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1 Introduction
Burr (1942) introduced twelve families of cumulative distributions for modeling real-
world data, with the Burr Type III distribution being one of the most versatile Yakubu
and Doguwa (2017). Known for its heavy skewness and flexibility in shape, the Burr
Type III distribution can model a wide variety of data characteristics. It also incorpo-
rates elements of non-normal distributions like the gamma, logistic, and exponential
distributions, enhancing its applicability. For example, the Kumaraswamy-Burr Type
III distribution combines the Kumaraswamy and Burr Type III distributions Behairy
et al. (2017). The Burr Type III distribution reduces to the Lomax distribution when
α = 1, and transforms into an exponentiated exponential distribution when x

s
= ecy

Nasir et al. (2017).
Domma (2010) expanded on certain findings regarding the correlation patterns of

the bivariate Burr Type III distribution. Azizi and Sayyareh (2020) Studied the char-
acteristics of the Marshal-Olkin bivariate model using the Burr Type III distribution
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in the presence of random left censoring. The estimation and prediction issues were
examined by Altinda et al. (2017) and Hassan et al. (2023) for the Burr Type III dis-
tribution when dealing with Type II censored data. Jamal et al. (2017) suggest a novel
group of probability distributions known as the odd Burr Type III distribution family,
which is derived from the logit transformation of the Burr Type III random variable.
Asadi et al. (2023) conducted a study on estimating the SSRe model using the Burr
Type III distribution in conjunction with an enhanced adaptive progressive Type II
censoring scheme. Hassan et al. (2021) create a maximum likelihood estimator for con-
fidence level within a Burr type III distribution using a progressive Type II censored
sample.

The Burr Type III distribution, also known as the inverse Burr distribution or
Dagum Type distribution, is a statistical distribution commonly used for modeling in
statistics. According to Johnson et al. (1995) it is considered a simple distribution
and can be obtained from the probability density function (PDF) of the Burr Type
II distribution by replacing X with ln(x). A random variable, X, follows the scaled
Burr III (BIII) distribution if it’s obtained by subtracting one from a random variable
following the Burr XII (BXII) distribution. This relationship holds true for positive
values (x > 0) of X Gomes et al. (2013) and Olobatuyi (2017) described the mathe-
matical formula for the BIII distribution’s cumulative distribution function (CDF) in
this context Cordeiro et al. (2017)

Gα,β,s(x) =

[
1 +

(x
s

)−α
]−β

=

[
(x/s)α

1 + (x/s)α

]β
.

The Burr Type III distribution is characterized by closed-form expressions for both
its Probability Density Function (PDF) and CDF, that is a significant advantage of
the Burr Type III distribution, as it simplifies both theoretical analysis and practical
computation. The PDF can be obtained by differentiating the CDF with respect to
X, as shown below:

gα,β,s(x) =
αβ

s

(x
s

)−α−1
[
1 +

(x
s

)−α
]−β−1

=
αβ

s
(
x
s

)α+1

[
(x/s)α

1 + (x/s)α

]β+1

.

In a recent paper we studied the characterization and properties of Burr Type III
distribution. Section 2 introduces the general properties of the Burr Type III distri-
bution. In this section, we present and prove various characterization results of the
Cumulative Distribution Function as well as transformed distributions. Furthermore,
we present calculation methods for determining E(Xk) and E( 1

X

k
) for the Burr Type

III distribution, where k is a positive arbitrary number. In Section 3, we establish
various properties and boundaries for the Burr Type III distribution in relation to
stochastic orders, including the usual stochastic order, likelihood ratio order, hazard
rate order, and reversed hazard rate order. Finally, Section 4 delves into the properties
and boundaries of entropies and extropies. In this section, we present solutions for
various entropies and extropies, including Shannon entropy, extropy, Cumulative and
Cumulative residual entropies and extropies, as well as Renyi, Tsallis, and Sharma-
Mital entropies specifically for Burr Type III distribution.
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2 General properties
In the context of probability, the CDF over a specific interval provides information
about the probability of the random variable falling within that interval. Furthermore,
for the lifetime variables, there is a relationship between the CDF and the expectation of
the random variable X. Specifically, for a non-negative random variable X representing
lifetime, the relationship is given by

E(X) =

∫ ∞

0

(1−G(x))dx,

where Ḡ(X) = 1−G(x) is the survival function (complementary cumulative distribution
function).

However, the integral of the cumulative distribution function of the random variable
is not provided.

Propositions 2.1 and 2.2 outline the key properties of the cumulative distribution
function (CDF) for X following a Burr Type III distribution.
Proposition 2.1. The integral of the CDF, (G(x)) of the random variable X, which
follows a Burr Type III distribution, is denoted as∫ ∞

0

G(x)dx =
E(Xα+1)

α(β − 1)sα
. (1)

Proof. It is derived from∫ ∞

0

[
(x/s)α

1 + (x/s)α

]β
dx =

1

α(β − 1)sα

∫ ∞

0

α(β − 1)

s(xs )
α+1

xα+1

[
(x/s)α

1 + (x/s)α

]β
dx.

Proposition 2.2. The integral of the cumulative distribution function raised to the
power of k (CDI(k)) of the random variable X following a Burr Type III distribution
is calculated as

CDI(k) =

∫ ∞

0

Gk(x)dx =
E(Xα+1)

α(kβ − 1)sα
.

Proof. Building upon the proof of Proposition 2.1, we can demonstrate∫ ∞

0

Gk(x)dx =

∫ ∞

0

[
(x/s)α

1 + (x/s)α

]kβ
dx =

E(Xα+1)

α(kβ − 1)sα
.

Corollary 2.3. The cumulative extropy, denoted by CJ(X) defined by Nair and Sathar
(2020), is proportional to the second-order Cumulative Distribution Index (CDI(2)) as
−2CJ(X) = CDI(2). This relationship was proven in Proposition 4.5.

Transforming a distribution to a Beta distribution enhances the simplification pro-
cess. Essentially, converting the Burr Type III distribution to the Beta distribution
serves as a bridge that enables us to leverage the advantages of parameter estimation
in the Beta distribution. This transformation provides a more practical and efficient
method for parameter estimation when working with the Burr Type III distribution.
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Proposition 2.4. The Burr Type III distribution with the parameters α, β and s can
be transformed into a Beta distribution with parameters (1, β).

Proof. Let us substitute the term (xs )
α into u

1−u . Then we would have∫ ∞

0

αβ

s
(
x
s

)α+1

[
(x/s)α

1 + (x/s)α

]β+1

dx=

∫ 0

1

αβ

s
(

u

1− u
)−

α+1
α (

u

1− u
)β+1uβ+1

× s

α
(

u

1− u
)

1−α
α (1− u)−2du

=

∫ 1

0

βuβ−1du =

∫ 1

0

Γ(β + 1)

Γ(1)Γ(β)
uβ−1du = 1.

Propositions 2.5 and 2.6 have demonstrated a clear connection between two distinct
distributions. In Proposition 2.5, we present a linear transformation applied to X,
involving scaling by a factor of a and adding a constant offset of b. In Proposition 2.6,
we introduce the Lehmann model that incorporates the power of θ for the Burr Type
III distribution.

Proposition 2.5. consider a random variable X that follows this distribution with
parameters α, β and s. Then the CDF of Y = aX + b, where a and b are constants,
is given by

Gα,β,as(x) =

[
1 +

( x

a.s

)−α
]−β

, x > b.

Proof. The CDF of Y is given by

FY (y) = P (Y ≤ y) = P

(
X ≤ y − b

a

)
=

[
( (y−b)

as )α

1 + ( (y−b)
a.s )α

]β
, y > b.

This expression should match the form of a Burr Type III CDF, but with potentially
different parameter c into a.c. In other hand, the scale parameter s would be scaled by
a, and the location would shift by b. However, the shape parameters α and β would
remain unchanged because they are scale-invariant.

Proposition 2.6. Suppose G(x) is a CDF of Burr type III distribution, with the
parameters α, β and s. Consider the function F (x) = (G(x))θ, where θ is a positive
real number. Then F (x)is distributed by Burr Type III with the parameters α, θβ and
s.

Proof. The proof is clear and the details are readily apparent.

Remark 2.7. Let X be a random variable distributed by Burr Type III. Then the
density for the ith order statistic is given by

g(i)(x) =

(
n

i

)
αβ

s
(
x
s

)α+1

[
(x/s)α

1 + (x/s)α

]iβ+1
(
1−

[
(x/s)α

1 + (x/s)α

]β)n−i

. (2)
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Proof. The density for the ith order statistic formula is given by

g(i)(x) =
n!

(i− 1)!(n− i)!
[G(x)]i−1[Ḡ(x)]n−ig(x),

that is estated as (2).
It is obvious that substituting the context G(x) into the term u results the binomial

distribution.

Proposition 2.8 by utilizing a transformation from Burr Type III to Beta distribu-
tion, provides a streamlined approach to more effectively estimate the parameters of
the original Burr Type III distribution.

Proposition 2.8. The kαth moment of the inverse Burr Type III lifetime distribution
with the parameters α, β nd s is given by

E(
1

x
)kα = s−kαβ

(
β

k

)
, 0 ≤ kα ≤ β − 1. (3)

Proof. Letting Proposition 2.4 the expectation of E(X−kα) is equal to s−kαE( u
1−u )

−k

in which is given by

E(
u

1− u
)−k =

∫ 1

0

β(
u

1− u
)−kuβ−1du =

∫ 1

0

β(1− u)kuβ−k−1du

= β
Γ(β − k)Γ(k + 1)

Γ(β + 1)
=

β

(β − k)
(
β
k

) .

While Proposition 2.8 provides a formula for some central moments about zero, it
has limitations. It only works when 0 ≤ kα ≤ β − 1. (where k is the moment order).
There’s a more powerful approach, though. By leveraging the properties of the integral
of the CDF raised to the power of r, we can potentially derive more general expressions
for central moments.

Corollary 2.9. Assume that the random variable X following a Burr Type III distri-
bution with the parameters α = 1, β and s. Then
• E(X2) = sµ.
• σ2(X) = µ(s− µ).
• s = µ(CV (X) + 1) = E(X2)

µ = σ2(X)
µ + µ.

• β = 2CJ(X)−µ
4CJ(X) .

Proof. Letting α = 1 we have

E(X) =

∫ ∞

0

βx

s(xs )

[
(x/s)

1 + (x/s)

]β+1

dx = β

∫ ∞

0

(
(x/s)

1 + (x/s)

)β+1

dx =
E(X2)

s
.

Therefore,
V ar(X) = E(X2)− E2(X) = E(X)(s− E(X)).
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Then
CV (X) =

V ar(X)

E2(X)
=

(s− E(X))

E(X)
.

Furthermore, based on the characteristics CDI(1) and CDI(2) we can conclude that

E(X2) = sµ = (2β − 1)sCDI(2) = −2(2β − 1)sCJ(X),

that obtained that β = 2CJ(X)−µ
4CJ(X) .

Remark 2.10. The integral of the cumulative distribution function raised to the power
of k (CDI(k)) of the random variable X following a Burr Type III distribution can be
transformed into a Beta distribution with the parameters (β, 1).

Proof. Similar to the Proposition 2.4 by substituting (
x

s
)α into u

1− u
we would have

CDI(k) =

∫ ∞

0

[
(x/s)α

1 + (x/s)α

]kβ
dx =

∫ 1

0

β(1− u)3−
1
αukβ+ 1

α−1du

= β
Γ(kβ + 4)

Γ(4− 1
α )Γ(kβ + 1

α )
= β

(
kβ + 3

3− 1
α

)
.

Corollary 2.11. Solving (2) and (1) yields the following cors

E(Xα+1) = αsαβ(β − 1)

(
β + 3

3− 1
α

)
. (4)

For example,

E(X2) =
s(β + 3)(β + 2)β(β − 1)

2
.

Remark 2.12. Proposition 2.8 represents the generalized negative power mean, while
Corollary 2.11 represents the kth moment of the Burr Type III Lifetime distribution.

Corollary 2.13. Let X(i) is the ith order statistic in Burr Type III distribution data.
Then, we have

E(X(i)) = nG(x) = n

[
(x/s)α

1 + (x/s)α

]β
dx =

nE(Xα+1)

α(β − 1)sα
= nβ

(
β + 3

3− α−1

)
.

Corollary 2.14. Let X(i) is the ith order statistic in Burr Type III distribution data.
Then the gi(x) is symmetric if G(x) = 1

2 that yields

β

(
β + 3

3− α−1

)
=

1

2
.
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3 Stochastic orders
Stochastic orders provide a framework for comparing random variables based on their
likelihood of being larger or smaller. These orders include the Usual Stochastic Order
(st), which compares variables using cumulative distribution functions; the Likelihood
Ratio Order (lr), which compares based on probability density functions; the Hazard
Rate Order (hr), which focuses on failure rates; and the Reversed Hazard Rate Order
(rhr), which considers cumulative probabilities. These orders are commonly used in
reliability analysis, statistical inference, actuarial science, and decision-making under
uncertainty.
In our analysis, Proposition 3.1 explores the st order, while Propositions 3.2 and 3.3
delve into the lr order. Additionally, Propositions 3.5 and 3.6 examine the character-
istics of the hr order. Furthermore, Propositions 3.8 and 3.9 shed light on the impact
of random orderings on the rhr order.
Proposition 3.1. Let X and Y be two continuous lifetime random variables with β1

and β2 respectively and β1 ≤ (≥)β2. Then X
st

≤ (≥) Y .
Proof. It is obvious that when β1 ≤ (≥)β2 we would have Gα,β1,s(x) ≥ (≤)Gα,β2,s(y)
because of [

1 +
(x
s

)−α
]−β1

≥ (≤)

[
1 +

(x
s

)−α
]−β2

.

Hence from the definition of Stochastic order (st) Pakgohar et al. (2019) the proof is
completed.

Proposition 3.2. Let X and Y are two random variables with the Burr Type III
distribution with the parameters β1 and β2 respectively. Then X is less (greater) than

Y in likelihood ratio order X
lr
≤ (

lr
≥)Y if β1 ≤ (≥)β2.

Proof. The likelihood ratio order (denoted by X
lr
≤ Y ) holds if the ratio gX(t)

gY (t) is de-
creasing in t Di Crescenzo and Longobardi (2001). Therefore, we have

f(t) =
gX(t)

gY (t)
=

β1

β2

[
(t/s)α

1 + (t/s)α

]β1−β2

.

Taking the derivative of f(t) with respect to t, we get

f(t) =
d

dt

[
β1

β2

[
(t/s)α

1 + (t/s)α

]β1−β2
]
.

To simplify the differentiation, let’s denote the inner function as (t/s)α = u also k(u) =[
u

1+u

]
, and k(u) = 1

(1+u)2 . Then

f(u) =
β1

β2
(β1 − β2)k(u)

β1−β2−1k(u) =
β1

β2
(β1 − β2)

[
u

1 + u

]β1−β2−1
1

(1 + u)2
.

Hence, f(u) ≤ (≥)0 if β1 ≤ (≥)β2. Therefore gX(t)
gY (t) is decreasing (increasing) with the

condition β1 ≤ (≥)β2 and the proof is completed.
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Proposition 3.3. Let X and Y are two random variables with the Burr Type III
distribution with the parameters s1 and s2 respectively. Then X is greater (less) than

Y in likelihood ratio order X
lr
≤ Y (X

lr
≥ Y ) if s1 ≥ (≤)s2.

Proof. Similar to Proof 3, in the context of the parameter s we have

f(t) =
gX(t)

gY (t)
= (

s1
s2

)α
[
sα2 + tα

sα1 + tα

]β
.

Taking the derivative of f(t) with respect to t, we get

f
′
(t) = (

s1
s2

)α · β
[
α · tα−1 sα1 − sα2

(sα1 + tα)2

]β−1

.

Then, f(t) ≥ (≤)0 if s1 ≤ (≥)s2. Therefore gX(t)
gY (t) is decreasing (increasing) with the

condition s1 ≤ (≥)s2 and the proof is completed.

Corollary 3.4. If s1 ≤ (≥)s2, likewise β1 ≤ β2, then the likelihood ratio of X to Y is
less than or equal to (greater than or equal to) 1. This implies that the odds of observing
X compared to Y are lower than or equal to (greater than or equal to) 1, indicating a
weaker (stronger) evidence for X compared to Y in favor of the alternative hypothesis.

Proposition 3.5. Let X and Y be two continuous lifetime random variables with β1

and β2 respectively and β1 ≤ β2. Then X
hr
≤ Y .

Proof. The hazard rate order (denoted by X
hr
≤ Y ) holds if the ratio ḠX(t)

ḠY (t)
is decreasing

in t Di Crescenzo and Longobardi (2001). Then, we solve f ′(t) = d
dt

(
ḠX(t)
ḠY (t)

)
. To sim-

plify the differentiation, let’s denote the inner function as (t/s)α

1+(t/s)α = k(t). Therefore,
we have

f ′(t) =
d

dt

[(
1− k(t)

)β1(
1− k(t)

)β2

]
=

d

dt

(
1− k(t)

)β1−β2
.

Since 0 < k(t) < 1 besides k′(t) > 0 then taking β1 ≤ (≥)β2 yields f(t) is decreasing
(increasing).

Proposition 3.6. Let X and Y be two continuous lifetime random variables with s1

and s2 respectively and s1 ≤ s2. Then X
hr
≤ Y .

Proof. Let f(t) =
[
sα2 +tα

sα1 +tα

]
β. As s1 ≤ s2, the numerator sα2 + tα will increase faster

than the denominator sα1 + tα as t increases. This implies that the fraction inside the
brackets will increase as t increases.

The proof of s1 ≥ s2 is similar and we glimpse the details. Hence the proof is
completed.

Corollary 3.7. Assuming s1 ≤ (≥)s2 and in a similar vein β1 ≤ β2 indicates that the
hazard rate of X is less (greater) than or equal to the hazard rate of Y , suggesting that
X has a lower (higher) or equal risk of failure at any given time compared to Y .
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Proposition 3.8. Let β1 ≤ (≥)β2. Then the reversed hazard rate (rhr) of the Burr
Type III is monotone decreasing (increasing) in time t.

Proof. The hazard rate order (denoted by X
rhr
≤ Y ) holds if the ratio GX(t)

GY (t) is decreasing
in t Di Crescenzo and Longobardi (2001). The reversed hazard rate function for the
Burr Type III distribution is given by

f(t) =
β1

β2

[
(t/s)α

1 + (t/s)α

]β1−β2

.

To simplify the differentiation, let’s denote the inner function as (t/s)α

1+(t/s)α = k(t).
Therefore, we have

f ′(t) =
d

dt

[
β1

β2

(
k(t)

)β1−β2

]
=

β1

β2
(β1 − β2)

(
k(t)

)β1−β2−1
k′(t).

Since 0 < k(t) < 1 besides k′(t) > 0 then taking β1 ≤ (≥)β2 yields f(t) is decreasing
(increasing) function.

Proposition 3.9. Let s1 ≤ (≥)s2. Then the reversed hazard rate (rhr) of the Burr
Type III is monotone increasing (decreasing) in time t.

Proof. Let f(t) = GX(t)
GY (t) . Then,

f(t) =

[
sα2 + tα

sα1 + tα

]β
.

Building on the proof of Proposition 3.6, we can conclude that when s1 ≤ s2, the
function f(t) decreases as t increases. Similarly, when s1 ≥ s2, the function f(t)
increases as t increases. This completes the proof.

Corollary 3.10. If β1 ≤ (≥)β2, similarly, β1 ≥ (≤)β2 then the reversed hazard rate
(rhr) of the Burr Type III distribution is monotone decreasing (increasing) in time t.
This implies that as time progresses, the risk of failure decreases (increases) for the
Burr Type III distribution with parameters β1 and β2.

4 Entropies and extropies
Examining entropy and extropy measures is important as they provide valuable insights
into the uncertainty, randomness, and information content of a probability distribution.
In the context of Burr Type III distribution, these measures can help in understanding
the variability, predictability, and complexity of the data generated from this distribu-
tion.

In this section, we will examine the measures of Shannon entropy, cumulative en-
tropy, and cumulative residual entropy, as well as the equivalent extropy measures.
Additionally, we have explored Renyi entropy, Tsallis entropy, and Sharma-Mital en-
tropy.

The Proposition 4.1 sets a lower bound for the Shannon entropy of a random variable
X that is distributed according to the Burr Type III distribution.
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Proposition 4.1. The Shannon entropy of a lifetime random variable X following the
Burr Type III distribution is bounded below by a constant value

H(X) ≥ − log (sααβ)− (β + 1) log

(
β

β + 1

)
+ (α+ 1)E(log(X)),

where E denotes the Expectation function for the Burr Type III distribution with pa-
rameters α, β, and s.

Proof. The Shannon entropy H(X) for a continuous random variable X with proba-
bility density function g(x) is given by Shannon (1948)

H(X) = −
∫

g(x) log(g(x))dx.

Then H(X) for the random variable X with the Burr Type III distribution can calcu-
lated by

H(X) = −
∫ ∞

0

αβ

s
(
x
s

)α+1

[
(x/s)α

1 + (x/s)α

]β+1

log

(
αβ

s
(
x
s

)α+1

[
(x/s)α

1 + (x/s)α

]β+1
)
dx

≥ − log (sααβ) + (α+ 1)E(log(X))

−(β + 1) log

∫ ∞

0

αβ

s
(
x
s

)α+1

[
(x/s)α

1 + (x/s)α

](β+2)

dx

= − log (sααβ)− (β + 1) log

(
β

β + 1

)
+ (α+ 1)E(log(X)).

Proposition 4.2 analyzes the extropy measure of Burr Type III distribution, while
Remark 4.3 compares the extropy measures of Burr Type III distribution and the
Lehmann model with power θ.

Proposition 4.2. The extropy of a random variable X distributed according to the
Burr Type III distribution can be calculated as

J(X) =
−αβ4

2s(2β + 1)
. (5)

Proof. For a non-negative random variable X, the extropy J(X) is given by Lad et al.
(2015)

J(X) = −1

2

∫ ∞

0

g2(x)dx.

Then extropy measure for the Burr Type III distribution is given by

J(X) = −1

2

∫ ∞

0

(
αβ

s
(
x
s

)α+1 )
2

[
(x/s)α

1 + (x/s)α

]2(β+1)

dx = − αsαβ2

2(2β + 1)
E(X−(α+1)), (6)

where E denotes the Expectation function for the Burr Type III distribution with
parameters α, 2β + 1, and s.

By combining (3) and (6), we can derive (5).
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Remark 4.3. Let X and Y are the random variables with the CDF’s G(x) and F (x)
respectively in which follow the Proposition 2.6. Then

J(Y ) =
θ4(2β + 1)

2θβ + 1
J(X),

that obtaines the extropy of the Lehmann model depends only on the parameter β and
the coefficient θ.

Propositions 4.4 and 4.5 provide a comprehensive analysis of the cumulative entropy
and extropy measures for the Burr Type III distribution. Furthermore, Remark 4.6
establishes the connection between cumulative extropy and the parameters s and α.

Proposition 4.4. The cumulative entropy of a random variable X that follows the
Burr Type III distribution can be obtained by:

CE(X) ≥ −β log

(
(β − 1)

(
β + 3

3− α−1

))
. (7)

Proof. The formula for calculating cumulative entropy is Wang et al. (2003)

CE(X) = −
∫

G(x) log(G(x))dx.

Then for the Burr Type III distribution we would have

CE(X) = −
∫ ∞

0

(
(x/s)α

1 + (x/s)α

)β

log

(
(x/s)α

1 + (x/s)α

)β

dx

≥ −β log

(∫ ∞

0

(
(x/s)α

1 + (x/s)α

)β+1
)

= −β log

(
E(Xα+1)

αβsα

)
, (8)

where E denotes the Expectation function for the Burr Type III distribution with
parameters α, β, and s.

By combining (4) and (8), we arrived at (7).

Proposition 4.5. The cumulative extropy of a random variable X that follows the
Burr Type III distribution can be obtained by:

CJ(X) = −1

2

(
(β + 3)(β + 2)(β − 1)β

(2β − 1)sα

)
.

Proof. The cumulative extropy is derived by Nair and Sathar (2020)

CJ(X) = −1

2

∫
G2(x)dx.

Therefore, for the Burr Type III distribution is given by

CJ(X) = −1

2

∫ ∞

0

(
(x/s)α

1 + (x/s)α

)2β

dx.



Exploring the Burr type III distribution 176

To concisely conclude, while setting aside the details of the proof, it is concluded that
Too concisely conclude, while setting aside the details of the proof, we reached to

CJ(X) = −1

2

(
E(Xα+1)

α(2β − 1)sα

)
.

Assuming (4) we have

CJ(X) = −1

2

(
α(β + 3)(β + 2)(β − 1)β

α(2β − 1)sα

)
. (9)

Remark 4.6. There exists a relationship between the cumulative entropies of random
variables following a Burr Type III distribution as follows
• If the parameter s multiplied by the coefficient k, the cumulative entropy becomes
inversely proportional to k raised to the power of alpha. In other words

CJ(Y ) =
CJ(X)

kα
.

• If the parameter α multiplied by the coefficient k, the cumulative entropy becomes

CJ(Y ) =
CJ(X)

s(k−1)α
.

Propositions 4.7 and 4.8 offer a comprehensive examination of the cumulative resid-
ual entropy and extropy measures in relation to the Burr Type III distribution.
Proposition 4.7. The cumulative residual entropy of a random variable X that follows
the Burr Type III distribution can be obtained by

CRE(X) ≥ − log

(
E(X)− β

(
β + 3

3− 1
α

)
+

(
(β + 3)(β + 2)(β − 1)β

α(2β − 1)sα

))
. (10)

Proof. The formula for calculating cumulative residual entropy is Rao et al. (2004)

CRE(X) = −
∫

Ḡ(x) log(Ḡ(x))dx

≥ − log

(∫
Ḡ(x)dx−

∫
G(x)dx+

∫
G2(x)dx

)
= − log

(
E(X)− CDI1 − 2CJ(X)

)
(11)

Additionally, from (1) and (2) we would have

CDI1 =
E(xα+1)

α(β − 1)sα
= β

(
β + 3

3− α−1

)
. (12)

Letting (12) and (11) we would have

CRE(X) ≥ − log

(
E(X)− E(xα+1)

α(β − 1)sα
− 2CJ(X)

)
,

where CJ(X) is the cumulative extropy od X and E is denotes the Expectation function
for the Burr Type III distribution with parameters α, β − 1, and s.

By combining (4) and (9), we were able to derive (10).
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Proposition 4.8. The cumulative residual extropy of a random variable X that follows
the Burr Type III distribution can be obtained by:

2
(
CJ(X)− CRJ(X)

)
= E(X)− E(xα+1)

α(β − 1)sα

= E(X)− β

(
β + 3

3− 1
α

)
+

(
(β + 3)(β + 2)(β − 1)β

α(2β − 1)sα

)
. (13)

Proof. The cumulative residual extropy is state as Jahanshahi et al. (2020)

CRJ(X) = −1

2

∫
Ḡ2(x)dx.

Furthermore, in similar to the proof 4 it yields (13)

Corollary 4.9. Let X(i) is the ith order statistic in Burr Type III distribution data.
Then, we have

CJ(X)− CRJ(X) =
nE(X)− E(X(i))

2n
.

Propositions 4.10, 4.11, and 4.12 provide a detailed analysis of the Rényi, Tsallis,
and Sharma-Mital entropy measures in the context of the Burr Type III distribution.

Proposition 4.10. The Rényi entropy of random variable X with a Burr Type III
distribution can be expressed as

Hr(X) =
1

r − 1
log

(
r(β + 1)− 1

αr−1s−(r−1)βr+1
(

β
r−1

) , r ≤ β + 1.

)
. (14)

Proof. The Rényi entropy for a continuous random variable X with probability density
function g(x) is given by the formula Renner and Wolf (2004)

Hr(X) =
1

1− r
log

∫
g(x)rdx,

where r is the order of the entropy. Then, the Rényi entropy for the Burr Type III
distribution is given by

Hr(X) =
1

1− r
log

∫ ∞

0

( αβ

s
(
x
s

)α+1

)r [ (x/s)α

1 + (x/s)α

]r(β+1)

dx

=
1

1− r
log

(
αr−1βrsα(r−1)

r(β + 1)− 1

×
∫ ∞

0

α(r(β + 1)− 1)

s
(
x
s

)α+1 x−(α+1)(r−1)

[
(x/s)α

1 + (x/s)α

]r(β+1)

dx

)

=
1

1− r
log

(
αr−1βrsα(r−1)

r(β + 1)− 1
E
(
X−(α+1)(r−1)

))
, (15)

where E denotes the Expectation function for the Burr Type III distribution with
parameters α, r(β + 1) − 1, and s. By combining (15) and (3), we can derive t in
(14).
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Proposition 4.11. The Tsallis entropy of a random variable X that follows the Burr
Type III distribution can be calculated as

Sr(X) =
1

r − 1

(
1− αr−1βr+1s−(r−1)

r(β + 1)− 1

(
β

r − 1

))
, r ≤ β + 1. (16)

Proof. The Tsallis entropy Sr for a continuous random variable is Anastasiadis (2012)

Sr(X) =
1−

∫
g(x)r dx

r − 1
,

where r is a parameter that determines the Type of entropy.
Furthermore, a relationship between Renyi entropy Hr(X) and Tsallis entropy

Sr(X) can be determined as

Sr(X) =
e(r−1)Hr(X) − 1

r − 1
.

Then, the Tsallis entropy for the Burr Type III distribution can be calculated as (17)
and the proof is similar to Proposition 4.10 hence we glimpsed that

Sr(X) =
1

r − 1

(
1− αr−1βrsα(r−1)

r(β + 1)− 1
E
(
X−(α+1)(r−1)

))
, (17)

where E denotes the Expectation function for the Burr Type III distribution with
parameters α, r(β +1)− 1, and s. By combining (3) and (17), we can derive (16).

Proposition 4.12. The Sharma-Mittal entropy of a random variable X that follows
the Burr Type III distribution can be calculated as

Sr,q(X) =
1

q − 1

1− (1− αr−1βr+1s−(r−1)

r(β + 1)− 1

(
β

r − 1

)) 1−q
r−1

 . (18)

Proof. The Sharma-Mittal entropy is a two-parameter generalization of the Tsallis and
Rényi entropies. It is defined as Koltcov et al. (2019)

Sr,q(X) =
1

q − 1

[
1−

(∫
(g(x))r, dx

) 1−q
r−1

]
,

where r and q are deformation parameters. Then, It is evidence that the Sharma-Mittal
entropy for the Burr Type III distribution can be calculated as (18).
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