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Abstract: The receiver operating characteristic curve is a simple graphical tool used to
assess the accuracy of diagnostics tests. Pulit (2016) proposed an innovative approach
for estimating the receiver operating characteristic curves based on kernel smooth-
ing. Although his proposed estimator is highly appealing in several aspects, it suffers
from the well-known boundary bias effect. In this paper, we highlight this drawback
and propose a new modified estimator that uses an appropriate boundary kernel. The
asymptotic convergence of the proposed estimator at boundary points is demonstrated.
Using both simulated and real data sets, we illustrate the performance of the proposed
estimator. The results show that the proposed estimator outperforms not only the
Pulit’s estimator but also other commonly used estimators.
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1 Introduction
A receiver operating characteristic (ROC) curve is a simple graphical tool employed for
evaluating and comparing the accuracy of discrimination rules. Today, many scholars
have shown the effectiveness of the ROC curves in a variety of scientific fields such as
psychology, medicine, and machine learning, to name a few (Fawcett, 2006).

Let us consider a discrimination task to assign an individual into two separate
groups based on a continuous measured score. For the sake of simplifying, assume
a medical situation in which two groups are the healthy and the diseased groups.
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In addition, suppose that X and Y as the scores in the healthy and the diseased
groups are random variables with absolutely continuous unknown cumulative distri-
bution functions of F (x) and G(y), respectively. Based on the discrimination rule, an
individual is assigned into the diseased groups if his or her score is greater than a
cut-off point c, −∞ ≤ c ≤ ∞ and into the healthy group, otherwise. This corresponds
to a hypothesis testing in which the null hypothesis (H0) is “the individual is healthy”
and the alternative hypothesis (H1) is “the individual is diseased”. The probability of
type I error is α = P (reject H0| the individual is diseased) = PH0

(X > c) = 1 − F (c)
and the probability of type II error is β = P (accept H0| the individual is diseased) =
PH1(Y < c) = G(c). The sensitivity of the test is defined as SE(c) = 1− β = 1−G(c)
and the specificity of the test is defined by SP (c) = 1 − α = F (c) . The ROC
graph is a two-dimensional graph in which SE(c) is plotted on the vertical axis and
α = 1−SP (c) is plotted on the horizontal axis. Note that for all possible cut-off points
c, 0 ≤ SE(c) ≤ 1 and 0 ≤ SP (c) ≤ 1, the ROC curve depicts SE(c) versus 1− SP (c)
(see Fawcett, 2006, for more details and some useful discussions). Let t = 1 − SP (c)
or c = F−1(1− t) then we have

R(t) = SE(c) = SE(F−1(1− t)) = 1−G(F−1(1− t)), 0 ≤ t ≤ 1.

A highly important issue would be the estimation of the ROC curve based on random
samples X1, . . . , Xm and Y1, . . . , Yn from the two populations, i.e. the healthy group
and the diseased, respectively. The empirical ROC curve is a natural choice; however,
it would not be smooth. Another method for estimating the ROC curve is to use
kernel-type estimators. Zou et al. (1997); Lloyd (1998) and Lloyd and Yong (1999)
are among pioneers in this field. However, kernel-type estimators have their own
restrictions and weaknesses one of which is that they are not invariant under monotone
data transformations. In order to remedy this drawback, Pulit (2016) proposed an
innovative kernel-type estimator for the ROC curve which is not only invariant under
non-decreasing data transformations, but it also has a single smoothing parameter.
Although Pulit’s estimator has its own advantages (see Pulit (2016) for more details),
it suffers from a boundary effect near the boundary points, which is due to using a
symmetric kernel in estimating the distribution function G(·) (see Section 2 of this
paper). In kernel estimation, boundary effects are quite known and several approaches
have so far been proposed to deal with them in regression and density estimation tasks
(Chen, 1999, 2000; Gasser and Müller, 1979; Gasser et al., 1985; Hirukawa and Sakudo,
2014, 2015; John, 1984; Müller, 1991; Zhang et al., 1999). Koláček and Karunamuni
(2009) have considered the boundary effect in the ROC curve estimation and proposed
a boundary-corrected estimator for the ROC curve. Their estimator is a combination of
the reflection method and the transformation method, an approach which was originally
introduced by Zhang et al. (1999) in boundary kernel density estimation. Although
many researchers have considered the boundary effect in kernel density estimation,
not many have shown interest in the analogy issue in kernel distribution estimation
task. Tenreiro (2013) and Tenreiro (2018) proposed boundary kernels for estimating a
cumulative distribution function with bounded support. The advantage of the approach
suggested by Tenreiro is that it estimates cumulative distribution function directly
while Koláček and Karunamuni (2009) estimate density and sum it up to provide an
estimation for the cumulative distribution function.
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In this paper, we have tried to exploit the advantages of both Pulit’s method in ROC
curve estimation and Tenreiro’s approach in boundary correction. More precisely, one
of the boundary kernels proposed by Tenreiro (2013) has been used to modify Pulit’s
estimator. The proposed estimator has no boundary problem when the advantages of
Pulit’s estimator are added.

The rest of the paper is organized as follows. In Section 2, we demonstrate the
Pulit’s estimator boundary problem, that the convergence rate of its bias in the bound-
ary points is slower than the interior points. Section 3 introduces the proposed estima-
tor. In this section, we will show the asymptotic superiority of the proposed estimator.
In Section 4, we conduct a numerical study in order to illustrate the performance of
our proposed estimator and compare it with some other frequently-used estimators. In
Section 5, we applied our estimator to a set of real data which come from a clinical
study. Finally, some conclusions and discussions are given in Section 6.

2 Pulit’s estimator boundary bias
In this section, we briefly describe Pulit’s estimator and argue that it suffers from a
boundary bias problem. For two independent samples X = (X1, . . . , Xm) and Y =
(Y1, . . . , Yn) from two unknown distribution functions F and G with the same supports,
i.e., [0,∞), Pulit (2016) has proposed estimating R(t) based on the vector Ẑ = (1 −
Fm(Y1), . . . , 1− Fm(Yn)), where Fm denotes the empirical distribution function of the
sample Xm. The Pulit’s estimator is given by

R̂P (t) = n−1
n∑

i=1

K

(
t− 1 + Fm(Yi)

h

)
,

where t is the design point, K(u) equals
∫ u

−1
k(s)ds for u ∈ R, k(·) is a bounded and

symmetric probability density function with support [−1, 1], and h is the smoothing
parameter. Pulit (2016) used the Epanechnikov kernel k(s) = 3

4
(1 − s2), −1 ≤ s ≤ 1,

which is the best choice among symmetric kernels (Silverman, 2018). In this paper, we
denote a design point t by the ‘boundary point’ if t = ch for some c ∈ (0, 1) and by
the ‘interior point’, otherwise. Pulit (2016), under some mild assumptions, shows that
R̂P is a consistent estimator. He has proved that R̂P is asymptotically unbiased and,
for the interior points, its bias is of order o(h2). However, in what follows we show
that this is not the case for the boundary points. In fact, R̂P suffers from a boundary
problem in that for the boundary points, the bias of R̂P is of order O(h) rather than
o(h2). Suppose that RP is absolutely continuous and has two continuous and bounded
derivatives with the smoothing parameter h which satisfies h = hn −→ 0 as n −→ ∞.
Then Pulit (2016) has shown that

E
(
R̂P (t)

)
≈ EF,G(K(T1)) +

3∑
j=1

EF,G(K
(j)(T1)(T1,m − T1)

j)

≈ I0 + I1 + I2 + I3, (1)
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where K(j)(·) is the j’th derivative of K(·) for j = 1, 2, 3 and T1 = t−1+F (Y1)
hn

, T1,m =
t−1+Fm(Y1)

hn
and

I0=EF,G(K(T1)) = K(
t− 1

h
) +R(t)

∫ t
h

t−1
h

k(x)dx

−hR(1)(t)

∫ t
h

t−1
h

xk(x)dx+
h2

2
R(2)(t)

∫ t
h

t−1
h

x2k(x)dx+ o(h2).

I1=EF,G(K(T1)(T1,m − T1)) = 0, I2 = EF,G(K
(2)(T1)(T1,m − T1)

2) = O

(
1

m

)
,

I3=EF,G(K
(3)(T1)(T1,m − T1)

3) = O

(
1

m2h2

)
.

See Pulit (2016) proof of Theorem 1. Now we consider the left boundary point t = ch
for some c ∈ (0, 1). Since the support of the Epanechnikov kernel is the compact
interval [−1, 1], we can conclude

t− 1

h
< x <

t

h
⇒ c− 1

h
< x < c.

So, −1 < x < c as h → 0. Now we have

I0 = R(t)

∫ c

−1

k(x)dx− hR(1)(t)

∫ c

−1

xk(x)dx+
h2

2
R(2)(t)

∫ c

−1

x2k(x)dx+ o(h2)

= R(t)+

(∫ c

−1

k(x)dx− 1

)
R(t)− hR(1)(t)

∫ c

−1

xk(x)dx

+
h2

2
R(2)(t)

∫ c

−1

x2k(x)dx+ o(h2)

= R(t) + (µ0,c(k)− 1)R(t)− hR(1)(t)µ1,c(k) +
h2

2
R(2)(t)µ2,c(k) + o(h2), (2)

and µI,c(k) =
∫ c

−1
tlk(t)dt, for l = 0, 1, 2. Using Taylor expansion, we have

R(t) ≈ R(0) + tR
(1)
+ (0) +

t2

2
R

(2)
+ (0) =⇒ R(t) ≈ chR

(1)
+ (0) +

(ch)2

2
R

(2)
+ (0),

R(1)(t) ≈ R
(1)
+ (0) + tR

(2)
+ (0) =⇒ R(1)(t) ≈ R

(1)
+ (0) + chR

(2)
+ (0),

R(2)(t) ≈ R
(2)
+ (0) + tR

(3)
+ (0) =⇒ R(2)(t) ≈ R

(2)
+ (0) + chR

(3)
+ (0),

where R
(i)
+ (0) for i = 1, 2 is the i’th right-derivative of R(t). By substituting these

expressions in (2), we can conclude

I0 = R(t) + (µ0,c(k)− 1)

(
chR

(1)
+ (0) +

(ch)2

2
R

(2)
+ (0)

)
− h(R

(1)
+ (0)

+chR
(2)
+ (0))µ1,c(k) +

h2

2
(R

(2)
+ (0) + chR

(3)
+ (0))µ2,c(k) + o(h2)
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= R(t) + h(c(µ0,c(k)− 1)− µ1,c(k))R
(1)
+ (0) +

h2

2
(c2(µ0,c(k)− 1)

−2cµ1,c(k) + µ2,c(k))R
(2)
+ (0) + o(h2)

= R(t) + hδ1(c)R
(1)
+ (0) +

h2

2
δ2(c)R

(2)
+ (0) + o(h2).

so at the boundary points we have

Bias(R̂P (t)) = hR
(1)
+ (0)δ1(c) +

h2

2
R

(2)
+ (0)δ2(c) +O

(
1

m
+

1

m2h2

)
+ o(h2),

where

δ1(c) = c(µ0,c(k)− 1)− µ1,c(k), δ2(c) = c2(µ0,c(k)− 1)− 2cµ1,c(k) + µ2,c(k).

We can see that the order of convergence of R̂P at the boundary points is different
from that of the interior points. A similar result emerges for the right boundary points,
i.e. for t = 1 − ch, c ∈ (0, 1). In this case, the limits of integrations are −c to 1. In
the case where R

(1)
+ = 0, the order of bias at boundary points agrees with the classical

ones. In order to remedy the drawback of Pulit’s estimator and provide a boundary
corrected estimator for the ROC curve, we have proposed a new estimator in the next
section.

3 Boundary corrected estimator
In the previous section, we showed that the Pulit’s estimator R̂P has a boundary
bias. This drawback is due to the fact that R̂P uses a non-appropriate kernel function
which assigns non-zero weights out of the support of Z = 1 − F (Y ) which is [0, 1].
Tenreiro (2013) introduced some modified kernels for solving the boundary problem in
the kernel-estimation of the cumulative distribution function. For the interior points,
Tenreiro’s estimator is just the ordinary one. However, for the left and right region
points, Tenreiro proposed using special well-adjusted left and right boundary kernels
(See Tenreiro (2013) for more details and Tenreiro (2018) for the extension of the
approach). Our idea is to combine the two approaches introduced by Pulit (2016) and
Tenreiro (2018) to achieve a boundary corrected kernel-type estimator for the ROC
curve. Our proposed estimator enjoys the advantages of both approaches in that for
the interior points, it agrees with the Pulit’ estimator and, as to the boundary regions,
it is corrected for bias. Our proposed estimator is

R̃(t) =


0, t ≤ 0,

n−1
∑n

i=1 K̃c,h(t− 1 + Fm(Yi)), 0 < t < 1,

1, t ≥ 1,

where 0 < h < 1
2 , and

c =


t

h
, 0 < t < h,

1, h ≤ t ≤ 1− h,
1− t

h
, h < t < 1,
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Also K̃c,h(U) =
∫ u

−∞ k̃c,h(v)dv, k̃c,h(v) = k(v/ch)/ch, and h is the smoothing param-
eter and k(·) is a bounded and symmetric kernel with support [−1, 1] such that it
satisfies in the following conditions:∫

k̃c(v)dv = 1,

∫
vk̃c(v)dv = 0,

∫
v2k̃c(v)dv ̸= 0,

where k̃c(v) = k(v/c)/c and k̃c,h(v) = k̃c(v/h)/h. Then, our estimator is:

R̃(t) =



0, t ≤ 0,

n−1
∑n

i=1 K

(
t− 1 + Fm(Yi

t

)
, 0 < t < h,

R̂P (t), h ≤ t ≤ 1− h

n−1
∑n

i=1 K

(
t− 1 + Fm(Yi

1− t

)
, h < t < 1,

1, t ≥ 1.

Consider the left boundary point t = ch, c ∈ (0, 1). If we use the Epanechnikov
kernel with support [−1, 1], then the integral limits [ t−1

h , t
h ] are converted to [−1, c] =

[−1,−c] ∪ [−c, c] as h −→ 0. Now we get∫ −c

−1

k̃c(v)dv = 0,

∫ c

−c

k̃c(v)dv = 1,

∫ −c

−1

vk̃c(v)dvdv = 0, (3)∫ c

−c

vk̃c(v)dv = 0,

∫ −c

−1

v2k̃c(v)dv = 0,

∫ c

−c

v2k̃c(v)dv ̸= 0.

Suppose that R(1)(t) and R(2)(t) exists and continuous for t ∈ (0, 1) and h → 0 as
n → ∞. Then by substituting these key equations in Pulit’s results, it is easy to see
that in the boundary points, the bias of R̃(·) is of order O(h2). For example, consider
I0 in (2)

I0=R(t)

∫ c

−1

k̃c(x)dx− hR(1)(t)

∫ c

−1

xk̃c(x)dx+
h2

2
R(2)(t)

∫ c

−1

x2k̃c(x)dx+ o(h2)

=R(t)

{∫ −c

−1

k̃c(x)dx+

∫ c

−c

k̃c(x)dx

}
− hR(1)(t)

{∫ −c

−1

xk̃c(x)dx+

∫ c

−c

xk̃c(x)dx

}
+
h2

2
R(2)(t)

{∫ −c

−1

x2k̃c(x)dx+

∫ −c

−c

x2k̃c(x)dx

}
+ o(h2)

=R(t) +
h2

2
R(2)(t)

∫ c

−c

x2k̃c(x)dx+ o(h2).

By investigating Pulit’s proofs, it is easy to check that I1, I2 and I2 in (1), remain
unchanged. The variance of R̃(·) is slightly different from the variance of R̂P (·). While
R̃(·) is designed such that the calculations in the boundary and the interior points are
identical, this is not the case for R̂P (·). More precisely, the variance of R̂P (·) which
is provided by Pulit (2016) (see Pulit (2016), Equation 7) is valid only in the interior
points. However, due to Equations in (3), the variance of R̃(·) in both the boundary
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and the interior points agree and are identical with the variance of R̂P (·) in the interior
points. Since the calculations are very cumbersome and do exist in Pulit, we only show
briefly how the variance of R̂P (·) is different in the boundary points. Pulit1 showed
that V ar

(
R̂P (t)

)
:= 1

nJ1 +
n−1
n J2 where J1 = J1,0 +Σ6

k=1J1,k −R2(t) +O(h2 + 1
m +

1
m2h2 +

1
m4h4 ) and Σ6

k=1J1,k = O( 1
mh+

1
m2h3 +

1
m3h5 ) and J2 is provided by Pulit (2016),

Equation 27. For our purpose, we concentrate on J1,0 which is

J1,0 = K2

(
t− 1

h

)
+ 2R(t)

∫ t
h

t−1
h

k(x)K(x)dx− 2hR(1)

∫ t
h

t−1
h

xk(x)K(x)dx+ o(h),

Pulit (2016) in Equation 25 showed that J1,0 = R(t)− 9
35R

(1)(t)h+ o(h). Consider the
left boundary point t = ch for some c ∈ (0, 1) and let γl,c(k) = 2

∫ c

−1
tlk(t)K(t)dt, for

l = 0, 1 and ρ1(c) = (c(γ0,c(k)− 1)− γ1,c(k)) Now we have

J1,0 = 2R(t)

∫ c

−1

k(x)K(x)dx− 2hR(1)(t)

∫ c

−1

xk(x)K(x)dx+ o(h)

= R(t) + (γ0,c(k)− 1)R(t)− hR(1)(t)γ1,c(k) + o(h)

= R(t) + h (c(γ0,c(k)− 1)− γ1,c(k))R
(1)
+ (0) + o(h)

= R(t) + ρ1(c)R
(1)
+ (0)h+ o(h).

For the Epanechnikov kernel, ρ1(c) is

ρ1(c) =
1

112
c7 − 3

40
c5 − 1

16
c4 +

3

16
c3 +

3

8
c2 − 3

4
c+

33

560
.

Note that ρ1(c) is a decreasing function of c ∈ (0, 1) and its smallest value is −9
35 for

c = 1 which is the case for the interior points. Although J0,1 is slightly different in
the boundary points, it has the same order of h in both the boundary and the interior
regions. An analogical investigation could be run for J1,k, k = 1, . . . , 6 and J2.

To sum-up this short discussion, unlike R̂P (·), the boundary-modified kernel esti-
mator R̃(·) is designed such that it has the same rate of convergence and the same
variance in both the boundary and the interior regions.

4 Numerical study
In this section, we illustrate the performance of our proposed estimator through a
simulation study. We compared our proposed estimator with those of Lloyd (1998),
Pulit (2016) and K-K (Koláček and Karunamuni, 2009). We used Epanechnikov kernel
in all the mentioned estimators. In the proposed estimator, we chose the smoothing
parameter using the Beta-reference method proposed by Tenreiro (2013). To choose
the smoothing parameter in both Lloyd estimator and Pulit estimator, we used the
method proposed by Altman and Leger (1995). Finally, for K-K estimator, we chose the
smoothing parameter by the method proposed by Horová et al. (2008). The simulations
and plots in this paper were carried out using MATLAB software.

We considered five different cases for combining distributions (F,G) including: a:
(Beta(1,1), Beta(3,1)), b: (Gamma(1,2), Gamma(3,2)), c: (Normal(0,1), Normal(1,1)),
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Table 1: The mean and standard deviation of the ISE (100 repetitions) in estimating
ROC curve via four methods and four different sample sizes (see the text for details).

(×10−3) Method cases case 1 case 2 case 3 case 4 case 5
(50, 50) LIoyd Mean 5.5108 4.7870 5.0554 6.9369 7.0047

Std. 4.5171 3.6722 4.4036 4.1141 6.6565
K-K Mean 5.5101 4.7124 5.0609 6.7639 7.0338

Std. 4.5171 3.6280 4.4083 4.0806 6.7018
Pulit Mean 5.9723 4.9410 5.3311 4.9179 6.2849

Std. 5.3245 6.3664 4.2310 4.3733 6.0307
Proposed Mean 4.8426 3.8930 4.4208 3.9554 5.8752

Std. 4.4474 3.8473 3.7942 3.8693 6.2042
(100, 100) Lloyd Mean 2.6137 2.9466 2.1251 4.6909 4.6658

Std. 2.0991 2.0730 2.1525 2.6196 4.3771
K-K Mean 2.6136 2.9283 2.1247 4.5719 4.6705

Std. 2.0991 2.0629 2.1537 2.6352 4.7439
Pulit Mean 2.6310 2.6596 2.4381 2.9556 3.9979

Std. 2.2475 2.8549 2.0611 2.5191 4.2617
Proposed Mean 2.2939 2.0219 1.9331 2.3280 3.6485

Std. 2.0989 2.0097 1.8359 2.1759 4.0418
(200, 200) Lloyd Mean 1.7585 1.4818 1.5014 2.3388 1.8644

Std. 1.6334 0.9492 1.4481 1.0143 2.0595
K-K Mean 1.7585 1.4760 1.5011 2.2862 1.8649

Std. 1.6334 0.9453 1.4481 1.0068 2.0600
Pulit Mean 1.6098 1.1876 1.7231 1.2749 1.5433

Std. 1.6740 0.8173 1.4743 1.0478 1.8794
Proposed Mean 1.4029 0.8133 1.3337 0.9655 1.4297

Std. 1.6224 0.7191 1.2798 0.9746 1.7763

d: (lognormal(0,1), lognormal(1,1)) and e: (lognormal(1,1), gama(3,2)). In each case,
we generated 200 samples of three different sample sizes (n,m) = {(50, 50), (100, 100),
(200, 200)}. In all cases, we used the maximum likelihood method to estimate the
unknown parameters. To evaluate and compare the performance of the estimators,
we considered the integrated squared error ISEi =

∫∞
0

(R̂i(t) − R(t))2dt as the error
metric, where R̂i(x), i = 1, 2, 3, 4 stands for the ROC curve estimated by the proposed
estimator, Lloyd estimator, Pulit estimator, and K-K estimator, respectively. In our
setting, we approximate the integral as follow ISEi =

1
100

∑100
j=1(R̂i(tj)−R(tj))

2.

Table 1 shows the mean and standard deviation (×10−3) of the ISE in 100 repe-
titions for different combinations of distributions of X and Y . The simulation results
show that, in almost all cases, based on the mean of ISE, our proposed estimator out-
performs the other three estimators. Figure 4-5 display 30 estimates of the ROC curve
(dotted curves) along with the true ROC curve (bold curve) for the four different cases
(m = 100 and n = 100) via four methods. In all figures, the boundary problem of
Pulit estimator is obvious. On the other hand, both Lloyd estimator and K-K esti-
mator suffer from under-estimation. This drawback is clear especially, in Cases 2, 3
and 4. Lloyd (1998) has accepted this drawback and has confirmed that when R(t) is
convex, his approach under-estimates the ROC curves. In general, the performance of
the proposed estimator in this study is satisfactory.
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Figure 1: Display 30 estimates of the ROC curve (dotted curves) along with the true ROC curve
(bold curve) where F and G are Beta (1,1) and Beta (3,1), respectively (m = 100 and n = 100) via
four methods.

Figure 2: Display 30 estimates of the ROC curve (dotted curves) along with the true ROC curve
(bold curve) where F and G are Gamma (1,2) and Gamma (3,2), respectively (m = 100 and n = 100)
via four methods.

5 Real data analysis
To illustrate the performance of our estimator, we applied it to a set of real data
which come from a clinical study. The data set results from research done by Turck
et al. (2010) to identify the prognostic factors, to predict patient outcomes in patients
with an aneurysmal subarachnoid hemorrhage. The data set involves clinical scores
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Figure 3: Display 30 estimates of the ROC curve (dotted curves) along with the true ROC curve
(bold curve) where F and G are Normal (0,1) and Normal (1,1), respectively (m = 100 and n = 100)
via four methods.

Figure 4: Display 30 estimates of the ROC curve (dotted curves) along with the true ROC curve
(bold curve) where F and G are Lognormal (0, 1) and Lognormal (1, 1), respectively (m = 100 and
n = 100) via four methods.

together with several predictive factors (brain injury-related biomarkers): H-FABP,
NDKA, UFD1 and S100 β. We take the data from the R package pROC (Robin et
al., 2011) which summarizes this data set as “aSAH” for 113 patients. The ROC curve
estimators for S100β as the predictive factor is plotted in Figure 6. The estimators are
our proposed estimator, the Lloyd estimator, Pulit estimator, K-K estimator and the
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Figure 5: Display 30 estimates of the ROC curve (dotted curves) along with the true ROC curve
(bold curve) where F and G are Lognormal (1, 1) and Gamma (3, 2), respectively (m = 100 and
n = 100) via four methods.

empirical estimator. While the empirical ROC curve provides a discontinuous estimate,
Pulit estimator suffers from boundary bias. In addition, the under-estimation in both
Lloyd and K-K estimators, especially for large t (close to 1), is obvious. It can be seen
that, our proposed estimator seems to fit better than the other estimators. Using the
proposed method, the area under the curve is 0.72, which indicates that although S100
β is not an excellent predictor in this case but it has the potential to distinguish the
outcomes between patients with an aneurysmal subarachnoid hemorrhage.

Figure 6: The fitted empirical ROC curve and the estimators of ROC curve for S100β.
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6 Conclusion and discussion
The ROC curve is a popular device to assess discriminant rules. The effectiveness
of the ROC curve is highly dependent on unbiased distribution estimation. Many re-
searchers employ kernel-based estimators for density and distribution estimation where
the smoothing parameter has an essential impact. Pulit (2016) proposed a revolution-
ary approach for the ROC curve estimation since his estimator is just in need of one
smoothing parameter selection. However, his estimator suffers from boundary prob-
lem. We proposed an approach to remedy the Pulit estimator. In contrast to other
estimators, in our proposed estimator, we estimate the distribution directly and we
use a special kernel proposed by Tenreiro (2013) which is designed to be consistent
against the boundary problem. Simulation study on different sample sizes and differ-
ent distributions indicates good performance of our estimator. Also, using a medical
dataset, we demonstrated the proposed method’s capability to estimate the ROC curve
in practice, free from boundary bias.
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