 0.0220
0.0097 0.0222
0.0135 0.0234
0.0115 0.0224
0.0151 0.0222

0.0130 0.0192
0.0115 0.0187
0.0148 0.0217
0.0134 0.0187
0.0113 0.0210
0.0149 0.0190

0.0128 0.0176
0.0157 0.0152
0.0092 0.0157
0.0109 0.0160
0.0132 0.0150
0.0114 0.0176

0.0123 0.0331
0.0106 0.0340
0.0094 0.0330
0.0147 0.0322
0.0150 0.0325
0.0114 0.0345
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Continuation of Table 4.

(k1,k2,m, 51, 52)

C.S.

MLE

Bayes

Prior 4

Prior 5

Prior 6

UMVUE

[Bias] MSE

[Bias] MSE

[Bias] MSE

[Bias] MSE

[Bias] MSE

(5,5,10,4,4)

Ry,Ry,54
RlaRl 7S5
R17R1 756
R23R27S5
R27R27SG
R3,R5,56

0.0113 0.0157
0.0110 0.0159
0.0109 0.0154
0.0111 0.0148
0.0141 0.0154
0.0103 0.0151

0.0117 0.0083
0.0107 0.0085
0.0159 0.0089
0.0117 0.0070
0.0102 0.0072
0.0136 0.0077

0.0108 0.0062
0.0146 0.0047
0.0127 0.0040
0.0091 0.0052
0.0152 0.0067
0.0122 0.0055

0.0103 0.0034
0.0116 0.0032
0.0143 0.0034
0.0103 0.0038
0.0108 0.0031
0.0116 0.0036

0.0133 0.0165
0.0154 0.0168
0.0096 0.0163
0.0092 0.0162
0.0144 0.0167
0.0102 0.0160

(10,10,5,4,4)

R43R47SQ
R47R47S3
R5,Rs5,5;
R5,Rs5,53
Rs,Rs,53

0.0129 0.0165
0.0105 0.0169
0.0148 0.0154
0.0145 0.0163
0.0091 0.0175
0.0099 0.0173

0.0120 0.0106
0.0152 0.0105
0.0136 0.0121
0.0146 0.0109
0.0093 0.0112
0.0123 0.0118

0.0128 0.0083
0.0129 0.0080
0.0107 0.0081
0.0152 0.0083
0.0108 0.0087
0.0143 0.0080

0.0142 0.0077
0.0098 0.0078
0.0158 0.0077
0.0110 0.0059
0.0143 0.0076
0.0149 0.0066

0.0135 0.0174
0.0143 0.0179
0.0114 0.0170
0.0111 0.0176
0.0095 0.0182
0.0132 0.0189

(10,10,10,4,4)

R47R47S4
R4,R4,S5
R43R4756
R57R57S5
R5,R5,S6
R67R67SG)

)
)
)
)
R4,R47S1;
)
)
)
)
)
)
)

0.0143 0.0030
0.0115 0.0031
0.0100 0.0034
0.0133 0.0037
0.0124 0.0035
0.0096 0.0034

0.0101 0.0028
0.0125 0.0027
0.0093 0.0028
0.0105 0.0030
0.0142 0.0029
0.0091 0.0031

0.0138 0.0021
0.0147 0.0020
0.0136 0.0023
0.0132 0.0027
0.0140 0.0024
0.0153 0.0020

0.0107 0.0011
0.0151 0.0012
0.0144 0.0014
0.0152 0.0016
0.0104 0.0011
0.0121 0.0010

0.0090 0.0050
0.0101 0.0053
0.0094 0.0049
0.0117 0.0057
0.0143 0.0045
0.0147 0.0049
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Table 5:

of Rs j under various censoring schemes when p is known.

Average confidence/credible length and coverage percentage for estimators

(kl,kQ,ﬂ 31752

C.S.

MLE

Bayes

Prior 4

Prior 5

Prior 6

Length CP

Length CP

Length CP

Length CP

(5,5,5,2,2)

RlvRI)SI
Rl,RhSQ
R1,R,,53
R27R2;SQ
R2,R5,53
R3,R3,53

0.5842
0.5820
0.5744
0.5754
0.5779
0.5867

0.896

0.5399 0.941
0.5323
0.5334
0.5250
0.5356
0.5354

0.5019 0.948
0.5046
0.5092
0.5059
0.5004
0.5080

0.4767 0.950
0.4724
0.4613
0.4735
0.4747
0.4607

(5,5,10,2,2)

Ry1,R1,54
R17R17S5
R17R1756
R27R2)S5
RZ,RQ;SG
R3,R5,56

0.4028
0.4081
0.4040
0.4122
0.4002
0.4192

0.3845
0.3970
0.3802
0.3915
0.3819
0.3828

0.3655
0.3628
0.3668
0.3669
0.3708
0.3685

0.3454
0.3469
0.3468
0.3400
0.3434
0.3498

(10,10,5,2,2)

R47R4751
R47R4552
R4,R4;S3
R5,Rs5,5;
R5,R5,53
R¢,Rs,53

0.4427
0.4487
0.4489
0.4483
0.4477
0.4412

0.4236
0.4247
0.4275
0.4222
0.4269
0.4294

0.3975
0.4056
0.3989
0.3967
0.4020
0.3981

0.3692
0.3630
0.3657
0.3667
0.3701
0.3687

(10,10,10,2,2)

Ry,R4,5,
R47R4)SS
R47R47S6

5,415,95
R5,Rs5,56
R¢,R¢,56

0.4014
0.4001
0.3962
0.4070
0.4068
0.3941

0.3635
0.3622
0.3747
0.3685
0.3784
0.3622

0.3305
0.3335
0.3329
0.3315
0.3373
0.3351

0.3073
0.3062
0.3077
0.3151
0.3010
0.3032

(5,5,5,4,4)

R17R17 1

1,411,002
R1,Ry,53
R27R2;SQ
R2,R5,53
R3,R3,53

0.5498
0.5420
0.5586
0.5565
0.5504
0.5592

0.5335
0.5301
0.5351
0.5252
0.5314
0.5310

0.4890
0.4845
0.4944
0.4872
0.4855
0.4929

0.4598
0.4609
0.4530
0.4590
0.4635
0.4575

(5,5,10,4,4)

Ri,R.,5,
R1,R1,55
R1,R1,56
R27R27S5
R2,R5,56
R3,R3,5

0.4039
0.4034
0.4105
0.4084
0.4075
0.4035

0.3368
0.3325
0.3472
0.3380
0.3337
0.3330

0.3250
0.3190
0.3157
0.3277
0.3004
0.3156

0.2820
0.2936
0.2900
0.2817
0.2969
0.2864

(10,10,5,4,4)

R47R4751
R47R4732
R4,R4;S3
R5,R5,55

R5,R5,53
R¢,Rs,53

0.4163
0.4151
0.4170
0.4201
0.4188
0.4213

0.3838
0.3868
0.3845
0.3715
0.3828
0.3767

0.3304
0.3351
0.3323
0.3377
0.3382
0.3325

0.3116
0.3017
0.3104
0.3045
0.3109
0.3192

(10,10,10,4,4)

E
E
|
-
E
|
E
|

R4,R4;S4
R4,R4,S5
R47R4;S6
R57R5755
R5,R5,56
Rs,R¢,S6

0.3449
0.3381
0.3398
0.3394
0.3478
0.3458

0.3180
0.3009
0.3140
0.2987
0.3045
0.3095

0.2772
0.2732
0.2767
0.2812
0.2783
0.2766

0.2494
0.2410
0.2406
0.2334
0.2420
0.2338
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4.2 Data analysis

This section analyzes monthly water capacity of the Shasta reservoir in California, USA,
for illustrative purposes. Required data can be found at http://cdec.water.ca.gov/cgi-
progs/queryMonthly?SHA, which have been used by some authors like Kizilaslan and
Nadar (2016, 2018), Kohansal (2019) and Kohansal and Shoaee (2021). It is crucial
to determine the probability of drought occurrences as they cause significant harm to
agricultural productivity. In what follows, we conclude that there is no drought when a
region’s reservoir capacity in August and July for at least two of the following five years
exceeds the total amount of water reached in December of the preceding year. Hence,
the MCSS reliability with two non-identical-component strengths can be considered
the probability of drought non-occurrence.

In this scenario, we consider Uyq,...,Uss and Viq, ..., V15 as the capacities of July
and August from 1976 to 1980, Usy,...,Uss and Vay, ..., Vo5 as the capacities of July
and August from 1982 to 1986, and so on Ury, ..., Urs and Vrq, ..., Vis as the capacities
of July and August from 2012 to 2016. Also, Y7,Y5,..., Y7 are the capacity of December
1975, 1981 up to 2011. For simplicity the calculations, all data points are divided by
the total capacity of Shasta reservoir, 4552000 acre-foot. We noted that this work will
not have any effect on statistical inference. It should be initially checked whether tRD
can be fitted to the data. This point can be further enhanced by including a detailed
goodness of fit analysis. For this purpose, some statistical goodness of fit tests (e.g.,
Kolmogorov-Smirnov test, Cramer-von Mises test, and Anderson-Darling test) are first
provided, whose results are listed in Table 6. The p-values suggest that tRD provides
an adequate fit for the data in three cases. Second, charts and graphs are utilized to
clearly illustrate how well the model fits the data. Accordingly, Q-Q and P-P plots
were provided to visually assess the fit of tRD to the data. Histograms, density plots
overlaid, and empirical CDF plots with fitted distribution curves were also given. The
results are presented in Figs. 1-3.

Table 6: Statistical test for goodness of fit test.

KS CvM AD
Statistics p-value Statistics p-value Statistics p-value
X7 0.I1200 0.4987 0.0564 0.5454 0.4649 0.4836
Xo| 0.1142 0.5163 0.0562  0.5472 0.4614  0.4880
Y | 0.1857 0.8307 0.0360 0.7686 0.2372 0.7704

For complete data sets, we set s = (2,2) and k = (5,5). All results are provided in
Table 7. Moreover, we consider two progressive censoring schemes as follows:

Scheme 1: R =Q =1[0,1,0,0], S =1[0,0,0,1,0,0], (k= (4,4),s = (2,2))
Scheme 22  R=Q=1[1,1,0], S=][1,0,0,0,1], (k=(3,3),s=(1,1))

For these censoring schemes, we provide the results in Table 7. To observe the effect of
hyper-parameters, Bayes estimates are obtained with informative priors. The hyper-
parameters are obtained as a; = 7.8, by = 2, as =8, b = 1.5, a3 = 7.7, bg = 2.3 using
the resampling method. Accordingly, Bayesian results are derived again and listed in
Table 7.
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Figure 1: Charts and graphs for goodness of fit, for X .
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Figure 2: Charts and graphs for goodness of fit, for Xs.

A comparison of the results shows that some useful information will be missed
if data is censored. It can also be observed that the Bayesian inference depends on
hyper-parameters. Hence, informative priors should be used if they are available.
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Empirical and theoretical dens. Q-Q plot
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Figure 3: Charts and graphs for goodness of fit, for Y.
Table 7: Results of Section 4.2.
Complete Scheme T Scheme 2
MLE 0.4708 0.4130 0.6093
Asy. CI  |(0.2261,0.7155) (0.1668,0.6593) (0.3130,0.9057)
Bayes (infor.)
Lindley 0.4610 0.3980 0.6171
MCMC 0.4591 0.3996 0.5748
HPD (0.2418,0.7009) (0.1690,0.6367) (0.2721,0.8312)
Bayes(non-infor.)
Lindley 0.4957 0.4499 0.6479
MCMC 0.4862 0.3914 0.6120
HPD (0.3211,0.6573) (0.2312,0.5725) (0.3902,0.7986)

5 Discussion and conclusions

This paper obtained different estimates of R for tRD under the progressive censoring
scheme. When the common location parameter ;1 was unknown, the MLEs of R j were
obtained using the numerical method. Also, the ACI of this parameter was derived
using its asymptotic distribution. Moreover, the Bayes estimate of R, ) was approxi-
mated using Lindley’s approximation and MCMC due to the lack of explicit forms. In
addition to, when the common location parameter u was known, MLEs, exact Bayes
estimates, UMVUE, ACI, and HPD credible intervals were derived for Rs . According
to the simulation results, Bayes estimates outperformed classical estimates, informa-
tive priors outperformed non-informative priors, and MCMC outperformed Lindley’s
approximation. This work could be applied in the context of reliability theory and
censored data analysis. Further studies can be conducted in this regard by extending
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the progressive censoring schemes to the progressive hybrid and adaptive progressive
hybrid censoring schemes.
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