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Abstract: Modeling dependence using copula functions is a standard and widely used
method in applied statistics. In recent years, experiments have been conducted in
which several dependent responses are described by regression models, and then ex-
perimental designs for these models have been carried out. These regression models
are often expressed as copula-based regression models, so the copula parameters (if
they exist) also affect the optimal design problem. In this paper, we consider the de-
pendence structure of a random pair from the exponential distribution conditionally
upon a covariate as a regression model, then investigate the D-optimal design for this
copula-based regression model. The copula function that is used is the Fréchet copula.
The optimal designs obtained all have a general form depending on the selected design
space.

Keywords: Copula-based model; D-optimal design; Fisher information matrix; Fréchet
copula.
Mathematics Subject Classification (2010): 62K05, 62H20.

1 Introduction
Optimal design in statistical modeling has been studied and developed for a century.
Over 100 years ago, Smith proposed (Smith, 1918) a criterion based on which she
obtained optimal designs for regression problems. Smith showed that in order to mini-
mize the variance of the least squares estimate of the slope in a simple linear regression
model, one should take observations in equal numbers at the two extremes of the range
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of the explanatory variable. Many years later, Kiefer (1959) developed useful compu-
tational methods for finding optimal designs in linear regression issues (see also Kiefer
and Wolfowitz, 1959).

After these pioneering works, the topic of optimal design was widely developed,
and numerous studies have been conducted in this field, so that nowadays studying
and modeling data without using optimal designs is practically not cost-effective. In
the context of experimental design, the concept of optimal design refers to a specific
category of experimental design that is classified based on certain statistical criteria.
Usually, in model-based optimal designs, the inferential aim is to estimate the param-
eters of the model, so that estimators with minimum variance are of interest. The
optimization process is completely dependent on the considered optimality criteria,
which are usually defined in terms of the information matrix. In linear models, the
information matrix and then optimality criteria do not depend on the unknown pa-
rameters of the model, therefore, reaching an optimal design does not have significant
computational complexity. However, in non-linear models, since unknown parameters
often appear in the entries of the information matrix, the optimality criteria depend
on these parameters, so deriving an optimal design from the optimization problem
may involve computational complexities (see, e.g, Atkinson et al., 2007; Burkner et al.,
2019). Therefore, in relation to the optimal design in non-linear models, the primary
challenge is to remove unknown parameters from the optimality criteria. Various meth-
ods and solutions have been proposed to deal with this challenge, some of the most
typical of which are local optimal design, sequential optimal design, minimax optimal
design, Bayesian optimal design, and pseudo-Bayesian optimal design. For some refer-
ences on these methods, see, e.g., Chernoff (1953), Kiefer and Wolfowitz (1959), Kiefer
(1974), Dette et al. (2006), Graßhoff et al. (2012), Parsa Maram and Jafari (2016), and
Aminnejad and Jafari (2017).

In local optimality, certain values are selected (based on prior studies or experi-
ments) as the best guess for the unknown parameters of the model, and then a function
of the information matrix is optimized to derive designs for the values of these parame-
ters. Since the guess values may not always express the behavior of the parameters well,
a prior distribution is used instead of guess values; this method is known as Bayesian
optimality, and the design derived from this method is called the Bayesian optimal
design. The Bayesian optimal design is based on maximizing the expected utility func-
tion for the model. A prior distribution for the parameters is chosen based on prior
information and the researcher’s beliefs. However, there is no definitive method for se-
lecting the best prior distribution. Numerous researchers have investigated the effect of
the prior distribution on determining design points in various types of optimal designs.
For instance, Chaloner and Duncan (1983), Mukhopadhyay and Haines (1995), Dette
and Neugebauer (1997), Firth and Hinde (1997), Fedorov and Hackl (2012), Burghaus
and Dette (2014), Goudarzi et al. (2019), and Abdollahi et al. (2024). For a more
advanced study on this topic, see Chapter 18 of the book by Atkinson et al. (2007).

In recent years, the experimental design has been used in dependency modeling
through copula-based models. The concept of copula in experimental design is new
and has been around for a little more than a decade, considering works such as Li et
al. (2011), Pilz et al. (2012), and Schmidt et al. (2014). The design of experiments
for copula parameter estimation was first proposed in Denman et al. (2011), where a
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brute-force simulated annealing optimization was employed for the solution of a specific
problem. After that, extensive studies were conducted. Here, we briefly address some
of these recent developments. Perrone and Müller (2016) presented an equivalence
theorem for bivariate copula models, which allows for the formulation of efficient design
algorithms and a quick check of whether designs are optimal or at least efficient. That
comprehensive work included some examples and comparisons between different copula
models with respect to design efficiency. These methods were extended to the local DA-
criterion (and, as a special case, to the Ds-criterion) in the work of Perrone et al. (2016),
where a wide range of flexible copula models were analyzed to highlight the usefulness
of Ds-optimality in many possible scenarios. Durante and Perrone (2016) provided an
overview of the definitions and properties of asymmetric copulas, which are copulas
whose values are not constant under any change in their arguments, then discussed
how asymmetric copulas may also be useful in the optimal design of experiments.
Deldossi et al. (2018) considered a bivariate logistic model for a binary response and,
assuming two possible rival dependence structures, used copula functions for modeling
different kinds of dependence with arbitrary marginal distributions. Rappold et al.
(2020) developed designs with blocks of size two using copula models and adopted a
pseudo-Bayesian approach to constructing block designs.

These studies on optimal design for copula models motivated us to develop this
idea for other copula-based regression models. This research work deals with a copula-
based regression model with exponentially distributed marginals, where the model is
influenced by only one covariate point. The copula function that is used is the Fréchet
copula, which is a well-known parametric copula. Afterward, the optimal design for
these models is derived under the D-optimal criterion.

The paper is organized as follows. Section 2 presents a theoretical framework based
on copula theory and optimal design theory. The Fréchet copula and some of its
properties are briefly given in Section 3. In Section 4, the optimal design for a copula-
based model with exponential marginals is derived. Section 5 concludes this paper.

2 Optimal experimental design for copula models
2.1 Copula: a tool for modeling dependence
Let Y1 and Y2 be arbitrary random variables with a joint distribution function FY1,Y2(y1,
y2) and marginals FY1(y1) and FY2(y2), respectively. When Y1 and Y2 are independent,
then we can write FY1,Y2

(y1, y2) = FY1
(y1)FY2

(y2). In the case of dependency, this
equality is replaced by ≥ or ≤ , and the direction of these inequalities may not hold
for all y1, y2. However, if FY1,Y2

(y1, y2) ≥ FY1
(y1)FY2

(y2) for all y1, y2, then Y1 and Y2
are said to be positively dependent, and if FY1,Y2

(y1, y2) ≤ FY1
(y1)FY2

(y2) for all y1, y2,
then Y1 and Y2 are said to be negatively dependent (see, e.g. Lehmann, 1966; Joag-Dev
and Proschan, 1983). Therefore, in dependency cases, to specify the joint distribution
FY1,Y2(y1, y2) in terms of marginal distributions FY1(y1) and FY2(y2), a function is
used to combine the marginal distributions to construct the joint distribution. This
associative function is called the copula function. Note that a copula is k-dimensional
if the distribution function F (.) is k-dimensional. Here we focus on k = 2, which is
called a bivariate copula, a 2-dimensional copula, or, more briefly, a 2-copula. Following
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Nelsen (2006), a 2-copula is defined as follows
Definition 2.1. A 2-copula is a bivariate function C(u, v) : [0, 1]× [0, 1] → [0, 1] which
holds under the following conditions:
(I) for every u, v ∈ [0, 1],

C(u, 0) = 0, C(u, 1) = u, C(0, v) = 0, C(1, v) = v,

(II) for every u1, v1, u2, v2 ∈ [0, 1] with u1 ≤ v1 and u2 ≤ v2,

C(u2, v2)− C(u2, v1)− C(u1, v2) + C(u1, v1) ≥ 0.

According to Definition 2.1, it can be concluded that the copula C(u, v) is a bi-
variate distribution function with uniform marginals on [0, 1]. By Sklar’s Theorem
(see Sklar, 1959), this copula exists for every joint distribution function FY1,Y2

(y1, y2)
with marginal distributions FY1(y1) and FY2(y2). Moreover, the copula C(u, v) is only
unique on Ran(FY1) × Ran(FY2), where Ran(FYi) (i = 1, 2) denotes the range of the
distribution function FYi

. Thus, we can construct a bivariate distribution function
FY1,Y2

(y1, y2) as

FY1,Y2
(y1, y2) = C(FY1

(y1), FY2
(y2)), for all y1, y2.

The partial derivatives ∂C(u,v)
∂u and ∂C(u,v)

∂v exist, and c(u, v) = ∂2C(u,v)
∂u∂v is the probabil-

ity density function of C(u, v). Hence, if FY1(y1) and FY2(y2) are continuous with den-
sities fY1

(y1) and fY2
(y2), then the corresponding joint density function fY1,Y2

(y1, y2) is
obtained through equation fY1,Y2

(y1, y2) =
∂2C(FY1

(y1),FY2
(y2))

∂y1∂y2
= c (FY1

(y1), FY2
(y2))×

fY1(y1)× fY2(y2).
An important (and simple) copula is the product copula C(u, v) =

∏
(u, v) = uv

(with 0 ≤ u, v ≤ 1), which is corresponds to independence. Except for this simple
one, copulas usually have one or more parameters in their functional structure. Thus,
every parametric copula is denoted by C(.;α), where α = (α1, α2, . . . , αz)

T is a vector
of real-valued parameters. Therefore, in addition to selecting the appropriate copula
for describing the model, one should be as careful as possible in selecting the copula
parameters. There are criteria that are useful in selecting appropriate copula parame-
ters. One of these useful tools is Kendall’s tau concordance measure, which is defined
as follows

τ = 4

∫
[0,1]2

C(u, v;α)dC(u, v;α)− 1 = 4

∫ 1

0

∫ 1

0

C(u, v;α)dC(u, v;α)− 1,

that is, τ = 4E[C(U, V )] − 1, where U and V have support in [0, 1] with joint dis-
tribution function C(u, v;α). Moreover, if C(.;α) is absolutely continuous, then
τ = 4

∫
[0,1]2

C(u, v;α)c(u, v;α)dudv − 1. For a generalized version of Kendall’s tau,
see Joe (1990). For more details, examples, and applications of copulas, we refer to
Nelsen (2006), Durante and Sempi (2015), and Cherubini et al. (2016).

2.2 Experimental design issue
Let us consider a regression model consisting of a vector x = (x1, . . . , xd)

T of explana-
tory variables, and a vector y(x) = (y1(x), . . . , ym(x))

T of response variables. Suppose
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that in a regression experiment, the result of the expectations is the following vector

E[Y (x)] = E[(Y1, . . . , Ym)
T
] = (η1(x;θ), . . . , ηm(x;θ))

T
= η(x,θ),

where θ = (θ1, . . . , θk)
T is a vector of unknown regression parameters and ηi(x;θ)’s

(i = 1, 2, . . . ,m) are known functions. If FYi(yi(x,θ)) is the marginal distribution
function of each Yi for i = 1, 2, . . . ,m, then, based on the Sklar’s theorem Sklar (1959),
the dependence between Yi’s is modeled by a copula function such as

C(FY (y(x,θ));α) = C(FY1
(y1(x,θ)), . . . , FYm

(ym(x,θ);α)),

where α = (α1, . . . , αz)
T are unknown copula parameters.

Thus, fY (y(x,θ);α) = ∂mC(FY (y(x,θ));α)
∂y1∂y2...∂ym

is the joint probability density function
of the random vector Y . Note that the joint probability mass function is considered
in the discrete case. The corresponding Fisher information matrix is a square matrix
of order (k + z), which is defined as follows

M(x,θ,α) =

(
mθθ(x) mθα(x)
mT

θα(x) mαα(x)

)
,

where the submatrices mθθ(x) and mαα(x) are square matrices of orders k × k and
z× z, respectively, and the submatrix mθα(x) is of order k× z. The elements of these
submatrices are defined as the Fisher information of the probability density function
fY (y(x,θ);α) about the parameters in the subscript of each submatrix. For example,
the (i, j)th element of the submatrix mθθ(x) is defined as

E

(
− ∂2

∂θi∂θj
log fY (y(x,θ);α)

)
, (1)

and other two submatrices mαα(x) and mθα(x) are defined accordingly.
Now, the aim of optimal design theory is to quantify the amount of information on

parameters θ and α from the regression experiment embodied in the Fisher information
matrix M(x,θ,α). An approximate design ξ for this model is a probability measure
on the design space χ with finite support x1, x2, . . . , xr and weights w1, w2, . . . , wr

assigned to xi’s. Usually, the design ξ is denoted by

ξ =
{
x1 x2 . . . xr
w1 w2 . . . wr

}
∈ Ξ, (2)

where Ξ = {ξ|0 ≤ wi ≤ 1;
∑r

i=1 wi = 1, x ∈ χ} is the space of all possible designs (see,
e.g. Kiefer, 1974)).

Note that the number of points in the optimal design satisfies in the inequality
p ≤ r ≤ p(p+1)

2 , where p is the number of parameters (Silvey (1980)). For the model
described above, we have p = k + z. The information matrix of the design in (2) is
defined as follows (see, e.g., Atkinson et al., 2007)

M(ξ,θ,α) =

r∑
i=1

wiM(xi,θ,α). (3)
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The optimal design problem is finding ξ∗ = { x∗
1 x∗

2 ... x∗
r

w∗
1 w∗

2 ... w∗
r
}, which maximizes a function

ψ(.) (which is defined by a proper criterion) of the information matrix M(ξ,θ,α),
or in other words, ξ∗ = argmaxξ∈Ξ ψ

(
M(ξ,θ,α)

)
(see, for example, Pukelsheim,

1993). One of the most common such criteria is D-optimality, that is, the criterion
ψ(M(ξ, θ,α)) = log (det(M(ξ,θ,α))) for when M(ξ, θ,α) is non-singular (Silvey,
1980). Moreover, when the elements obtained through (1) include unknown parame-
ters θ and α, obviously the information matrix M(ξ, θ,α) also depends on the un-
known parameters. Therefore, to implement a design, the role of the parameter in
the information matrix must be solved first. A typical traditional method is the local
optimal method, which is methodologically simple. However, the efficiency of the op-
timal designs derived from this method depends on the guess values to substitute for
the unknown parameters. For instance, in locally optimization, the D-optimal design
is defined as ξ∗ = argmaxξ∈Ξ log

(
det
(
M(ξ, θ̄, ᾱ)

))
, where (θ̄, ᾱ) is the local guesses

(fixed values) of the unknown parameter vector (θ,α). A more robust approach is to
use a prior distribution instead of guess values for the unknown parameters, which is
the concept of the Bayesian optimal design. In this regard, the Bayesian D-optimality
criterion is one of the most common criteria. A design is called Bayesian D-optimal
with respect to a given prior π on θ if it maximizes the function

Ψπ(ξ) = E[ψ(M(ξ, θ,α))] =

∫
θ

ψ(M(ξ,θ,α))π(dθ), (4)

where ψ(M(ξ,θ,α)) = log (det (M(ξ, θ,α))) is the D-optimality criterion. Therefore,
the Bayesian D-optimal design is defined as ξ∗ = argmaxξ∈Ξ Ψπ(ξ).

There are theorems that are useful in finding and checking D-optimal designs. One
of the most famous of these theorems is the Kiefer-Wolfowitz–type equivalence theorem
(Kiefer and Wolfowitz, 1960; Silvey, 1980). Perrone and Müller (2016) provided an
equivalence theorem for 2-copula models which states that for a local parameter vector
(θ̄, ᾱ) (local guesses), the following properties are equivalent: (i) ξ∗ is D-optimal; (ii)
d(x, ξ∗) ≤ (k + 1) for x ∈ χ; (iii) ξ∗ minimize max d(x, ξ∗) over all ξ ∈ χ. Note that
d(x, ξ∗) = trace

(
M(ξ∗, θ̄, ᾱ)−1M(x, θ̄, ᾱ)

)
, which is usually called sensitivity function.

See also the work of Perrone et al. (2016) for a similar equivalence theorem for so-called
DA and Ds criteria for copula models. There are also methods to compare designs,
one of the most important of which is a ratio called efficiency. In particular, if
the optimization problem is performed under the locally D-optimality, then the D-
efficiency of the design ξ with respect to the D-optimal design ξ∗ is the ratio Deff =(

det(M(ξ,θ̄,ᾱ))

det(M(ξ∗,θ̄,ᾱ))

) 1
p , where p is the number of the model parameters and (θ̄, ᾱ) is the

local guesses of the parameter vector (θ,α).

3 The Fréchet copula
Some parametric copulas are constructed based on the fact that any convex combi-
nation of arbitrary copulas perserves the properties of a copula function (stated in
Definition 2.1). A well-known family of such copulas is the Fréchet family. A bivari-
ate Fréchet copula is obtained through a convex combination of the product cupula
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∏
(u, v), the comonotonicity copula M(u, v) = min(u, v), and the countermonotonicity

copula W(u, v) = max(u+ v − 1, 0) as follows (Xie et al., 2022)

CFre(u, v;α, β, γ) = αM(u, v) + γ
∏

(u, v) + βW(u, v), (5)

where α, β, γ ≥ 0 (with α + β + γ = 1) represent the dependence parameters. Note
that we can always consider γ = 1− α− β.

Figure 1 shows the surface of the Fréchet copula in (5) for different values of
parameters α, β, and γ. The Fréchet copula density is cFre(u, v) = γ (Cherubini
et al., 2004). Furthermore, the Kendall’s τ associated with the Fréchet copula in
(5) is τ = 1

3 (β − α)(α + β + 2) (Durante and Sempi, 2015). Note that sometimes
the bivariate copulas M(u, v) and W(u, v) are called respectively the Fréchet upper
bound and the Fréchet lower bound, and it is well-known that for any bivariate cop-
ula C(u, v), we always have W(u, v) ≤ C(u, v) ≤ M(u, v). Therefore, the Fréchet
copula in (5), which characterizes dependence as a mixture of three simple struc-
tures of independence, comonotonicity, and countermonotonicity, is useful for ap-
proximating any bivariate copula, see Salvadori et al. (2007). Moreover, note that
it is not possible to generalize the bivariate Fréchet copula to the multivariate case
because the countermonotonicity copula W(u, v) can not be defined as a copula for
more than two variables. However, a possible d-dimensional extension of the Fréchet
copula in (5) (for d ≥ 2) can be obtained through a convex combination of the d-
dimensional product cupula

∏
d(u) = u1u2 · · ·ud and the d-dimensional comonotonic

copula Md(u) = min(u1, u2, . . . , un), that is, CFre(u;α) = αMd(u) + (1 − α)
∏

d(u),
u ∈ [0, 1]d and α ∈ [0, 1] (Durante and Sempi, 2015).

Figure 1: Plots of wireframe surface for the Fréchet copula in (5) for different values of parameters
α, β, and γ.



Optimal design for a Fréchet copula marginal regression 124

4 Optimal design with copula-based marginal regres-
sion model

In this section, we introduce a copula-based regression model with exponentially dis-
tributed marginals based on the Fréchet copula, and investigate D-optimal designs
with global and local approaches for this model.

4.1 The model
Probability models with positive support have been used a lot in scientific studies due
to their good fit with real-world random events, especially when the variable under
study is defined in terms of time. For example, in areas such as reliability, survival
analysis, and growth regression models, etc. One of the most popular and widely used
models is the exponential distribution. The exponential distribution is a continuous
distribution supported on [0,∞) with a probability density and cumulative distribution
functions defined as follows

fY (y) = λe−λy, y > 0,

FY (y) = 1− e−λy,

where λ > 0 is the (rate) parameter of the exponential distribution and E[Y ] = 1
λ .

For more details regarding the exponential distribution and its statistical properties,
we refer to Balakrishnan and Nevzorov (2003).

Regression models are typically derived to model the parameters (which describe the
mean, median, mode, etc.) of a probability distribution. Here, this approach is applied
to the exponential distribution. Let x = (x1, . . . , xk)

T be the vector of covariates. The
parameter λ is linked to the covariates by the logarithmic link function log λ = xTθ,
where θ = (θ1, . . . , θk)

T is the vector of unknown regression coefficients.
Therefore, the mean of Y is E[Y |x] = E[Y (x)] = η(x,θ) = 1

exp(xT θ)
and the

predicted density function and distribution function of Y for a given x are defined as
follows, respectively

f(y|x) = fY (y(x,θ)) = ex
T θ exp

(
−ex

T θy
)
, (6)

F (y|x) = FY (y(x,θ)) = 1− exp
(
−ex

T θy
)
. (7)

Now, let Y1 and Y2 be both exponentially distributed, and suppose that we are inter-
ested in considering the influence of a covariate vector x on the dependence structure
of a vector of interest (Y1, Y2)

T . Obviously, a copula function is used to illustrate
how the relationship between Y1 and Y2 varies with the influence of a covariate vec-
tor x. To describe this copula function, considering the joint distribution function of
(Y1, Y2)

T given covariate vector x as FY1,Y2 (y1(x,θ), y2(x,θ)), if the marginal distri-
bution functions of Y1 and Y2 given covariate vector x are denoted by FY1(y1(x,θ)) and
FY2

(y2(x,θ)), respectively. Then Sklar’s theorem ensures that there exists a unique
copula C : [0, 1]× [0, 1] → [0, 1], such that (use also (7))

FY1,Y2
(y1(x,θ), y2(x,θ);α) = C

(
1− exp

(
−ex

T θy1

)
, 1− exp

(
−ex

T θy2

)
;α
)
,
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where α = (α1, α2, . . . , αz)
T is the vector of unknown copula parameters if the copula

function is of parametric type.
Thus, then the corresponding joint density function fY1,Y2 (y1(x,θ), y2(x,θ);α) is

obtained as (use also (6))

fY1,Y2
(y1(x,θ), y2(x,θ);α)= c

(
1− exp

(
−ex

T θy1

)
, 1− exp

(
−ex

T θy2

)
;α
)

×
(
ex

T θ exp
(
−ex

T θy1

))(
ex

T θ exp
(
−ex

T θy2

))
. (8)

We will discuss the optimal designs for the above copula-based model by assuming
that the dependent structure of the random pair (Y1, Y2) is influenced by only one
covariate x. Indeed, knowing how the dependence structure changes with the value
taken by one covariate is an interesting topic in the relevant literature. An example
is given in Gijbels et al. (2011), where a copula function is used to illustrate how the
relationship between the life expectancy of men (Y1) and women (Y2) varies with the
growth of domestic product X = x. Therefore, for each design point x from the design
space χ, we may observe a pair of exponential random variables Y1 and Y2, such that
E[Yi(x)] =

1
exp(θix)

, i = 1, 2. Hence, (8) reduces to the following:

fY1,Y2
(y1(x, θ1), y2(x, θ2);α) = c

(
1− exp

(
−eθ1xy1

)
, 1− exp

(
−eθ2xy2

)
;α
)

×
(
eθ1x exp

(
−eθ1xy1

)) (
eθ2x exp

(
−eθ2xy2

))
. (9)

In the upcoming subsection, optimal designs are obtained for the copula-based model
in (9).

Remark 4.1. Note that since the number of covariates is one, it is expected that in the
optimal designs that will be obtained, the design points will all have the same value with
equal weights (i.e., balance designs with fixed optimal points). This will be confirmed
in the numerical results that will be carried out in the next subsection.

4.2 Design of experiments
D-optimal design. In the following, the D-optimal design has been obtained accord-
ing to the model (9) based on the Fréchet copula. Since the Fréchet copula in (5)
is a parametric copula, so the optimal design is focused on the marginals parameters
and the copula parameters. Using the Fréchet copula (5) in model (9), we have the
following joint density function:

fY1,Y2
(y1(x, θ1), y2(x, θ2); γ) = γ

(
eθ1x exp

(
−eθ1xy1

)) (
eθ2x exp

(
−eθ2xy2

))
. (10)

Using (1), the Fisher information matrix for this copula-based model is obtained as
follows:

M(x, θ1, θ2, γ) = diag

(
x2, x2,

1

γ2

)
.

Since there are three parameters in the non-linear copula-based model (10), so the num-
ber of points in the optimal design satisfies in the inequality 3 ≤ r ≤ 6 (see Subsection
2.2). Thus, by using (3), the information matrix of the design ξ = { x1 x2 ... xr

w1 w2 ... wr
},
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3 ≤ r ≤ 6, is M(ξ, θ1, θ2, γ) =
∑r

i=1 wiM(xi, θ1, θ2, γ), where
∑r

i=1 wi = 1. There-
fore, the D-optimal criterion, that is, ψ (M(ξ, θ1, θ2, γ)) = log (det (M(ξ, θ1, θ2, γ))), is
obtained as follows:

ψ (M(ξ, θ1, θ2, γ)) = log

((∑r
i=1 wix

2
i

)2
γ2

)
= log

(
r∑

i=1

wix
2
i

)2

− log(γ2). (11)

From this, it is clear that the value of γ does not affect the optimization process. So,
if we consider the local approach or the Bayesian approach, the D-optimal criterion in
(11) reduces to the formula log

(∑r
i=1 wix

2
i

)2
+L, where L is a real number. Therefore,

the optimal designs that will be obtained are global with respect to the design space
that is considered. The obtained optimal designs are summarized in Table 1.

Table 1: D-optimal designs for the copula-based model (10).
Three-point

ξ∗

Design space Design First Second Thired
χ = [a, b] x∗ a+b

2
a+b
2

a+b
2

∀a, b > 0 w∗ 0.333 0.333 0.333
χ = [a,∞) x∗ 1 1 1
0 ≤ a ≤ 1 w∗ 0.333 0.333 0.333
χ = [a,∞) x∗ a a a
∀a > 1 w∗ 0.333 0.333 0.333

Four-point
ξ∗

Design space Design First Second Thired Fourth
χ = [a, b] x∗ a+b

2
a+b
2

a+b
2

a+b
2

∀a, b > 0 w∗ 0.250 0.250 0.250 0.250
χ = [a,∞) x∗ 1 1 1 1
0 ≤ a ≤ 1 w∗ 0.250 0.250 0.250 0.250
χ = [a,∞) x∗ a a a a
∀a > 1 w∗ 0.250 0.250 0.250 0.250

Five-point
ξ∗

Design space Design First Second Thired Fourth Fifth
χ = [a, b] x∗ a+b

2
a+b
2

a+b
2

a+b
2

a+b
2

∀a, b > 0 w∗ 0.200 0.200 0.200 0.200 0.200
χ = [a,∞) x∗ 1 1 1 1 1
0 ≤ a ≤ 1 w∗ 0.200 0.200 0.200 0.200 0.200
χ = [a,∞) x∗ a a a a a
∀a > 1 w∗ 0.200 0.200 0.200 0.200 0.200

Six-point
ξ∗

Design space Design First Second Thired Fourth Fifth Sixth
χ = [a, b] x∗ a+b

2
a+b
2

a+b
2

a+b
2

a+b
2

a+b
2

∀a, b > 0 w∗ 0.166 0.166 0.166 0.166 0.166 0.166
χ = [a,∞) x∗ 1 1 1 1 1 1
0 ≤ a ≤ 1 w∗ 0.166 0.166 0.166 0.166 0.166 0.166
χ = [a,∞) x∗ a a a a a a
∀a > 1 w∗ 0.166 0.166 0.166 0.166 0.166 0.166



127 R. Farhadian, H. Jafari

Remark 4.2. It is observed from Table 1 that the optimal points obtained in each case
are all the same with equal weights. The reason was already explained in Remark 4.1.
This is a special situation, and in the relevant literature, one of the points with a weight
of 1 is usually written to represent such an optimal design. For example, if we consider
χ = [2, 6], then by Table 1, the three-point optimal design is ξ∗ = { 4 4 4

0.333 0.333 0.333 }.
Thus, it is written as ξ∗ = { 4

1 }.

D-efficiency. The D-efficiency of an r-point design ξ = { x x ... x
w w ... w } = { x

1 } with
respect to the r-point D-optimal design ξ∗ = { x∗ x∗ ... x∗

w∗ w∗ ... w∗ } = { x∗

1 } is given by

Deff (ξ
∗, ξ) =

(
det(M(ξ, θ1, θ2, γ))

det(M(ξ∗, θ1, θ2, γ))

) 1
3

=

 (
∑r

i=1 wix
2
i )

2

γ2

(
∑r

i=1 wi
∗x∗

i
2)

2

γ2


1
3

=
( x
x∗

) 4
3

. (12)

Therefore, by using Table 1, for 3 ≤ r ≤ 6, we have

• If χ = [a, b] and a, b > 0, then Deff (ξ
∗, ξ) =

(
2x
a+b

) 4
3 ;

• If χ = [a,∞] and 0 ≤ a ≤ 1, then Deff (ξ
∗, ξ) = x

4
3 ;

• If χ = [a,∞] and a > 1, then Deff (ξ
∗, ξ) =

(
x
a

) 4
3 .

As an example, let us consider χ = [1, 5] and ξ = { 2
1 }. In this case, the D-efficiency

of the design ξ with respect to ξ∗ is Deff (ξ
∗, ξ) = 0.8735. The plot of the D-efficiency

in (12) for design space χ = [a, b] is depicted in Figure 2. It can be seen from Figure
2 that increasing a leads to a decrease in the D-efficiency.

Figure 2: Plots of Deff (ξ
∗, ξ) in (12) versus x for the design space χ = [a, b] for a = 0.2, 0.3, 3, and

some different values of b.

5 Conclusions
In this paper, the optimal experimental design for a copula marginal regression model
with exponential marginals is discussed. More precisely, we considered the dependence
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structure of a random pair from an exponential distribution conditionally upon only
one covariate as a regression model, then investigated the D-optimal design for this
regression model. Since the dependency structure in the model was expressed by a
copula, the considered model was a copula-based model. The copula we used was the
Fréchet copula. The numerical results showed that the optimal designs all had general
forms according to the considered design space. Optimal design for copula-based re-
gression models has been introduced and developed in recent years, and therefore this
paper can be useful for further developments.
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