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Abstract: This study focuses on estimating the stress-strength parameter R, utilizing
two independent Type-I progressively hybrid censored samples derived from popula-
tions governed by the proportional hazard rate model. The maximum likelihood and
Bayes estimators are obtained under some well-known loss functions and the assump-
tion that the priors are independently gamma-distributed. The asymptotic confidence
interval and Bayesian and highest posterior density credible intervals are also presented.
A Monte Carlo simulation study is used to evaluate the performances of the obtained
point estimators and confidence and credible intervals. Finally, a pair of real data sets
is analyzed for illustrative purposes.
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1 Introduction
Stress-strength modelling is a critical aspect of reliability analysis, providing a measure
of a component’s reliability when exposed to random stress X and possessing strength
Y . A component fails if its strength is insufficient to withstand the stress. Thus,
R = P (X < Y ) represents the component’s reliability. This concept finds extensive
applications in fields such as engineering and medical sciences. For more details and
applications, refer to Kotz et al. (2003). Many researchers considered the problem
of estimating R in some distributions; such as Govidarajulu (1967), Enis and Geisser
(1971), Downtown (1973), Awad et al. (1981), Sathe and Shah (1981), Awad and
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Gharraf (1986), Constantine et al. (1986), Gupta and Gupta (1990), McCool (1991),
Nandi and Aich (1996), Surles and Padgett (1998), Gupta et al. (1999), Gupta and
Brown (2001), Kundu and Gupta (2005), Raqab and Kundu (2005), Mokhlis (2005),
Kundu and Gupta (2006), Raqab et al. (2008), Kundu and Raqab (2009), Gupta et
al. (2010), Asgharzadeh et al. (2013, 2011), Saraçoğlu et al. (2012), Rao et al. (2013),
Asgharzadeh and Kazemi (2014), Rao et al. (2016), Nadeb et al. (2019) and Khalifeh
et al. (2020).

In recent years, numerous studies have focused on progressive Type-II censored
samples. For an in-depth exploration of this topic, readers may refer to Balakrishnan
and Aggarwala (2000). In progressive Type-II censoring, it is assumed that the removal
of still-operating units occurs at observed failure times, and the censoring scheme
r = (r1, ..., rm) is predetermined. Additionally, both the total number of units (n) and
the number of observed failure times (m) are fixed in advance. Starting all n units
at the same time, the first progressive censoring step takes place at the observation of
the first failure time X1:m:n, at this time, r1 units are randomly chosen from the still
operating units and withdrawn from the experiment. Then, the experiment continues
with the reduced sample size n−r1−1. After observing the next failure at time X2:m:n,
r2 units are randomly removed from n−r1−2 active units. This process continued until
the mth failure was observed. Then, the experiment ends and X1:m:n ≤ . . . ≤ Xm:m:n

are said to be progressive Type-II censored order statistics.
Type-I progressive hybrid censoring scheme that is a combination of the usual Type-

I and the progressive Type-II censoring was proposed by Kundu and Joarder (2006) by
introducing a stopping time min

{
Xm:m:n, t0

}
. This approach is based on progressively

Type-II censored order statistics X1:m:n ≤ . . . ≤ Xm:m:n, and it guarantees that the
life test would not last beyond time t0. t0 is pre-fixed time and is named threshold
time. Indeed, the Type-I progressively hybrid censoring arises if the termination time
of the life-test is chosen to be min

{
Xm:m:n, t0

}
. We denote this censoring scheme by

(r, t0). Under this censoring scheme, we have one of the two following types of order
statistics:

Case I : {X1:m:n ≤ . . . ≤ Xm:m:n} if Xm:m:n ≤ t0,

Case II : {X1:m:n ≤ . . . ≤ XD:m:n} if D < m, XD:m:n < t0 < XD+1:m:n,

where D is the number of failures before the time t0 and it is a random variable with
support {0, 1, . . . ,m}.

Many researchers made inferences about some distributions based on Type-I pro-
gressively hybrid censored data. For instance, Nadeb and Torabi (2016) presented a
method for exact hypothesis testing and obtained confidence interval for mean of the
exponential distribution. Shi and Wu (2016) studiesd the dependent competing risks
model from Gompertz distribution. Wang and Liu (2017) established the estimation
for the unknown scale parameter of the half-logistic distribution. Noori Asl et al. (2018)
considered the problem of estimating and predicting the unknown parameters of the
Lomax distribution. Arabi Belaghi and Noori Asl (2019) estimated the unknown pa-
rameters of the Burr XII distribution under classical and Bayesian frameworks. Singh
et al. (2019) addressed the problems of estimating and predicting in the Type III Burr
distribution. Sen et al. (2019) investigated the problems of estimating and predicting
by classical and Bayesian approaches when lifetime data following a lognormal dis-
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tribution. Yadav and Panwar (2024) developed estimation procedures for the inverse
Maxwell distribution.

The proportional hazard rate (PHR) model is an important model in reliability
theory and some other fields; for instance see Cox (1992), Kumar and Klefsjö (1994)
and Finkelstein (2008). X is said to follow the PHR model, denoted by X ∼ PHR(F̄ , θ),
if its survival function can be expressed as F̄ θ(x), where F̄ (x) is the baseline survival
function and θ is a positive parameter. It is clear that, if the lifetimes of all components
in a series system are independently, identically distributed and belong to the PHR
model, the lifetime of the system also belongs to this model.

Making inference on the stress-strength parameter has been considered when the
populations follow the PHR models. For instance Basirat et al. (2015) considered the
statistical inference for stress-strength in the PHR models under progressive Type-
II censoring; Basirat et al. (2016) studied this parameter using record values from
the PHR models; and Bai et al. (2019) discussed on inference on the stress-strength
parameter for the truncated PHR models under progressively Type-II censored samples.

Golparvar and Parsian (2016) made inference about the unknown parameter in the
proportional hazard rate model under Type-I progressive hybrid censoring. Therefore,
we consider the estimation of R = P (X < Y ) when X and Y follow the PHR model
under Type-I progressive hybrid censoring. Let X ∼ PHR(F̄ , θ1) and Y ∼ PHR(F̄ , θ2)
be independent random variables. Then it can be easily seen that

R = P (X < Y ) =
θ1

θ1 + θ2
. (1)

2 Point estimation
In this section, the maximum likelihood and Bayes estimators of R are obtained. In
the Subsection 2.1, we consider the maximum likelihood estimation (MLE) and then
the Subsection 2.2 considers the Bayes estimation under some loss functions.

2.1 MLE of R

Our interest is estimating R based on Type-I progressively hybrid censored data on
both variables. To derive the MLE of R, first we get the MLEs of θ1 and θ2. Suppose
X = (X1:m1:n1

, . . . , XD1:m1:n1
) is a Type-I progressively hybrid censored sample from

PHR(F̄ , θ1) with censoring scheme (r1, t0) and Y = (Y1:m2:n2
, . . . , YD2:m2:n2

) is a Type-
I progressively hybrid censored sample from PHR(F̄ , θ2) with censoring scheme (r2, t

′
0),

where ri = (ri1, . . . , rimi) and
∑mi

j=1 rij = ni, for i = 1, 2. For convenience, we will
write (X1, . . . , XD1

) instead of (X1:m1:n1
, . . . , XD1:m1:n1

), and (Y1, . . . , YD2
) instead of

(Y1:m1:n1
, . . . , YD2:m2:n2

). According to Cramer and Balakrishnan (2013), the likelihood
function corresponding to (θ1, θ2) can be written as

L(θ1, θ2) =

D1∏
j=1

γjf(Xj)

 θD1
1 F̄ θ1γD1+1(t0)

D1∏
j=1

F̄ θ1(1+r1j)−1(Xj)

×

D2∏
j=1

γ′
jf(Xj)

 θD2
2 F̄ θ2γ

′
D2+1(t′0)

D2∏
j=1

F̄ θ2(1+r2j)−1(Yj), (2)
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where, γj =
m1∑
k=j

(1 + r1j) and γ′
j =

m2∑
k=j

(1 + r2j).

In view of Equation (2) and by omitting the normalizing constant, the log-likelihood
function for the Type-I progressively hybrid censored samples is given by

l(θ1, θ2) = D1 log(θ1) + θ1γD1+1 log F̄ (t0) +

D1∑
j=1

(θ1(1 + r1j)− 1) log F̄ (Xj)

+D2 log(θ2) + θ2γ
′
D2+1 log F̄ (t′0) +

D2∑
j=1

(θ2(1 + r2j)− 1) log F̄ (Yj). (3)

The MLEs of θ1 and θ2 are denoted by θ̂1 and θ̂2, respectively; where they are obtained
as the solution to the following equations

∂l(θ1, θ2)

∂θ1
=

D1

θ1
+ γD1+1 log F̄ (t0) +

D1∑
j=1

(1 + r1j) log F̄ (Xj) = 0, (4)

∂l(θ1, θ2)

∂θ2
=

D2

θ2
+ γ′

D2+1 log F̄ (t′0) +

D2∑
j=1

(1 + r2j) log F̄ (Yj) = 0. (5)

If D1 > 0 and D2 > 0, by the solution of Equations (4) and (5), we have θ̂i =
Di

Bi
where

B1 = −
D1∑
j=1

(1 + r1j) log F̄ (Xj) − γD1+1 log F̄ (t0) and B2 = −
D2∑
j=1

(1 + r2j) log F̄ (Yj) −

γ′
D2+1 log F̄ (t′0). Therefore, we compute the MLE of R as

R̂ =
θ̂1

θ̂1 + θ̂2
. (6)

But using the likelihood function (2), if D1 = 0 or D2 = 0, then θ̂1 or θ̂2 does not exist
and therefore R̂ does not exist.

2.2 Bayes estimation of R

In this section, we get the Bayes estimator of R under Type-I progressive hybrid cen-
soring. An important function which is needed for this purpose, is hypergeometric
function, where is given by

F2,1(a, b, c, z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1

(1− zt)a
dt,

such that c > b > 0. For a comprehensive discussion on this topic, one may refer to
Baily (1935).

The following lemma presents a useful relation for E[Rk(1−R)l|X,Y ], where E[.]
denotes the expectation.
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Lemma 2.1. Let θ1 ∼ gamma(α1, β1) and θ2 ∼ gamma(α2, β2) be independent, where
α1 and α2 are the shape parameters and β1 and β2 are the rate parameters. Then, for
some constants k and l, we have

E[Rk(1−R)l|X,Y ]=
Γ(α1 +D1 + k)

Γ(α1 +D1)

Γ(α2 +D2 + l)

Γ(α2 +D2)

Γ(S)

Γ(S + k + l)

(
β1 +W1

β2 +W2

)α1+D1

×F2,1

(
S, α1 +D1 + k, S + k + l, 1− β1 +W1

β2 +W2

)
, (7)

where S = α1 +D1 + α2 +D2 and

W1 = −
D1∑
j=1

(1 + r1j) log F̄ (Xj)− γD1+1 log F̄ (t0),

W2 = −
D2∑
j=1

(1 + r2j) log F̄ (Yj)− γ′
D2+1 log F̄ (t′0).

Proof. To obtain the posterior distributions of θ1 and θ2, we have

π(θ1|X) ∝ θα1+D1−1
1 e

−
(
β1−γD1+1 log F̄ (t0)−

D1∑
j=1

(1+r1j) log F̄ (Xj)

)
θ1

,

π(θ2|Y ) ∝ θα2+D2−1
2 e

−
(
β2−γ′

D1+1 log F̄ (t′0)−
D2∑
j=1

(1+r2j) log F̄ (Yj)

)
θ2

.

Thus,

θ1|X ∼ gamma(α1 +D1, β1 +W1), (8)
θ2|Y ∼ gamma(α2 +D2, β2 +W2). (9)

For θ2 > 0, 0 < r < 1 and using the independence of θ1 and θ2, the joint density
function of R = θ1

θ1+θ2
and θ2 given the data can be obtained:

f(R,θ2)|X,Y (r, θ2) =
θ2

(1− r)2
f(θ1,θ2)|X,Y

(
rθ2
1− r

, θ2

)
=

θ2
(1− r)2

(β1 +W1)
α1+D1

Γ(α1 +D1)

(
rθ2
1− r

)α1+D1−1

e−(β1+W1)
rθ2
1−r

× (β2 +W2)
α2+D2

Γ(α2 +D2)
θα2+D2−1
2 e−(β2+W2)θ2

=
(β1 +W1)

α1+D1

Γ(α1 +D1)

(β2 +W2)
α2+D2

Γ(α2 +D2)

rα1+D1−1

(1− r)α1+D1+1

×θS−1
2 e−(β2+W2+

r
1−r (β1+W1))θ2 .

Thus, the density function of R given the data can be obtained by integrating regarding
θ2. Therefore, for 0 < r < 1, we have

fR|X,Y (r) =
(β1 +W1)

α1+D1

Γ(α1 +D1)

(β2 +W2)
α2+D2

Γ(α2 +D2)

rα1+D1−1

(1− r)α1+D1+1
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×
∫ ∞

0

θS−1
2 e−[β2+W2+

r
1−r (β1+W1)]θ2dθ2

=
(β1 +W1)

α1+D1

Γ(α1 +D1)

(β2 +W2)
α2+D2

Γ(α2 +D2)

rα1+D1−1

(1− r)α1+D1+1

× Γ(S)(
β2 +W2 +

r
1−r (β1 +W1)

)S
=

(β1 +W1)
α1+D1

Γ(α1 +D1)

(β2 +W2)
α2+D2

Γ(α2 +D2)
Γ(S)

× rα1+D1−1(1− r)α2+D2−1(
(1− r)(β2 +W2) + r(β1 +W1)

)S .
Hence,

E[Rk(1−R)l|X,Y ]=

∫ 1

0

rk(1− r)lfR|(X,Y )(r)dr

=
(β1 +W1)

α1+D1

Γ(α1 +D1)

(β2 +W2)
α2+D2

Γ(α2 +D2)
Γ(S)

×
∫ 1

0

rα1+D1+k−1(1− r)α2+D2+l−1(
(1− r)(β2 +W2) + r(β1 +W1)

)S dr
=

(β1 +W1)
α1+D1

Γ(α1 +D1)

(β2 +W2)
α2+D2

Γ(α2 +D2)

Γ(S)

(β2 +W2)S

×
∫ 1

0

rα1+D1+k−1(1− r)α2+D2+l−1(
1− β2+W2−(β1+W1)

β2+W2
r
)S dr

=
(β1 +W1)

α1+D1

Γ(α1 +D1)

(β2 +W2)
α2+D2

Γ(α2 +D2)

Γ(S)

(β2 +W2)S

×Γ(α1 +D1 + k)Γ(α2 +D2 + l)

Γ(S + k + l)

×F2,1

(
S, α1 +D1 + k, S + k + k, 1− β1 +W1

β2 +W2

)
=

(
β1 +W1

β2 +W2

)α1+D1 Γ(α1 +D1 + k)

Γ(α1 +D1)

Γ(α2 +D2 + l)

Γ(α2 +D2)

Γ(S)

Γ(S + k + l)

×F2,1

(
S, α1 +D1 + k, S + k + l, 1− β1 +W1

β2 +W2

)
.

Thus, the proof is completed.

We know that a Bayes estimator strongly depends on the loss function. The follow-
ing theorem considers the Bayes estimators of R under some well known loss functions.

Theorem 2.2. Let θ1 ∼ gamma(α1, β1) and θ2 ∼ gamma(α2, β2) be independent,
where α1 and α2 are the shape parameters and β1 and β2 are the rate parameters.
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(i) Under the squared error loss function, L(r, δ) = (r− δ)2, the Bayes estimator of R,
denoted by R̂sq, is given by

R̂sq =
α1 +D1

S

(
β1 +W1

β2 +W2

)α1+D1

F2,1

(
S, α1 +D1 + 1, S + 1, 1− β1 +W1

β2 +W2

)
,

(ii) Under the weighted squared error loss function, L(r, δ) = rk(1 − r)l(r − δ)2, the
Bayes estimator of R, denoted by R̂wsq, is given by

R̂wsq =
α1 +D1 + k

S + k + l

F2,1

(
S, α1 +D1 + k + 1, S + k + l + 1, 1− β1 +W1

β2 +W2

)
F2,1

(
S, α1 +D1 + k, S + k + l, 1− β1 +W1

β2 +W2

) ,

(iii) Under the Stein’s loss function, L(r, δ) = − log δ
r + δ

r − 1, the Bayes estimator of
R, denoted by R̂St, is given by

R̂St =
α1 +D1 − 1

S − 1

(
β2 +W2

β1 +W1

)α1+D1 1

F2,1

(
S, α1 +D1 − 1, S − 1, 1− β1 +W1

β2 +W2

) ,

(iv) Under the 0-1 loss function,

L(r, δ) =

{
0, if |r − δ| ≤ c,

1, if |r − δ| > c,

when c is a small constant, the approximate Bayes estimator of R, denoted by R̂0−1,
is given by

R̂0−1 =


A1B2+A2B1+2(B1−B2)−

√
∆

4(B1−B2)
, if B1 > B2,

A1B2+A2B1+2(B1−B2)+
√
∆

4(B1−B2)
, if B1 < B2,

where, A1 = α1 +D1 − 1, A2 = α2 +D2 − 1, B1 = β1 +W1, B2 = β2 +W2, and

∆ =

(
A1B2 +A2B1 + 2(B1 −B2)

)2

− 8A1B2(B1 −B2).

Proof. (i) We know that R̂sq = E[R|X,Y ]. Thus, substituting k = 1 and l = 0 in
Equation (7), implies the required result.
(ii) We know that R̂wsq = E[Rk+1(1−R)l|X,Y ]

E[Rk(1−R)l|X,Y ]
. Hence, the Equation (7) immediately

completes the proof.
(iii) We know that R̂St =

1
E[R−1|X,Y ] . Hence, by substituting the appropriate constants

k and l in Equation (7), and some simple computations, we have the desired result.
(iv) According to Lehmann and Casella (1998), Page 228, R̂0−1 is the midpoint of the
interval I of length 2c which maximizes P (R ∈ I|X,Y ). Thus, the posterior mode is
an approximate Bayes estimator of R. It can be easily verified that

d

dr
fR|X,Y (r) =

BA1+1
1

Γ(A1 + 1)

BA2+1
2

Γ(A2 + 1)
Γ(A1 +A2 + 2)

rA1−1(1− r)A2−1(
(1− r)B2 + rB1

)A1+A2+3
g(r),
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where g(r) = 2(B1 − B2)r
2 −

(
A1B2 + A2B1 + 2(B1 − B2)

)
r + A1B2. Since g(0) =

A1B2 > 0 and g(1) = −A2B1 > 0, it implies that fR|X,Y (r) has a unique mode in
(0, 1) and the posterior mode can be obtained as the unique root of the quadratic
equation g(r) = 0 over 0 < r < 1. Clearly, g(r) is a parabola, and it is monotonically
decreasing on (0, 1), which changes sign from positive to negative on this interval and
it has two real roots on (−∞, ∞). Thus, if the coefficient of r2 be positive, then the
smaller root is desired and else, the larger root is desired. This fact completes the
proof.

3 Confidence interval
This section provides some confidence intervals for the parameter R. Subsection 3.1
presents an asymptotic confidence interval for R. Also, the Bayesian credible intervals
are presented in Subsection 3.2.

3.1 Asymptotic confidence interval of R

In this subsection, we propose the asymptotic confidence interval for R, through com-
puting the inverse of the observed Fisher information matrix of (θ1, θ2) using the
Cramér’s theorem.

Using the log-likelihood function (3), the Fisher information matrix of (θ1, θ2) con-
ditioned on D1 ≥ 1 and D2 ≥ 1 can be obtained as follows

I(θ1, θ2) = −E

∂2l(θ1,θ2)
∂θ2

1

∂2l(θ1,θ2)
∂θ1∂θ2

∂2l(θ1,θ2)
∂θ1∂θ2

∂2l(θ1,θ2)
∂θ2

2

 =

(
E[D1|D1>0]

θ2
1

0

0 E[D2|D2>0]
θ2
2

)
=
(
I11 0
0 I22

)
.

According to Kamps and Cramer (2001) and Cramer and Balakrishnan (2013), the
density function of D1 can be written as

fD1
(d) =



F̄n1θ1(t0), d = 0,
d∏

j=1

γj
d+1∑
i=1

ai,d+1F̄
γiθ1(t0), 1 ≤ d ≤ m1 − 1,

1−
m1∏
j=1

γj
m1∑
i=1

ai,m1

γi
F̄ γiθ1(t0), d = m1,

where ai,j =
j∏

ℓ=1,ℓ ̸=i

(γℓ − γi)
−1. Consequently, we have

fD1|D1>0(d) =


1

F̄n1θ1 (t0)

d∏
j=1

γj
d+1∑
i=1

ai,d+1F̄
γiθ1(t0), 1 ≤ d ≤ m1 − 1,

1
F̄n1θ1 (t0)

(
1−

m1∏
j=1

γj
m1∑
i=1

ai,m1

γi
F̄ γiθ1(t0)

)
, d = m1.
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Thus, I11 = 1
θ2
1

m1∑
d=1

dfD1|D1>0(d). Similarly, I22 = 1
θ2
2

m2∑
d=1

dfD2|D2>0(d), where

fD2|D2>0(d) =


1

F̄n2θ2 (t′0)

d∏
j=1

γ′
j

d+1∑
i=1

a′i,d+1F̄
γ′
iθ2(t′0), 1 ≤ d ≤ m2 − 1,

1
F̄n2θ2 (t′0)

(
1−

m2∏
j=1

γ′
j

m2∑
i=1

a′
i,m2

γ′
i

F̄ γ′
iθ2(t0)

)
, d = m2,

and a′i,j =
j∏

ℓ=1,ℓ ̸=i

(γ′
ℓ − γ′

i)
−1. Therefore, the asymptotic variance-covariance matrix,

A = [aij ], is obtained by inverting the Fisher information matrix as the following:

A = I−1(θ1, θ2) =

(
I−1
11 0
0 I−1

22

)
.

Now, the variance of R̂, denoted by B, can be obtained using the Cramér’s theorem;
see Ferguson (1996) or Shao (2003). We have R̂ = g(θ̂1, θ̂2), where g(θ1, θ2) =

θ1
θ1+θ2

.
Therefore, B = btAb, where

b =

(
∂g
∂θ1
∂g
∂θ2

)
=

1

(θ1 + θ2)2

(
θ2
−θ1

)
.

Thus, it can be easily verified that

B = btAb = R2(1−R)2
(

1

E[D1|D1 > 0]
+

1

E[D2|D2 > 0]

)
.

To compute the confidence interval of R, it is enough to estimate B. Therefore, we
have immediately that

B̂ = R̂2(1− R̂)2

(
1

Ê[D1|D1 > 0]
+

1

Ê[D2|D2 > 0]

)
,

which Ê[D1|D1 > 0] and Ê[D2|D2 > 0] are obtained by replacing θ̂1 and θ̂2 instead
of θ1 and θ2 in E[D1|D1 > 0] and E[D2|D2 > 0], respectively. Hence, a 100(1 − α)%
asymptotic confidence interval of R is given by(

max(0, R̂− Z1−α/2

√
B̂),min(1, R̂+ Z1−α/2

√
B̂)
)
, (10)

where Zα is 100α−th percentile of standard normal distribution.

3.2 Bayesian credible interval of R

In this subsection, we obtain the Bayesian and the highest posterior density (HPD)
intervals for R. We consider θ1 ∼ gamma(α1, β1) and θ2 ∼ gamma(α2, β2) as the prior
distributions.
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According to Shao (2003), for any α ∈ (0, 1) a level credible set for R is any C(X,Y )
with

P (R ∈ C(X,Y )) =

∫
C(X,Y )

fR|X,Y (r)dr ≥ 1− α.

A level 1− α HPD credible set for R is defined to be the event

C(X,Y ) = {r : fR|X,Y (r) ≥ cα},

where cα is choosen so that
∫
C(X,Y )

fR|X,Y (r)dr ≥ 1− α. According to Shao (2003),
if fR|X,Y (r) be continuous and unimodal function, then the HPD credible set is
an interval having the shortest length within the class of intervals [a, b] satisfying∫ b

a
fR|X,Y (r)dr = 1 − α. On the other hand, in the proof of Theorem 2.2 (iv), we

showed that fR|X,Y (r) has a unique mode in (0,1). Thus, there exists a HPD credible
interval for R. The following algorithm can be used for these purposes.

Algorithm 3.1. (i) Given X and Y , generate θ1 and θ2 using the posterior distribu-
tions (8) and (9), respectively.
(ii) Compute R1 by substituting the generated θ1 and θ2 in Equation (1).
(iii) Repeat the steps (i) and (ii) for B times to get R1, . . . , RB.
(iv) Arrange R1, . . . , RB increasingly, such that R(1) < . . . < R(B).

(v) A 100(1− α)% Bayesian credible interval is
(
R([B α

2 ]), R([B(1−α
2 )])

)
; where [k] de-

notes the floor of k.
(vi) The HPD for R is the shortest interval of the form

(
R(j), R(j+[B(1−α)])

)
.

4 Simulation study
In this section, Monte Carlo simulations are carried out to evaluate the performances
of the MLEs, Bayes estimators, asymptotic confidence interval, Bayesian and HPD
credible intervals for different censoring schemes. We mainly evaluate the performances
of the MLEs and Bayes estimators in terms of bias and mean of squared errors (MSE).
Also, we evaluate the performances all of the mentioned intervals in terms of average
lengths (AL) and coverage probabilities (CP).

For this purpose, we consider different Type-I progressive hybrid censoring schemes
(r1, t0) and (r2, t

′
0). The Type-II progressive censoring schemes that are employed in

computations, have been represented in Table 1.
From the sample, we compute the MLE and Bayes estimators R̂sq, R̂wsq (for k =

l = 1), R̂ST and R̂0−1 using (6) and existing equations in Theorem 2.2. We compute
the MLEs and Bayes estimators of R for different Type-I progressive hybrid censoring
schemes (r1, t0) and (r2, t

′
0), and we report the biases and MSEs of the MLEs and

Bayes estimators of R by 10,000 replications. The results are represented in the Table
2 and Table 3. The computations corresponding to point estimators are performed
using Mathematica software. Table 2 considers the case that θ1 = 1, θ2 = 2, α1 = 0.9,
β1 = 1.1, α2 = 2.1, β2 = 1.2, and Table 3 considers the case α1 = 0.5, β1 = 1.5, α2 = 2,
β2 = 2 with unchanged θ1 and θ2. Note that, in the tables, F−1 denotes the inverse
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function of the baseline distribution function F . From Table 2 and Table 3, we observe
that
i. for fixed r1 and r2, when t0 or t′0 increases (D1 or D2 stochastically increases), the
MSE decreases;
ii. in all considered cases, the Bayes estimators under different losses are better than
the MLE in terms of the MSE criterion;
iii. among the Bayes estimators, R̂wsq has the least MSE.
iv. in the most considered cases, for the fixed values of m1, m2, t0 and t′0, the censoring
schemes with the late censoring perform well.

Overall, we suggest applying a Type-II censoring scheme and using R̂wsq to estimate
R.

We also got 95% asymptotic confidence interval (AC) of R by simulating 10,000
samples under different Type-I progressive hybrid censoring schemes, and computed
their ALs and CPs. The ALs and CPs of the Bayesian and HPD credible intervals of R
are also obtained by simulating 10,000 samples and computing the Bayesian and HPD
confidence intervals with B = 1, 000 using Algorithm 3.1. These results are reported in
the Table 4 and Table 5. The computations corresponding to confidence and credible
intervals are performed using R software.

In view of Table 4 and Table 5, we see that
i. in the all considered cases, we observe that CPs of ACs are less than 0.95;
ii. in the all situations, for fixed r1 and r2, as t0 or t′0 increases, the AL decreases;
iii. the ALs of the Bayesian and HPD intervals are shorter than the ALs of the ACs.
iv. the HPD intervals perform well in terms of CP criterion.
v. in the most considered cases, for the fixed values of m1, m2, t0 and t′0, the censoring
schemes with the late censoring are better than the other schemes in terms of AL and
AC criteria.

Overall, we suggest applying a Type-II censoring scheme and HPD approach to
construct a confidence interval for R.

Table 1: Type-II progressive censoring schemes.
n m r scheme number
30 5 (5,5,5,5,5) {1}

5 (25,0,0,0,0) {2}
10 (0,0,0,0,0,0,0,0,0,20) {3}
10 (0,0,0,0,20,0,0,0,0,0) {4}

40 5 (7,7,7,7,7) {5}
5 (35,0,0,0,0) {6}
10 (0,0,0,0,0,0,0,0,0,30) {7}
10 (6,0,6,0,6,0,6,0,6,0) {8}
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Table 2: The bias and MSE of the MLEs and Bayes estimators of R when θ1 = 1, θ2 = 2, α1 = 0.9, β1 = 1.1, α2 = 2.1, β2 = 1.2.
(r1, t0) (r2, t

′
0) R̂ R̂sq R̂wsq R̂St R̂0−1

bias MSE bias MSE bias MSE bias MSE bias MSE(
{1}, F−1(0.4)

) (
{5}, F−1(0.6)

)
0.0097 0.0199 0.0163 0.0102 0.0332 0.0091 -0.0298 0.0110 -0.0114 0.0139(

{6}, F−1(0.6)
)

0.0209 0.0230 0.0246 0.0115 0.0408 0.0104 -0.02348 0.0115 -0.0044 0.0151(
{7}, F−1(0.6)

)
0.0170 0.0166 0.0068 0.0092 0.0222 0.0082 -0.0318 0.0103 -0.0097 0.0123(

{8}, F−1(0.6)
)

0.0200 0.0168 0.0095 0.0093 0.0247 0.0084 -0.0294 0.0102 -0.0071 0.0123(
{2}, F−1(0.4)

) (
{5}, F−1(0.6)

)
-0.0051 0.0250 -0.0066 0.0115 0.0206 0.0089 -0.0763 0.0192 -0.0439 0.0201(

{6}, F−1(0.6)
)

0.0048 0.0267 0.0003 0.0120 0.0270 0.0095 -0.0717 0.0187 -0.0383 0.0203(
{7}, F−1(0.6)

)
0.0025 0.0215 -0.0151 0.0107 0.0107 0.0081 -0.0771 0.0184 -0.0415 0.0179(

{8}, F−1(0.6)
)

0.0023 0.0210 -0.0149 0.0105 0.0111 0.0079 -0.0781 0.0181 -0.0416 0.0176(
{3}, F−1(0.4)

) (
{5}, F−1(0.6)

)
-0.0019 0.0430 0.0207 0.0085 0.0332 0.0079 -0.0125 0.0084 -0.0075 0.0101(

{6}, F−1(0.6)
)

0.0072 0.0171 0.0270 0.0099 0.0391 0.0091 -0.0083 0.0092 -0.0033 0.0111(
{7}, F−1(0.6)

)
0.0042 0.0102 0.0101 0.0071 0.0207 0.0067 -0.0154 0.0074 -0.0067 0.0085(

{8}, F−1(0.6)
)

0.0040 0.0106 0.0101 0.0074 0.0208 0.0069 -0.0157 0.0076 -0.0077 0.0088(
{4}, F−1(0.4)

) (
{5}, F−1(0.6)

)
-0.0015 0.0157 0.0149 0.0088 0.0302 0.0080 -0.0252 0.0095 -0.0140 0.0115(

{6}, F−1(0.6)
)

0.0093 0.0186 0.0227 0.0102 0.0374 0.0093 -0.0195 0.0102 -0.0080 0.0126(
{7}, F−1(0.6)

)
0.0048 0.0120 0.0050 0.0079 0.0185 0.0071 -0.0276 0.0088 -0.0125 0.0100(

{8}, F−1(0.6)
)

0.0049 0.0117 0.0052 0.0077 0.0188 0.0069 -0.0276 0.0086 -0.0127 0.0097(
{1}, F−1(0.5)

) (
{5}, F−1(0.7)

)
0.0116 0.0192 0.0183 0.0098 0.0348 0.0089 -0.0270 0.0102 -0.0088 0.0131(

{6}, F−1(0.7)
)

0.0207 0.0219 0.0243 0.0111 0.0401 0.0101 -0.0220 0.0110 -0.0032 0.0145(
{7}, F−1(0.7)

)
0.0215 0.0160 0.0107 0.0088 0.0255 0.0080 -0.0272 0.0094 -0.0051 0.0115(

{8}, F−1(0.7)
)

0.0209 0.0161 0.0103 0.0088 0.0251 0.0081 -0.0277 0.0095 -0.0058 0.0116(
{2}, F−1(0.5)

) (
{5}, F−1(0.7)

)
-0.0040 0.0031 -0.0027 0.0111 0.0220 0.0089 -0.0658 0.0169 -0.0374 0.0183(

{6}, F−1(0.7)
)

0.0027 0.0246 0.0023 0.0117 0.0267 0.0095 -0.0618 0.0170 -0.0329 0.0189(
{7}, F−1(0.7)

)
0.0020 0.0198 -0.0122 0.0105 0.0111 0.0082 -0.0679 0.0164 -0.0360 0.0165(

{8}, F−1(0.7)
)

0.0047 0.0203 -0.0100 0.0106 0.0131 0.0084 -0.0658 0.0164 -0.0337 0.0167
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Continuation of Table 2.
(r1, t0) (r2, t

′
0) R̂ R̂sq R̂wsq R̂St R̂0−1

bias MSE bias MSE bias MSE bias MSE bias MSE(
{3}, F−1(0.5)

) (
{5}, F−1(0.7)

)
-0.0010 0.0138 0.0216 0.0081 0.0338 0.0076 -0.0114 0.0078 -0.0066 0.0096(

{6}, F−1(0.7)
)

0.0067 0.0158 0.0271 0.0092 0.0389 0.0086 -0.0068 0.0084 -0.0018 0.0104(
{7}, F−1(0.7)

)
0.0082 0.0101 0.0107 0.0070 0.0238 0.0067 -0.0115 0.0070 -0.0027 0.0082(

{8}, F−1(0.7)
)

0.0062 0.0102 0.0122 0.0071 0.0225 0.0067 -0.0130 0.0071 -0.0045 0.0083(
{4}, F−1(0.5)

) (
{5}, F−1(0.7)

)
-0.0043 0.0149 0.0142 0.0084 0.0291 0.0077 -0.0243 0.0091 -0.0149 0.0108(

{6}, F−1(0.7)
)

0.0023 0.0166 0.0189 0.0023 0.0334 0.0085 -0.0207 0.0095 -0.0110 0.0116(
{7}, F−1(0.7)

)
0.0008 0.0110 0.0033 0.0074 0.064 0.0066 -0.0276 0.0083 0.0144 0.0093(

{8}, F−1(0.7)
)

0.0056 0.0113 0.0071 0.0076 0.0200 0.0069 -0.0239 0.0083 -0.0104 0.0094

Table 3: The bias and MSE of the MLEs and Bayes estimators of R when θ1 = 1, θ2 = 2, α1 = 0.5, β1 = 1.5, α2 = 2, β2 = 2.
(r1, t0) (r2, t

′
0) R̂ R̂sq R̂wsq R̂St R̂0−1

bias MSE bias MSE bias MSE bias MSE bias MSE(
{1}, F−1(0.4)

) (
{5}, F−1(0.6)

)
0.0108 0.0200 0.0314 0.0092 0.0479 0.0089 -0.0179 0.0090 0.0052 0.0122(

{6}, F−1(0.6)
)

0.0191 0.0227 0.0404 0.0112 0.0560 0.0106 -0.0108 0.01008 0.0132 0.0140(
{7}, F−1(0.6)

)
0.0190 0.0169 0.0044 0.0079 0.0210 0.0071 -0.0369 0.0094 -0.0131 0.0109(

{8}, F−1(0.6)
)

0.0182 0.0164 0.00508 0.0078 0.0217 0.0070 -0.0366 0.0092 -0.0129 0.0107(
{2}, F−1(0.4)

) (
{5}, F−1(0.6)

)
-0.0039 0.0242 -0.0129 0.0108 0.0182 0.0078 -0.0921 0.0220 -0.0563 0.0214(

{6}, F−1(0.6)
)

0.0057 0.0274 -0.0029 0.0120 0.0272 0.0091 -0.0847 0.0221 -0.0470 0.0228(
{7}, F−1(0.6)

)
0.0032 0.0217 -0.0374 0.0114 -0.0065 0.0074 -0.1073 0.0238 -0.0722 0.0215(

{8}, F−1(0.6)
)

0.0027 0.0212 -0.0369 0.0111 -0.0059 0.0072 -0.1076 0.0237 -0.0723 0.0212(
{3}, F−1(0.4)

) (
{5}, F−1(0.6)

)
-0.0029 0.0147 0.0503 0.0097 0.0608 0.0096 -0.0160 0.0078 0.0248 0.0100(

{6}, F−1(0.6)
)

0.0090 0.0172 0.0622 0.0122 0.0716 0.0119 0.0260 0.0093 0.0357 0.0122(
{7}, F−1(0.6)

)
0.0029 0.0102 0.0206 0.0069 0.0310 0.0066 -0.0059 0.0067 0.0043 0.0079(

{8}, F−1(0.6)
)

0.0039 0.0104 0.0225 0.0071 0.0328 0.0068 -0.0041 0.0067 0.0060 0.0080
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Continuation of Table 3.
(r1, t0) (r2, t

′
0) R̂ R̂sq R̂wsq R̂St R̂0−1

bias MSE bias MSE bias MSE bias MSE bias MSE(
{4}, F−1(0.4)

) (
{5}, F−1(0.6)

)
-0.0001 0.0157 0.0381 0.0091 0.0520 0.0088 -0.0041 0.0081 0.0115 0.0105(

{6}, F−1(0.6)
)

0.0075 0.0183 0.0467 0.0110 0.0598 0.0066 0.0025 0.0092 0.0188 0.0123(
{7}, F−1(0.6)

)
0.0059 0.0119 0.0097 0.0072 0.0237 0.0066 -0.0245 0.0080 -0.0077 0.0091(

{8}, F−1(0.6)
)

0.0064 0.0121 0.0109 0.0073 0.0248 0.0067 -0.0236 0.0081 -0.0068 0.0092(
{1}, F−1(0.5)

) (
{5}, F−1(0.7)

)
0.0104 0.0194 0.0323 0.0089 0.0484 0.0086 -0.0161 0.0083 0.0063 0.0115(

{6}, F−1(0.7)
)

0.0215 0.0215 0.0413 0.0104 0.0564 0.0100 -0.0081 0.0089 0.0156 0.0128(
{7}, F−1(0.7)

)
0.0203 0.0165 0.0065 0.0075 0.0226 0.0068 -0.0339 0.0086 -0.0104 0.0102(

{8}, F−1(0.7)
)

0.0214 0.0166 0.0078 0.0077 0.0237 0.0070 -0.0328 0.0087 -0.0092 0.0104(
{2}, F−1(0.5)

) (
{5}, F−1(0.7)

)
-0.0021 0.0237 -0.0022 0.0108 0.0249 0.0084 -0.0724 0.0183 -0.0400 0.0190(

{6}, F−1(0.7)
)

0.0067 0.0255 0.0051 0.0116 0.0314 0.0093 -0.0663 0.0182 -0.0324 0.0197(
{7}, F−1(0.7)

)
0.0045 0.0200 -0.0277 0.0105 -0.0007 0.0074 -0.0893 0.0195 -0.0571 0.0182(

{8}, F−1(0.7)
)

0.0027 0.0203 -0.0288 0.0107 -0.0014 0.0075 -0.0909 0.0201 -0.0589 0.0188(
{3}, F−1(0.5)

) (
{5}, F−1(0.7)

)
0.0005 0.0139 0.0532 0.0094 0.0632 0.0094 0.0193 0.0072 0.0280 0.0093(

{6}, F−1(0.7)
)

0.0068 0.0158 0.0603 0.0111 0.0696 0.0110 0.0255 0.0083 0.0348 0.0109(
{7}, F−1(0.7)

)
0.0073 0.0098 0.0251 0.0065 0.0350 0.0064 -0.0008 0.0060 0.0094 0.0073(

{8}, F−1(0.7)
)

0.0074 0.0101 0.0256 0.0068 0.0354 0.0067 -0.0005 0.0062 0.0097 0.0076(
{4}, F−1(0.5)

) (
{5}, F−1(0.7)

)
-0.0034 0.0150 0.0389 0.0089 0.0523 0.0087 -0.0014 0.0079 0.0123 0.0101(

{6}, F−1(0.7)
)

0.0039 0.0170 0.0458 0.0104 0.0584 0.0101 0.0045 0.0088 0.0188 0.0115(
{7}, F−1(0.7)

)
0.0045 0.0113 0.0120 0.0070 0.0252 0.0065 -0.0203 0.0076 -0.0051 0.0087(

{8}, F−1(0.7)
)

0.0045 0.0114 0.0127 0.0071 0.0258 0.0066 -0.0198 0.0076 -0.0047 0.0088
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Table 4: The average lengths and coverage probabilities of the asymptotic confidence
interval and the Bayesian and HPD credible intervals of R when θ1 = 1, θ2 = 2,
α1 = 0.9, β1 = 1.1, α2 = 2.1, β2 = 1.2.

(r1, t0) (r2, t
′
0) AC Bayesian HPD

AL CP AL CP AL CP(
{1}, F−1(0.4)

) (
{5}, F−1(0.6)

)
0.5138 0.8807 0.4562 0.9835 0.4460 0.9659(

{6}, F−1(0.6)
)

0.5422 0.8753 0.4719 0.9787 0.4613 0.9608(
{7}, F−1(0.6)

)
0.4638 0.8955 0.4107 0.9725 0.4038 0.9523(

{8}, F−1(0.6)
)

0.4660 0.9002 0.4125 0.9737 0.4056 0.9549(
{2}, F−1(0.4)

) (
{5}, F−1(0.6)

)
0.5616 0.8586 0.5035 0.9851 0.4887 0.9642(

{6}, F−1(0.6)
)

0.5822 0.8622 0.5170 0.9822 0.5017 0.9613(
{7}, F−1(0.6)

)
0.5346 0.8811 0.4652 0.9755 0.4540 0.9514(

{8}, F−1(0.6)
)

0.5365 0.8819 0.4670 0.9766 0.4556 0.9550(
{3}, F−1(0.4)

) (
{5}, F−1(0.6)

)
0.4480 0.8848 0.4067 0.9775 0.3972 0.9656(

{6}, F−1(0.6)
)

0.4819 0.8866 0.4242 0.9720 0.4143 0.9598(
{7}, F−1(0.6)

)
0.3799 0.9099 0.3503 0.9646 0.3445 0.9469(

{8}, F−1(0.6)
)

0.3833 0.9122 0.3529 0.9631 0.3469 0.9473(
{4}, F−1(0.4)

) (
{5}, F−1(0.6)

)
0.4802 0.8959 0.4343 0.9813 0.4245 0.9688(

{6}, F−1(0.6)
)

0.5089 0.8894 0.4493 0.9776 0.4390 0.9632(
{7}, F−1(0.6)

)
0.4185 0.9164 0.3825 0.9729 0.3762 0.9568(

{8}, F−1(0.6)
)

0.4217 0.9143 0.3851 0.9691 0.3786 0.9544(
{1}, F−1(0.5)

) (
{5}, F−1(0.7)

)
0.5139 0.8866 0.4561 0.9837 0.4461 0.9699(

{6}, F−1(0.7)
)

0.5284 0.8754 0.4633 0.9823 0.4531 0.9654(
{7}, F−1(0.7)

)
0.4583 0.8969 0.4074 0.9721 0.4007 0.9530(

{8}, F−1(0.7)
)

0.4624 0.9060 0.4103 0.9764 0.4036 0.9599(
{2}, F−1(0.5)

) (
{5}, F−1(0.7)

)
0.5501 0.8653 0.4919 0.9830 0.4783 0.9606(

{6}, F−1(0.7)
)

0.5627 0.8588 0.4987 0.9806 0.4849 0.9589(
{7}, F−1(0.7)

)
0.5166 0.8815 0.4514 0.9745 0.4414 0.9476(

{8}, F−1(0.7)
)

0.5175 0.8833 0.4521 0.9768 0.4420 0.9424(
{3}, F−1(0.5)

) (
{5}, F−1(0.7)

)
0.4488 0.8946 0.4074 0.9797 0.3982 0.9708(

{6}, F−1(0.7)
)

0.4671 0.8893 0.4161 0.9764 0.4066 0.9659(
{7}, F−1(0.7)

)
0.3783 0.9184 0.3500 0.9671 0.3444 0.9532(

{8}, F−1(0.7)
)

0.3797 0.9198 0.3510 0.9687 0.3453 0.9562(
{4}, F−1(0.5)

) (
{5}, F−1(0.7)

)
0.4719 0.8969 0.4280 0.9811 0.4182 0.9680(

{6}, F−1(0.7)
)

0.4876 0.8859 0.4358 0.9785 0.4259 0.9645(
{7}, F−1(0.7)

)
0.4089 0.9153 0.3757 0.9733 0.3696 0.9567(

{8}, F−1(0.7)
)

0.4098 0.9100 0.3766 0.9705 0.3703 0.9535

5 Data analysis
In this section, the analysis of a pair of real data sets is presented for illustrative
purposes. The data sets show the breaking strengths of jute fiber at two different
gauge lengths. These two data sets were used by Xia et al. (2009). Let X and Y
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Table 5: The average lengths and coverage probabilities of the asymptotic confidence
interval and the Bayesian and HPD credible intervals of R when θ1 = 1, θ2 = 2,
α1 = 0.5, β1 = 1.5, α2 = 2, β2 = 2.

(r1, t0) (r2, t
′
0) AC Bayesian HPD

AL CP AL CP AL CP(
{1}, F−1(0.4)

) (
{5}, F−1(0.6)

)
0.5135 0.8757 0.4766 0.9923 0.4669 0.9836(

{6}, F−1(0.6)
)

0.5403 0.8824 0.4918 0.9901 0.4819 0.9792(
{7}, F−1(0.6)

)
0.4634 0.8993 0.4199 0.9849 0.4128 0.9712(

{8}, F−1(0.6)
)

0.4662 0.8981 0.4228 0.9828 0.4157 0.9683(
{2}, F−1(0.4)

) (
{5}, F−1(0.6)

)
0.5632 0.8630 0.5196 0.9914 0.5024 0.9745(

{6}, F−1(0.6)
)

0.5846 0.8644 0.5346 0.9900 0.5174 0.9720(
{7}, F−1(0.6)

)
0.5355 0.8767 0.4677 0.9777 0.4535 0.9433(

{8}, F−1(0.6)
)

0.5336 0.8764 0.4680 0.9752 0.4533 0.9381(
{3}, F−1(0.4)

) (
{5}, F−1(0.6)

)
0.4491 0.8861 0.4267 0.9782 0.4184 0.9702(

{6}, F−1(0.6)
)

0.4797 0.8818 0.4431 0.9671 0.4346 0.9595(
{7}, F−1(0.6)

)
0.3803 0.9104 0.3608 0.9751 0.3553 0.9637(

{8}, F−1(0.6)
)

0.3828 0.9065 0.3632 0.9726 0.3575 0.9603(
{4}, F−1(0.4)

) (
{5}, F−1(0.6)

)
0.4814 0.8928 0.4550 0.9856 0.4462 0.9789(

{6}, F−1(0.6)
)

0.5072 0.8829 0.4696 0.9806 0.4604 0.9714(
{7}, F−1(0.6)

)
0.4191 0.9140 0.3934 0.9797 0.3872 0.9682(

{8}, F−1(0.6)
)

0.4218 0.9165 0.3956 0.9803 0.3893 0.9690(
{1}, F−1(0.5)

) (
{5}, F−1(0.7)

)
0.5136 0.8796 0.4761 0.9934 0.4669 0.9844(

{6}, F−1(0.7)
)

0.5285 0.8854 0.4842 0.9908 0.4749 0.9823(
{7}, F−1(0.7)

)
0.4617 0.9017 0.4198 0.9861 0.4130 0.9737(

{8}, F−1(0.7)
)

0.4616 0.9026 0.4197 0.9874 0.4130 0.9734(
{2}, F−1(0.5)

) (
{5}, F−1(0.7)

)
0.5495 0.8623 0.5087 0.9901 0.4938 0.9712(

{6}, F−1(0.7)
)

0.5610 0.8657 0.5156 0.9881 0.5006 0.9694(
{7}, F−1(0.7)

)
0.5174 0.8847 0.4558 0.9729 0.4439 0.9426(

{8}, F−1(0.7)
)

0.5172 0.8754 0.4561 0.9762 0.4441 0.9463(
{3}, F−1(0.5)

) (
{5}, F−1(0.7)

)
0.4478 0.8951 0.4262 0.9795 0.4181 0.9733(

{6}, F−1(0.7)
)

0.4650 0.8891 0.4346 0.9722 0.4265 0.9658(
{7}, F−1(0.7)

)
0.3774 0.9195 0.3600 0.9799 0.3546 0.9719(

{8}, F−1(0.7)
)

0.3797 0.9188 0.3618 0.9782 0.3562 0.9700(
{4}, F−1(0.5)

) (
{5}, F−1(0.7)

)
0.4708 0.8925 0.4477 0.9846 0.4389 0.9778(

{6}, F−1(0.7)
)

0.4861 0.8776 0.4559 0.9792 0.4470 0.9698(
{7}, F−1(0.7)

)
0.4086 0.9177 0.3855 0.9795 0.3794 0.9689(

{8}, F−1(0.7)
)

0.4092 0.9145 0.3864 0.9787 0.3803 0.9675

denote breaking strength of jute fiber of gauge length 10 mm and breaking strength of
jute fiber of gauge length 20 mm, respectively. These data sets have been used in many
studies related to the stress-strength model; we refer to Mirjalili et al. (2016), Nadeb et
al. (2019), Bhattacharya and Aslam (2020), Yazgan et al. (2022), Chacko et al. (2023),
Pasha-Zanoosi, H. (2023), Sarhan and Tolba (2023), Abdelwahab et al. (2024), Garg
et al. (2024), Saini et al. (2024). We apply the Kolmogorov-Smirnov test for each data
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Table 6: Data Set 1 (Breaking strength of jute fiber of gauge length 10 mm).
693.73 704.66 323.83 778.17 123.06 637.66 383.43 151.48 108.94 50.16
671.49 183.16 257.44 727.23 291.27 101.15 376.42 163.40 141.38 700.74
262.90 353.24 422.11 43.93 590.48 212.13 303.90 506.60 530.55 177.25

Table 7: Data Set 2 (Breaking strength of jute fiber of gauge length 20 mm).
71.46 419.02 284.64 585.57 456.60 113.85 187.85 688.16 662.66 45.58
578.62 756.70 594.29 166.49 99.72 707.36 765.14 187.13 145.96 350.70
547.44 116.99 375.81 581.60 119.86 48.01 200.16 36.75 244.53 83.55

set separately to fit the model. It is observed that for the Data Set 1, the Kolmogorov-
Smirnov statistic is 0.1224 with p-value=0.7141 when X ∼ PHR(e−(x−36), 0.0030), and
for the Data Set 2, the Kolmogorov-Smirnov statistic is 0.1466 with p-value=0.4934
when Y ∼ PHR(e−(y−36), 0.0033). Thus, based on the complete data sets, we have
R̂ = 0.4803.

For illustrative the purposes, we consider two different Type-I progressive hybrid
censoring schemes.
Scheme 1:

r1 = (2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1), t0 = 250,

r2 = (2, 2, 2, 2, 2, 2, 2, 2, 2, 2), t′0 = 300.

By applying these censoring schemes on the complete data, we obtained

x = (43.93, 101.15, 108.94, 123.06, 141.38, 151.48, 163.40, 212.13),

y = (36.75, 45.58, 48.01, 83.55, 113.85, 166.49, 200.16, 244.53).

In this case, we have R̂ = 0.4712 and for α1 = 0.9, β1 = 1.1, α2 = 2.1, β2 = 1.2
we obtain R̂sq = 0.4413, R̂wsq = 0.4467, R̂St = 0.4107 and R̂0−1 = 0.4329. Also,
the 0.95% asymptotic, Bayesian and HPD confidence intervals are (0.2621, 0.6803),
(0.2464, 0.6621) and (0.2363, 0.6420), respectively.
Scheme 2:

r1 = r2 = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1),

t0 = t′0 = 400.

By applying these censoring schemes, we observed

x = (43.93, 50.16, 101.15, 108.94, 123.06, 141.38, 163.40, 177.25, 183.16, 212.13,

257.44, 323.83, 353.24, 383.43),

y = (36.75, 45.58, 48.01, 71.46, 99.72, 116.99, 119.86, 145.96, 166.49, 187.13,

244.53, 284.64, 375.81).

In this case, we have R̂ = 0.4886 and for α1 = 0.9, β1 = 1.1, α2 = 2.1, β2 = 1.2 we
obtain R̂sq = 0.4678, R̂wsq = 0.4698, R̂St = 0.4696 and R̂0−1 = 0.4650. Also, the 0.95%
asymptotic, Bayesian and HPD credible intervals are (0.3098, 0.6675), (0.2893, 0.6509)
and (0.2945, 0.6547), respectively.
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6 Conclusion
In this paper, we considered the estimation of R = P (X < Y ) based on Type-I pro-
gressively hybrid censored samples, when X and Y are belonging to the PHR models.
We got the maximum likelihood and some Bayes estimators of R under some losses.
Also, we presented the asymptotic confidence interval and the Bayesian intervals of R.
The performances of MLEs, Bayes estimators and the proposed intervals are evaluated
via simulation. The results of simulation for considered cases show that the Bayes esti-
mators have the least MSE when we consider the weighted squared error loss function
with the weight r(1−r). Also, the Bayesian and HPD credible intervals are better than
the asymptotic confidence interval in terms of average length and coverage probability.
Also, it is observed that for point estimation and constructing the confidence intervals,
it is better to apply Type-II censoring schemes. Finally, we consider a pair of real
data sets and computed the MLEs, Bayes estimators, asymptotic confidence interval,
and Bayesian and HPD credible intervals under two different Type-I progressive hybrid
censoring schemes.
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