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Abstract: This paper proposes a model to analyze longitudinal rank responses using
a Bayesian approach with a random effects framework. We consider rank responses
that are implicitly determined by their latent variables. Further, the usual univariate
model, as well as a multivariate model, is also considered for analyzing the multiple
longitudinal rank responses. We use random effect vectors to evaluate the correlation
between individual responses across time. Also, a Bayesian approach that is used to
yield Bayesian estimates of the model’s parameters. Some simulation studies are con-
ducted to estimate the parameters of the considered models. The model is used for a
neurocognitive data set of Glioma patients who underwent surgery. The results of the
data analysis are presented to illustrate the method.
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1 Introduction
Ranking is an integral part of statistics, both in nonparametric analysis and in the
analysis of objects ranking by judges. Ranking data usually comes from cases where
one wants to rank a set of individuals or objects based on some criteria. Such data
may observe directly or may obtain from ranking a set of assigned scores. The first
case happens when only one order (or partial order) is placed without any quantitative
superiority criteria. The second happens when quantitative measurements are avail-
able, but for other considerations it is preferable to use the rank transformation. Data
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ranking techniques have attracted the attention of many researchers. Many efforts
have been made to determine methods for analysing rank data. There are unique chal-
lenges in ranking data analytic, especially in multivariate models. Also, the presence
of longitudinal rank data is one of the most important and common issues in statistical
applications such as medicine, clinical studies and public health. As a motivational
example, examining cognitive function using neurocognitive test data on Glioma pa-
tients (Gliomas are primary brain tumors) was considered to illustrate the issue and
the importance of the univariate and multivariate models studied in this paper and
to determine the effects of some explanations on considered longitudinal rank vari-
ables of patients’ cognitive functions. The cognitive performance of these patients was
evaluated at four different time points during the week before and after the operation
(pre-operation and post-operation), 3 and 6 months later. Therefore, these data were
treated as a longitudinal rank response study.

1.1 Related works
The papers and discussions address these basic questions: How can ranking be best
done? What goes on in the mind of a ranking? How does a statistician model and
analyse such highly structured data? Thurstone models (Thurstone, 1927, 1931) are the
basic and major models for modeling ranking data. Much recent work has focused on
the estimation and application of Thurstonian ranking models (Chan and Bentler, 1998;
Yao and Böckenholt, 1999). A Thurstonian approach is attractive because it facilitates
the simple formulation of both linear models for the means and structural equations
for the covariance matrix of preference judgments. Consequently, Thurstonian models
provide a simple and interpretable representation of individual preference differences.
However, rankings or weak orders contain a lot of information about how individuals
differ in their evaluations of selected items.

A Thurstonian approach is appropriate for analysing these flavor differences without
making strong assumptions about their determinants. Among others, Daniels (1950);
Stern (1990); Böckenholt (1992) and Böckenholt (1993) introduced models, along with
other methods for analysing rank data, see Marden (1995). Marden (1995) reviewed
some classical techniques for analysis of rank data and introduced summary of con-
siderations for data with ties, partial orderings, and incomplete rankings. One way to
deal with ranking data is to build a model that describes how the ranking data was
generated and use that model to create a ranking list (McFadden, 1980; Diaconis, 1988;
Critchlow et al., 1991; Alvo and Yu, 2014). Thurstone assumes that a ranking data
set is the result of ranking of latent continuous variables associated with each object
to rank (Johnson and Kuhn, 2013).

Kendall and Smith (1940) and Marden (1995) introduced paired comparison models
like a rank to the result of a paired comparison process. One of the most popular models
that covers the situation of paired comparison is derived by Bradley and Terry (1952).
The basic BT (Bradley and Terry, 1952) model has been extensively discussed in the
literature (David, 1988) and various extensions have been suggested. To name just a
few of those: ties (Rao and Kupper, 1967; Davidson, 1970; Kousgaard, 1976), random
effects (Davidson and Beaver, 1977; Fienberg, 1979), the covariate (Matthews and
Morris, 1995; Dittrich et al., 1998; Francis et al., 2002) and ordinal paired comparison
models (Agresti, 2002). The covariate information can not only help to generate a full
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ranking list but also possibility can specify inhomogeneity among these experts in their
ranking “qualities” as well as their way of using the covariates. These are applied by
Liu et al. (2019). Dunson (2000) and Gruhl et al. (2013), among others, who have used
latent variable models to model multivariate observations with mixed response types.
Bayesian latent variable models have been widely used for Bernoulli responses, while
less notice has been paid to rank responses.

Hoff (2007) used rankings to estimate copula, thus giving the marginal distributions
in multivariate data to be unknown while still modeling dependency. Murray et al.
(2013) made based on Hoff (2007) to form a Gaussian copula factor model to jointly
respond to rankings and other types of responses. While these methods allow ties
by due to the data to be only partially ordered, they do not present a model for
the probability that two outcomes will be tied. (Johnson et al., 2002) introduced a
model based only on rank data, and they modeled the probability that any two given
observations were tied. This approach, using a Bayesian perspective, is now restated
with changes to the notation in the simplified case where data are available from only
one assessment. We will discuss these in the next section.

In this paper, we consider univariate and multivariate models with the random
effects for analysing longitudinal rank responses using latent variable models and
Bayesian approach. The structure of the paper is as follows: In Section 2, we present
the models and likelihood of the univariate and multivariate rank responses using latent
variables and the prior and posterior distributions for the model’s framework. Some
simulation studies are conducted in Section 3. In Section 4, the proposed models are
fitted to data of the neurocognition test of Glioma patient who underwent surgery and
results of univariate and multivariate models obtained from real data of neurocognition
test are given. Conclusions are given in Section 5.

2 Model specification
In this section, the univariate and the multivariate models of longitudinal rank data
and their likelihood functions are presented. Also, we consider rank responses which
are implicitly determined by their latent variables. A random effect vector is used to
consider the correlation between individual responses across time, which lead to the
conditional independence of vectors of responses in different occasions given subject-
level random effect.

2.1 Model and likelihood
We suppose that a higher value of the rank denotes better (rather than worse) perfor-
mance. Assume that N subjects are ranked based on an assessment, with yi denoting
the rank of the ith subject, i = 1, . . . , N and each observed rank variable yi has related
latent variable zi. If no ties are permitted in rankings, y and z are connected through
the condition that yi < yi′ if only if zi < zi′ for ∀i ̸=i′. Therefore, the order of the
latent variables corresponds to the order of the observed ranks. When a tie is allowed
for observed ranks, Johnson et al. (2002) explicitly modeled the probability that two
observations are tied based on the scaled distance between the latent variables with
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the scale determined by the parameter κ. They supposed that

p (yi = yi′ |zi, zi′ , κ ) = exp

(
− |zi − zi′ |

κ

)
,

p (yi < yi′ |zi, zi′ , κ ) = 1− p (yi = yi′ |zi, zi′ , κ ) 1 (zi < zi′) .

These formulas are used to define the likelihood of a set of observed of rankings based
on quantities of the form p(i) (κ) , i = 1, . . . , N − 1 defied as

p(i) (κ) =


exp

(
−(z(i+1)−z(i))

κ

)
if y(i+1) = y(i)

1− exp

(
−(z(i+1)−z(i))

κ

)
if y(i+1) > y(i),

where y(i) and z(i) are the ith smallest observed value and latent variable, respectively.
Then the likelihood can be summarized as

f (y |z, κ ) =
N−1∏
i=1

[
p(i) (κ)

N∏
i′=i+1

I ({zi′≤zi∩yi′≤yi}∪ {zi′≥zi∩yi′≥yi})

]
.

The ordering of the observed variables should be consistent with the ordering of the
latent variables.

Now, data collected over time are called longitudinal data. In the following sections,
longitudinal rank data, models and likelihood function corresponding to them have been
discussed.

2.2 Univariate longitudinal rank data
Suppose that yi(t) denotes an observed longitudinal rank response for i = 1, . . . , N at
follow-up time t, t = 1, . . . , T . Also, assume that data are available from one assessment.
For each observed outcome yi (t) , we associate a latent variable zi(t). To handle ties in
longitudinal rank data, the probability of observing the tie status of the i and (i+1)th
order statistics for longitudinal rank variable, given their latent procedure variable is
written as

p(it) (κ) =


exp

(
−(z(i+1)(t)−z(i)(t))

κ

)
if y(i+1)(t) = y(i)(t)

1− exp

(
−(z(i+1)(t)−z(i)(t))

κ

)
if y(i+1)(t) > y(i)(t),

where y(i)(t) and z(i)(t) are the ith smallest observed value and latent variable, respec-
tively. Also, the value of κ has important concepts for modeling rank data when there
are large differences in the number of items ranked under different assessments, and in
specific when large numbers of items are ranked simultaneously. In such cases, small
value of κ account for case in which few ties are recorded, while more balance value of
κ reflect the case in which the central portion of the distribution of ranked items are
difficult to distinguish, and many more mid-range items are devoted tied values than
are the extreme items. This pattern of ties is consistent with a latent distribution of
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ties that is unimodal, whereas a disproportionate number of ties in the extremes of the
ranked values proposes a multimodal distribution of latent traits or some other model
deficiency.

To model the latent variable, let X ′
i(t) be ith rows of design matrices Xn×T , and

W ′
i (t) is the sub-vectors of X ′

i(t) . With this notation, we suppose that

Zi(t) = X ′
i(t)β +W ′

i (t)bi + εi(t). (1)

The vector of parameters β is fixed effects parameters, when W ′
i (t) is the sub-vectors of

X ′
i(t), the model allows the regression coefficients for the covariates contained in W ′

i (t)
to vary among subjects, while assuming that the remaining coefficients are fixed for
all subjects. By permitting a subset of the regression coefficients to vary randomly, a
very flexible, and yet quite parsimonious, class of random effect covariance structures
becomes available (Fitzmaurice et al., 1988). bi is the vector of unobserved subject-
specific random effects for subject i with MVN (0,Σb). bi is used to consider the
correlation between individual responses across time, which lead to the conditional
independence of vectors of responses in different occasions given subject-level effect
bi. Also, let εi = (εi(1), . . . , εi(T ))

′ for i = 1, . . . , N , be vectors of errors where εi
are independent and identically distributed with MVN (0,Σε). Let εi(t) and bi(i =
1, . . . , N) be mutually independent. Johnson et al. (2002) established scale in their
analysis of rank data by fixing the variance for a particular effect at 1. The proposed
analysis establishes scale in such a manner that the marginal variability of z is 1,
regardless of the number of random effects. So, for identifiability of Model, we assume
variance-covariance matrix Σε to be fixed. Therefore, we have

Zi(t) ∨ bi, Xi(t), β N (X ′
i (t)β +W ′

i (t) bi, (Σε)i) ,

where (Σε)i is the (i, i)th element of Σε.
Given subject-level effect bi, likelihood function for the rank responses can be writ-

ten as

f (y |z, κ, β ) =

∫
f (y |z, b, κ, β )φ (b) db

=
∏
i

∫ ∏
t

f(yi (t) ∨ zi (t) , bi, κ, β)φ(bi)dbi

=
∏
i

∫ ∏
t

p(it) (κ)
∏

i′:zi′ (t)<zi(t)

I (yi′ (t)≤yi (t))φ (bi) dbi,

where φ(.) denotes the corresponding density function of the distribution of the random
effects.

2.3 Multivariate longitudinal rank data
Suppose that data come from N subjects with M distinct assessments. Let yij(t)
denotes an observed longitudinal rank response for i = 1, . . . , N ∧ j = 1, . . . ,M at
follow-up time t, t = 1, . . . , T . For each observed responses yij(t), we associate a latent
variable zij(t). For longitudinal rank response, we assume that yij(t) > ykj(t) only if
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zij(t) > zkj(t). Given their latent procedure variable, the probability of observing
the tie status of the i and (i + 1)th order statistics for longitudinal rank variable for
assessment j at time t is written as

p(ijt) (κj) =


exp

(
−(z(i+1),j(t)−z(i),j(t))

κj

)
if y(i+1),j(t) = y(i),j(t)

1− exp

(
−(z(i+1),j(t)−z(i),j(t))

κj

)
if y(i+1),j(t) > y(i),j(t),

where y(i)(t) and z(i)(t) denote the corresponding ordered values of the observed rank
and latent variable and κj is the jth assessment-specific value. To model the latent
variable, let X ′

ij(t) be known vector of fixed effect covariates for the ith subject and
jth assessment at time t and W ′

ij(t) be the sub-vector of X ′
ij(t). So, we have

Zij(t) = X ′
ij(t)β +W ′

ij(t)bi + εij(t), (2)

where β is fixed effects parameters and bi is the vector of unobserved subject-specific
random effects for subject i with MVN (0,Σb). bi is used to consider the correlation
between individual responses across time, which lead to the conditional independence
of vectors of responses in different occasions given subject-level effect bi. Also, let
εij = (εij(1), . . . , εij(T ))

′ for i = 1, . . . , N and j = 1, . . . ,M be vectors of errors where
εij are independent and identically distributed with MVN (0,Σε). Let εij(t) and
bi(i = 1, . . . , N) be mutually independent. For identifiability of Model, we assume that
marginal variability of z is 1 and variance-covariance matrix Σε to be fixed. Therefore,
we have

Zij(t) ∨ bi, Xij(t), β N
(
X ′

ij(t)β +W ′
ij(t)bi, (Σε)ij×ij

)
,

where (Σε)(i,j) is the (i, j) element of Σε . Given subject-level effect bi , likelihood
function for the rank responses can be written as

f (y |z, κ, β ) =

∫
f (y |z, b, κ, β )φ (b) db

=
∏
j

∏
i

∫ ∏
t

f(yij (t) ∨ zij (t) , bi, κ, β)φ(bi)dbi

=
∏
j

∏
i

∫ ∏
t

p(ijt) (κj)
∏

i′:zi′j(t)<zij(t)

I (yi′j (t)≤yij (t))φ (bi) dbi,

and φ(.) denotes the corresponding density function of the distribution of the random
effects.

3 Hierarchical model priors and posterior inference
We use Bayesian approach for modeling of longitudinal rank response data in this paper.
In Section 2.1, we explained the model and the likelihood distribution that depend on
several parameters. To complete the model framework, we now introduce the prior
distributions of the parameters. Also, the posterior distribution can be obtained to fit
the models using the likelihood distribution and prior distributions.
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3.1 Univariate longitudinal rank data
According to model (1), we suppose that εi = (εi(1), . . . , εi(T ))

′ for i = 1, . . . , N , be
vector of errors where εi are independent and identically distributed with MVN(0,Σε).
For identifiability of the model, we assume that Σε is fix. We suppose that bi, be
independent and identically distributed normal with mean zero and variance σ2

b for
all subjects i = 1, . . . , N . Also, εi and bi are independent of each other. We use
exponential density for the prior distribution of σb of random effect. Also, we let the
parameters of regression coefficients in model be standard normal. We choose a prior
density for κ, a right choice for a prior on κ is gamma distribution with parameters a
and b (Gamma (κ; a, b)). So, the prior density for model is written by

π (z, b, κ, β, σb) = π (z |b, β, σb )π (b |σb )π (σb)π (κ) .

The posterior distribution for the univariate longitudinal rank responses can be ex-
pressed as

f (y |z, x, b, κ, β, σb )π (z |b, β, σb )π (b |σb )π (σb)π (κ)π (β) =
∏
i

∫ ∏
t

p(it) (κ)

×
∏

i′:zi′ (t)<zi(t)

I (yi′ (t)≤yi (t))φ (bi) dbi
∏
i

∏
t

(
zi(t);x

′
i(t)βt + w′

i(t)bi, (Σε)ij×ij

)

×
N∏
i=1

N
(
bi, ; 0, σ

2
b

)
×N (β0; 0, 1)×

T∏
t=1

N (βt; 0, 1) exp (σb;α)Gamma(κ; a, b),

where Gamma (κ; a, b) is gamma distribution with parameters a and b.

3.2 Multivariate longitudinal rank data
According to model (2), we suppose that εij = (εij(1), . . . , εij(T ))

′ for i = 1, . . . , N and
j = 1, . . . ,M be vectors of errors where εij are independent and identically distributed
with MVN (0,Σε). For identifiability of the model, we assume that Σε is fix. We
suppose that bi be independent and identically distributed normal with mean zero and
variance σ2

b for all subjects i = 1, . . . , N . Also, εij(t) and bi(i = 1, . . . , N) be mutually
independent. We use exponential density for the prior distribution of σb of random
effect. Also, we let the parameters of regression coefficients in model be standard
normal. We choose a prior density for each κj . Let κ be the set of κj ’s for all j with
rank responses, a right choice for a prior on κ is to assume that the κj s are mutually
independent with a Gamma(aj ; bj). So, the prior density for model is written by

π (z, b, κ, β, σb) = π (z |b, β, σb )π (b |σb )π (σb)π (κ) .

The posterior distribution for the multivariate longitudinal rank responses can be ex-
pressed as

f (y |z, x, b, κ, β, σb )π (z |b, β, σb )π (b |σb )π (σb)π (κ)π (β) =
∏
j

∏
i

∫ ∏
t

p(ijt) (κj)
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×
∏

i′:zi′j(t)<zij(t)

I (yi′j (t)≤yij (t))φ (bi) dbi

×
∏
j

∏
i

∏
t

(
zij(t);x

′
ij(t)βjt + w′

ij(t)bi, (Σε)ij×ij

) N∏
i=1

N (bi, ; 0, σb)×N (β0; 0, 1)

×
M∏
j=1

T∏
t=1

N (βjt; 0, 1) exp (σb;α)×
M∏
j=1

Gamma (κj ; aj , bj) .

When using Bayesian inferences, our goal is to calculate and use the posterior distri-
bution on a set of random variables. But this often requires the calculation of complex
integrals. In such cases, we may search solving the analytical equations and perform
sampling methods based on the Monte Carlo Markov Chain (MCMC) method. When
using MCMC methods, we estimate the posterior distribution and insolvable integrals
using simulated samples of the posterior distribution. The algorithm updates parame-
ters by sampling from full conditional distributions. The selection of priors mentioned
was made with an eye towards making updates simple.

3.3 Simulation Study
In this Section, we conduct simulation study to determine the performance of the
univariate and multivariate modeling of longitudinal rank responses and the proposed
MCMC algorithm. For this goal, we consider two simulation study. The first one
focuses on the univariate model and the second is based on multivariate model. Results
of simulation study are obtained for effective sample size N = 100, 300 and 600 and
with 20 iterations. The results are based on 2000 Monte Carlo replications for each
effective sample size. We compare the results of our proposed approximated Bayesian
model. Via the simulation studies, we want to assign accuracy of models. If the
posterior estimates given by Monte Carlo are the same as true values that we assigned
in the model, we can sure that the model works well. These models were fitted in
software R.

3.3.1 Simulation study 1: univariate longitudinal rank model

We consider the longitudinal rank responses Yi(t), i = 1, . . . , N ∧ t = 1, 2, with latent
variables Zi(t). We begin by simulating data from the proposed model. In model (1)

Zi (t) = β0 + βtXi(t) + σbbi + εi(t).

For generating the data: we generate i.i.d. εi = (ε1i(1), ε1i(2))
′ for i = 1, . . . , N , from

the bivariate normal distribution with mean 0 and identical covariance matrix. Covari-
ate matrices (Xi(1), Xi(2)) with dimension N is simulated from bivariate normal with
zero mean and variance matrices

(
1 0.5
0.5 1

)
. We set β = (β0, β1, β2)

′
= (2, 1,−1)′ and

the vector of random effects, bi, independently is generated from normal distribution
with mean zero and σb = 0.5 for all subjects. Given random effects the correlation
between individual responses across time is conditionally independent. Also, we set
κ = 1. With these assumptions, we can generate zi(t) s. Johnson et al. (2002) assumed
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that yi > yi′ only if zi > zi′ , where the latent procedure variable is zi. So, to generate
the full ranking lists y(t) , for each t = 1, 2, we rank the vector z(t).

Results of the simulation study for model of rank responses is given in Table 1.
Table 1 shows that posterior estimates of parameters of univariate model are close to
their true values, and with increasing N , the estimates become nearer to the real values.
Also, the standard errors (se) of estimates reduce and mean square errors (MSE) of
estimates of the model tend to zero with increasing N .

Table 1: Simulation results for 100, 300 and 600 samples using the univariate model
(Est. and S.E. are estimation and standard error for parameter.

N = 100 N = 300 N = 600
Parameter True value EST. S.E. MSE EST. S.E. MSE EST. S.E. MSE

β0 2 2.198 0.160 0.065 2.010 0.095 0.009 2.045 0.072 0.007
β1 1 1.154 0.210 0.068 1.134 0.127 0.034 1.002 0.082 0.007
β2 -1 -0.733 0.236 0.127 -0.984 0.123 0.015 -0.988 0.082 0.006
κ 1 0.77 0.019 0.050 0.834 0.004 0.020 0.93 0.002 0.004
σb 0.5 0.520 0.213 0.046 0.635 0.138 0.037 0.649 0.095 0.031

3.3.2 Simulation study 2: multivariate longitudinal rank model

We consider the longitudinal rank responses Yij(t), i = 1, . . . , N, j = 1, 2 ∧ t = 1, 2 ,
with latent variables Zij(t). We begin by simulating data from the proposed model.
In model (2)

Zij (t) = β0 + βjtXij(t) + σbbi + εij(t).

For generating the data: we generate i.i.d. εij(t) = (εij(1), εij(2))
′ for i = 1, . . . , N

and j = 1, 2 from the multivariate normal distribution with mean 0 and identical
covariance matrix. Covariate matrices (Xij (1) , Xij (2)) fori = 1, . . . , N ∧ j = 1, 2 is
simulated from multivariate normal distribution with mean

(
0
0

)
and variance matrices(

1 0.5
0.5 1

)
. We set β = (β0, β11, β12, β21, β22)

′
= (−2, 2,−1, 1, 1)′ and the vector of

random effects independently is generated from identically distributed normal with
mean 0 and variance σb = 2 for all subjects. Also, we set κ1 = 0.5 and κ2 = 0.3.
With these assumptions, we can generate zij(t)s. Johnson et al. (2002) assumed that
yij > ykj only if zij > zkj , where the latent procedure variable is zij . So, to generate
the full ranking lists, for each j = 1, 2 ∧ t = 1, 2 we rank the vector zj(t).

The results are based on 2000 Monte Carlo replications for each effective sample
size. If the posterior estimates given by Monte Carlo are the same as true values that
we assigned in the model, we can sure that the model works well. Results of the
simulation study for model of rank responses is given in Table 2. Table 2 shows that
posterior estimates of parameters of the joint linear model are close to their true values,
and with increasing N , the estimates become nearer to the real values. Also, MSEs of
estimates of the model tend to zero with increasing N .
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Table 2: Simulation results for 100, 300 and 600 samples using the multivariate model.
N = 100 N = 300 N = 600

Parameter True value EST. S.E. MSE EST. S.E. MSE EST. S.E. MSE
β0 -2 -2.371 0.325 0.244 -1.940 0.104 0.014 -1.927 0.090 0.013
β11 2 2.406 0.103 0.176 2.208 0.070 0.048 2.052 0.168 0.031
β12 -1 -1.118 0.197 0.053 -1.027 0.109 0.013 -1.012 0.077 0.006
β21 1 1.262 0.103 0.079 1.022 0.184 0.034 1.002 0.078 0.006
β22 1 1.335 0.185 0.146 1.154 0.102 0.034 1.006 0.081 0.007
κ1 0.5 0.420 0.050 0.008 0.421 0.005 0.006 0.492 0.002 6.8e-05
κ2 0.3 0.211 0.021 0.008 0.241 0.004 0.003 0.252 0.002 0.002
σb 2 2.063 0.467 0.222 1.853 0.109 0.034 1.884 0.111 0.026

4 Application
Glioma is a type of primary brain tumor that arises from brain tissue. Glioma is the
most frequent type of central nervous system (CNS) neoplasm that occurs when glial
cells proliferate uncontrollably. These cells support nerves and help your central ner-
vous system work, (Mesfin and Al-Dhahir, 2023). The most widely used WHO brain
tumor classification relies on traditional methods using morphology to classify gliomas,
while recent progresses have shown that molecular diagnostic techniques are an exact
way to better classify tumors using molecular abnormalities and signaling pathways
involved in glioma development. These molecular subtypes have distinct prognoses
and therapeutic responses (Jiao et al., 2012). Among the molecular alterations, two
are specifically noteworthy because they happen early in glioma formation and are
common in glioma. The first is Isocitrate dehydrogenase (IDH)-1 and the second is the
telomerase reverse transcriptase (TERT). These two molecular alterations aid in diag-
nosis and prognosis of diffuse glioma. IDH-1 and TERT are divided into two groups:
wild type and mutant ones. Isocitrate dehydrogenase (IDH)-1 mutation is an early
event in glioma development and occurs prominently in low grade tumors. Introduc-
tion of mutated IDH into normal cells causes increased proliferation, increased colony
formation, and inability to differentiate (Cohen et al., 2013). Generally, mutations
in IDH-1 gene are found in human glioma but it is also not clear why tumors with
this mutation generally have a better prognosis than IDH wild type tumors (Karpel-
Massler et al., 2019). Also, the recent glioblastoma publication from the cancer genome
atlas showed that the only subgroup with improved survival was tumors with IDH1
mutations. Initial reports suggested that the mutant protein functions in a dominate-
negative fashion by heterodimerizing to wildtype IDH1 and impairing its activity (Yang
et al., 2010). The telomerase reverse transcriptase (TERT) has been the subject of nu-
merous studies on the grading and prognosis of glioma. In glioblastoma (glioblastoma
is a type of glioma), Killela et al. (2013) found a trend for increased telomerase expres-
sion in cases with TERT promoter mutations. Interestingly, unlike IDH1-mutations,
mutations in the TERT promoter, which lead to increased telomerase activity and
telomere elongation, are seen in the most aggressive human glioma.

Neurological examination and brain scans are used to assign the existence of a
tumor, its location and characteristics. Brain tumor symptoms can vary according to its
location and size. Brain tumor location is an important factor in determining functional



105 E. Bahrami Samani

status after brain tumor surgery. The existence of a brain tumor can damage to healthy
brain tissue and disrupt the normal functioning of that area. The brain can be divided
into five lobes: frontal, temporal, parietal, occipital, and insula. Various regions of
the brain are responsible for different functions, which means that the symptoms of a
brain tumor are determined by its location (Krajewski et al., 2022). Figure 1 shows a
midline brain tumor extending to both frontal lobes in preoperative MRI.

Figure 1: T1-weighted contrast in axial, coronal and sagittal planes (from left to right) MRI show a
high-grade glioma in corpus callosum extending to both frontal lobes.

Furthermore, surgery is the first treatment for a glioma if its location is accessible
via surgical routes. One of the most reliable prognostic factors for overall survival
in brain tumor patients is the extent of resection (EOR). A surgeon may be able to
remove all the tumor if it’s easily reachable. The WHO classification of gliomas is used
to guide glioma treatment. As indicated in the classification, most patients require
surgical intervention for taking the sample via gross total resection or biopsy (Weller
et al., 2017). Early surgery together with higher EOR can accompany by better overall
survival than biopsy and watchful waiting policies. It has been explained in many
studies that the removal rate is a positive prognostic factor (Sanai, 2012).

The Karnofsky Performance Scale (KPS) is a measure of the ability of cancer pa-
tients to perform normal tasks and evaluate the functional independence of patients,
which ranges from 0 to 100. A higher score means that the patient is better able to
perform normal activities.

This study was conducted on 13 glioma patients who underwent surgery, and data
were collected from patients hospitalized in the neurosurgical department of Sina Hos-
pital, Tehran since 2019 to 2021 by our team’s neurosurgeon (A.P.). The cognitive
function and KPS of these patients were examined at four different time points: dur-
ing the week before and after the surgery (pre-operatively and post- operatively), 3 and
6 months later. Cognitive subdomains values are qualitative values, so they are col-
lected as rank data. Neurocognition was evaluated using a standardized test battery.
The Addenbrooke’s Cognitive Examination (ACE) is a sensitive, accurate, yet brief
screening test to assess cognitive functions, particularly language and speech, that has
been widely used to assess cognition in health conditions such as dementia and glioma
surgical settings. The data of this paper were used to evaluate the cognitive perfor-
mance of the valid Persian version of Addenbrooke’s Revised Cognitive Test (ACE-R).
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ACE includes activities and tasks across via five cognitive subdomains, including at-
tention (time and place orientation, 3-item repetition and word spelling), memory (3-
item recall, progressive memory, retrograde memory, Recall and Recognition of Name
and Address), verbal fluency (Letters fluency and categorization), language (compre-
hension, sentence writing, repeating single words, naming and reading objects), and
visuospatial abilities (copying pentagons on top of each other, copying 3D wire cubes,
drawing clocks, counting letters) (Tymowski et al., 2018). We chose the ACE (is ob-
tained from the sum of 5 cognitive subdomains) variable over time as the longitudinal
rank response to fit univariate rank model and chose attention, memory, verbal flu-
ency, language and visuospatial abilities cognitive variables over time as the multiple
longitudinal rank responses to fit multivariate rank model. In fact, at each of the four
different times, patients were ranked based on their cognitive ability, separately. In
the following, we described the statistical method used to analyse these data.

In this Section, we applied the methods and models introduced in the Section 2 to
data on Neurocognition test of glioma patients. As introduced in Section 2, we started
by fitting univariate and multivariate models with random effects. Some results of
models and detailed results are presented in Section 4.2.

4.1 Data
As described, data from glioma patients are used as motivational applications for the
development of the detailed model. We chose the ACE (is obtained from the sum
of 5 cognitive subdomains) variable over time as the longitudinal rank response to
fit univariate rank model and chose attention, memory, verbal fluency, language and
visuospatial abilities cognitive variables over time as the multiple longitudinal rank re-
sponses to fit multivariate rank model. In fact, at each of the four different times points:
during the week before and after the surgery (pre-operatively and post- operatively), 3
and 6 months later, patients were ranked based on their cognitive ability, separately.
So, we have longitudinal rank responses. Table 3 contains descriptive statistics of these
patients.

Figure 2 shows density estimates from the KPS data at four different time points:
during the week before and after the surgery (pre-operatively and post- operatively), 3
and 6 months later. As it can be seen the amount of KPS in patients after surgery, 3 and
also 6 months later has increased, which can indicate a significant effect of surgery and
treatment on the ability of patients to perform ordinary tasks and normality activities.

Kendall and Smith introduced the Kendall tau rank distance, which is a metric that
counts the number of pairwise disagreements between two ranking lists length. The
larger the distance, the more different the two lists are. In this data, at each of the four
different times, patients were ranked based on their cognitive ability in ACE, attention,
memory, verbal fluency, language and visuospatial abilities cognitive, separately. The
Kendall distances of patient ranking lists between 4 times in each cognitive subdomain
were calculated in Table 4.

Based on ACE and attention of patients, the largest distance of the patient ranking
list was between the week before and after the operation. Also, the largest distance
for patients memory was between the week before and 3 months later operation and
for verbal fluency, language and visuospatial abilities cognitive of patients was between
the week before and 6 months later operation. The biggest distance in all cognitive
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Table 3: The detailed information of descriptive statistics of glioma patients (N = 13).
Mean (S.E.)

Age 43.615 (10.324)
KPS (Preoperative) 79.615 (8.530)
KPS (Preoperative) 82.692 (7.250)
KPS (3 month later) 87.692 (10.127)
KPS (6 month later) 92.692 (8.807)
Resection rate %92.690 (8.808)

Count (percent)
Sex
Female 5 (%38.5)
Male 8 (%61.5)
IDH-1 mutation
Mutant 11 (%84.6)
Wildtype 2 (%15.4)
TERT mutation
Mutant 7 (%53.8)
Non-mutant 6 (%46.2)
Location
Frontal 5 (%38.5)
Temporal 4 (%30.8))
Parietal 2 (%15.4)
Occipital 1 (%7.7)
Midline 1 (%7.7)

Figure 2: Density ridgeline plot of the Karnofsky Performance Scale (KPS) of patient at 4 times.

abilities is the distance between before surgery and other times after surgery, which
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Table 4: The Kendall tau rank distance of patient ranking between different times in
cognitive subdomains.

Preoperative- 3 months -
Postoperative 3 months 6 months 3 months 6 months 6 months

ACE 0.348 0.299 0.221 0.184 0.247 0.081
Attention 0.453 0.365 0.194 0.205 0.219 0.303
Memory 0.336 0.187 0.127 0.388 0.289 0.142
verbal fluency 0.281 0.320 0.357 0.261 0.227 0.089
Language 0.242 0.321 0.385 0.193 0.235 0.112
visuospatial 0.375 0.359 0.440 0.278 0.304 0.170

shows the effect of surgery and treatment. The most similar ranking lists in ACE,
verbal fluency, language and visuospatial abilities cognitive are between months 3 and
6, which can be said that patients’ conditions are almost stable and favorable after 3
months.

4.2 Model for data
We apply the univariate and multivariate modeling described in the last section to real
data on neurocognitive test.

4.2.1 Univariate model for data

The univariate model is given by

Zi (t) = β0 + β1tKPSi(t) + β21Agei + β22IDH1i + β23TERT i

+β24Resectioni + β25Locationi + β26Genderi + σbbi + εi(t),

That Zi (t) denotes the latent variable associated with rank response ACEi (t). The
seven explanatory variables are KPSi(t ), which is measured the week before and
after surgery, 3 and 6 months later, Agei, Genderi(1 = male, 2 = female) IDH1i
(1=mutant, 2= wildtype), TERT i (1=mutant, 2=Non-mutant), Locationi (1=Frontal,
2=Temporal, 3=Parietal, 4=Occipital and 5=Midline), and Resectioni, i = 1, . . . , 13
and t = 1, 2, 3, 4. We assume the random effect is conditionally independent and has
the normal distribution with mean 0 and variance σ2

b , and εi = (εi (1) , . . . , εi(4))
′ has

the multivariate normal distribution with mean 0 and identical covariance matrix and
εi(t) and bi be mutually independent. bi is used to consider the correlation between
individual responses across time, which lead to the conditional independence of vectors
of responses in different occasions given subject-level effect bi. Results of posterior
estimates of parameters with standard deviations and mean square errors for analysing
Neurocognition data using univariate modeling of longitudinal rank data are presented
in Table 5.

Based on the results of Table 5, KPS, Age, IDH-1, TERTmutant, location and
resection rate are significant at the level of α = 0.05 on latent value of ACE. The ability
of cancer patients to perform normal tasks and evaluate the functional independence
of patients (KPS) is effective factor on Neurocognitive state (ACE) of patients at
4 different times. This result is consistent with the result obtained by Baba and
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Table 5: Results of posterior estimates of parameters with standard deviations and
mean square errors for analysing Neurocognition data using univariate modeling of
longitudinal rank data. (Parameters significant at 5% level are highlighted in bold).

Parameter EST. S.E. MSE Test statistics
Intercept 0.887 1.070 1.157 0.828
Age -0.123 0.048 0.106 -2.562
Location -0.141 0.255 0.181 -0.552
Resection 0.321 0.038 0.016 8.44
IDH1 0.280 0.511 0.268 0.547
TERT -0.569 0.225 0.187 -2.528
Gender 0.053 0.490 0.262 1.870
KPS (1) 0.091 0.048 0.014 1.895
KPS (2) 0.201 0.046 0.002 4.369
KPS (3) 0.093 0.043 0.013 2.162
KPS (4) 0.198 0.041 0.002 4.829
κ 1.249 0.213 0.107 5.863
σb 2.274 0.188 0.110 12.095

Adali (2021). The results obtained on the significance of IDH-1, TERTmutation on
neurocognitive state of glioma patients in this paper are similar to the results obtained
by Wefel et al. (2016). Also, the significance of age, resection and location tumor on
neurocognitive state of glioma patients here are like the results obtained by Dallabona
et al. (2017) and Hendriks et al. (2018).

The posterior means of latent variables of ACE based on the univariate model at
the 4 different times are provided in columns of Figure 3. Each column of Figure 3
shows the ranking list of the patients according to the posterior means of latent values
of ACE at each time.

Figure 3: Posterior Means of Latent variables under univariate model.

Figure 4 shows a violin plot with boxplot to see both the distribution and its
summary statistics of posterrior estimates of parameters in univariate model of data.
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Figure 4: The violin boxplot of posterior estimates of parameters under univariate model (n = 2000).

4.3 Multivariate model for Data
The multivariate model is given by

Zij (t) = β0 + β1tKPSi(t) + β21Agei + β22IDH1i + β23TERT i

+β24Resectioni + β25Locationi + β26Genderi + σbbi + εij(t),

That Zij (t) denotes the latent variable associated with rank response Yij (t) for i =
1, . . . , 13, j = 1, . . . , 5 and t = 1, 2, 3, 4, so that multiple responses include attention,
memory, verbal fluency, language and visuospatial abilities cognitive. The seven ex-
planatory variables and random effect are the same as that defined in univariate model.
εij = (εij (1) , . . . , εij(4))

′ has the multivariate normal distribution with mean 0 and
identical covariance matrix and εij(t) and bi be mutually independent. Results of pos-
terior estimates of parameters with standard deviations and mean square errors for
analysing Neurocognition data using multivariate modeling of longitudinal rank data
are presented in Table 6.
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Table 6: Results of posterior estimates of parameters with standard deviations and
mean square errors for analysing Neurocognition data using multivariate modeling of
longitudinal rank data. (Parameters significant at 5% level are highlighted in bold)

Parameter EST. S.E. MSE
Intercept 1.088 0.479 0.237
Age 0.132 0.009 0.005
Location 0.800 0.070 0.364
Resection 0.158 0.008 0.002
IDH1 0.319 0.177 0.046
TERT -0.253 0.341 0.119
Gender 0.177 0.177 0.032
KPS (1) 0.299 0.018 0.010
KPS (2) 0.292 0.018 0.009
KPS (3) 0.287 0.017 0.008
KPS (4) 0.280 0.016 0.007
κ1 0.721 0.101 0.088
κ2 1.169 0.184 0.063
κ3 1.161 0.166 0.053
κ4 0.754 0.087 0.068
κ5 1.220 0.255 0.113
σb 2.379 0.056 0.147

Based on the results of Table 6, KPS, Age, IDH-1, TERTmutant, location and
resection rate are significant factors at the level of α = 0.05 on all latent value of
subdomain of ACE. Increasing KPS of patients will definitely improve their attention,
memory, verbal fluency, language and visuospatial abilities cognitive. Dallabona et al.
(2017) stated that longitudinal neuropsychological performance of patients with high-
grade glioma depends on the complex interplay of tumor volume, surrounding edema
volume, tumor localization, and patient age, among other factors. As, preoperative
performances in verbal, language and memory tasks depended on the joint effect of
tumor volume, surrounding edema volume, and tumor localization, with major deficits
in patients with left-sided tumors, particularly insular and temporal. Preoperative
performance in attention tasks and constructive abilities depends on the joint effect of
tumor volume, surrounding edema volume, and patient age. Many studies have been
conducted on the effect of surgery on cognitive subdomains. Satoer et al. (2016) ex-
pressed the significant effect of the operative, the immediate postoperative phase and
follow-up on the domains of language, memory and attention and executive functioning
under three studies. Also, Wefel et al. (2016) expressed the average performance of
patients with IDH1-widetype was also significantly lower than that of patients with
IDH1-mutant tumors in the measures of learning and memory, processing speed, lan-
guage, executive function and skill. The posterior means of each latent variable based
on the multivariate model for each cognitive subdomain at the 4 different times are
provided in columns of Figure 5. As, the ranking list of patients according to the pos-
terior means of each latent value of cognitive subdomains at different times is shown.

Figure 6 shows a violin plot with box plot to see both the distribution and its
summary statistics of posterior estimates of parameters in multivariate model of data.
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Figure 5: Posterior Means of Latent variables under multivariate model.

Figure 6: The violin box plot of posterior estimates of parameters under multivariate model (n =

2000).
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5 Conclusion
We have provided a framework for analysing longitudinal rank data with univariate
and multivariate model. We proposed a Bayesian latent variable model for analysing
these data. Also, we applied Bayes approach via some simulation studies, and showed
that its use significantly improved the efficiency, accuracy and required computational
time. So, we have applied some simulation studies to study the performance of the
proposed models. The cognitive function using neurocognitive data on glioma patients
were analysed as an illustrative example. Also, we observed that the results obtained
from the significant effect of the considered covariates on cognitive ability of glioma
patients in our models are consistent with the result obtained in medical studies.
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