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Abstract: This article proposes two tests to assess the general proportional hazard
rate models for adaptive progressively type-II censored samples. These tests are based
on spacings derived from the order statistics of the adaptive progressively type-II cen-
sored sample. Under the proportional hazard rate model, the distribution of the test
statistics is also derived. An extensive simulation study is performed to evaluate the
power of proposed tests where the underlying distribution is exponential, Rayleigh, and
Pareto. The results indicate that the proposed tests are quite powerful. In addition,
we apply these tests to analyze real-world engineering reliability datasets, highlighting
their practical versatility. Moreover, the point and interval estimators of the unknown
parameter with the most powerful tests are derived when the adaptive progressively
type-II censored sample comes from a proportional hazard rate model.
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1 Introduction
Parametric statistical procedures rely on the assumption of a specific distribution for
the random variable being studied. Therefore, it is crucial to test the validity of the
assumed distribution using sample data before conducting any inferential procedures.
The goodness-of-fit (GOF) technique, which traces its origins back to Karl Pearson’s
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seminal article on chi-square tests in 1900, has been extensively discussed by numerous
scholars. For a comprehensive review of this topic, refer to D’Agostino and Stephens
(1986).

In reliability analysis, it is often impractical to obtain complete data on failure
times for all experimental units due to time and cost constraints. To address this
issue, different censoring schemes have been proposed by researchers. Type-I censoring
terminates the test at a predetermined time, while type-II censoring terminates the
test after a specified number of failures. Epstein (1954) introduced a hybrid censoring
scheme that combines Type-I and type-II censoring. Under this censoring scheme, the
test stops at time T ∗ = min{Xn:N , T}, where Xn:N is the n-th failure time from N units
put on the test, and T > 0 is a predetermined time. However, the above censoring
schemes do not have the flexibility of allowing the removal of units during the test.
To overcome this constraint, the progressive censoring scheme was developed. By
combining type-II and progressive censoring, the progressive type-II censoring scheme
is obtained. Under the progressive type-II censoring scheme, a certain number (N)
of units are randomly selected and put on the test at time zero. The test continues
until the occurrence of the n-th failure. When the i-th unit fails (i = 1, . . . , n − 1),
Ri of the surviving units are randomly removed from the test. Finally, when the nth
failure occurs, all the remaining units Rn are removed from the test. Here, n and R =
(R1, . . . , Rn) are predetermined, and

∑n
i=1Ri = N−n. The observed lifetimes of such a

progressively type-II censored sample are denoted by X1:n:N < X2:n:N < · · · < Xn:n:N .
Progressive censoring has been extensively studied, and for more details, the readers can
refer to Balakrishnan and Aggarwala (2000). Additionally, Balakrishnan and Cramer
(2014) offer a comprehensive guide to the theory and methods of progressive censoring
in their book.

Kundu and Joarder (2006) proposed a censoring scheme called progressive hybrid
censoring, which combines aspects of the hybrid and progressive censoring schemes. In
this censoring scheme, the test stops at time T ∗ = min{Xn:n:N , T} where T > 0 is a pre-
determined time. If Xn:n:N < T , the test stops at time Xn:n:N , and hence n failures are
observed. But if XJ:n:N < T < XJ+1:n:N , the test stops at time T , and hence J failures
are observed. Similar to the hybrid censoring scheme, the effective sample size in
progressive hybrid censoring is random, and hence it may be very small. To tackle this
concern, Ng et al. (2009) proposed the adaptive type-II progressive censoring scheme.
Under this scheme, if Xn:n:N < T , the test concludes at time Xn:n:N . Otherwise, if
XJ:n:N < T < XJ+1:n:N , we take the following approach: RJ+1 = · · · = Rn−1 = 0

and Rn = N − n −
∑J

i=1Ri. This formulation enables us to stop the test as soon as
possible if the (J +1)-th failure time exceeds T for J +1 < n. Figures 1 and 2 provide
visual representations of these scenarios. Recently, Kohansal and Haji (2023) discussed
the estimation of the parameters of modified Weibull distribution on the basis of the
adaptive progressively type-II censored data.

In recent years, various authors have focused on GOF tests applied to progressively
censored samples. For instance, Michael and Schucany (1979) employed a transfor-
mation method to convert progressively type-II censored data into a reduced set of
uncensored data. They subsequently conducted a standard GOF test for uniformity
on the transformed data. Balakrishnan et al. (2002) proposed a GOF test specifically
designed for the exponential model when the available sample is progressively type-
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Figure 1: The test is terminated before time T (Xn:n:N < T ).

Figure 2: The test is terminated after time T (Xn:n:N ≥ T ).

II censored. Balakrishnan and Lin (2003) derived the exact null distribution of the
test statistic proposed by Balakrishnan et al. (2002). Furthermore, Balakrishnan et
al. (2004) extended their method to encompass location-scale families of distributions.
More recently, Wang (2008) proposed another GOF test for the exponential distribu-
tion based on spacings derived from progressively type-II censored data. Interested
readers can also refer to Zhu (2021), Doostparast (2015), Zhao et al. (2024), Mirjalili
and Nadeb (2020), Qin et al. (2022) for further developments in this area.

Throughout this article, we assume that the distribution function (DF) of lifetimes
satisfies the proportional hazard rate model. Let X and Y be two random variables
with hazard rate functions hF and hG and DFs F and G, respectively. Then, ac-
cording to Cox (1972), X and Y satisfy the proportional hazard rate model with the
proportionality constant θ > 0, if hG(x) = θ hF (x) for all x. Alternatively, this can be
expressed as

F̄ (x) =
(
Ḡ(x)

)θ
, (1)

for all x, where F̄ = 1 − F and Ḡ = 1 − G are the survival functions of X and
Y , respectively. This model includes several well-known lifetime distributions such
as exponential, Rayleigh, Pareto, Weibull, and others. It is also a subclass of the
one-parameter exponential family of distributions. Furthermore, this model is flexible
enough to accommodate both monotonic and non-monotonic failure rates, even though
the baseline failure rate is monotonic. For further details on proportional hazard rate
models, readers may refer to Marshall and Olkin (2007). In recent years, numerous
authors have explored proportional hazard rate models in the context of progressively
type-II censored data. For instance, Meshkat and Dehqani (2020) proposed various
predictors for the failure times of censored units in progressively censored data derived
from proportional hazard rate models. Basirat (2013) examined the estimation of the
stress-strength reliability parameter under progressive type-II censoring. Additionally,
Basiri and Asgharzadeh (2021) investigated the determination of the optimal sample
size in progressively type-II censoring, accounting for the associated experimental costs
within proportional hazard rate models. For further related studies, see Chaturvedi et
al. (2019), Fallah (2022), Asgharzadeh and Valiollahi (2009).

In this article, we present GOF tests for the proportional hazard rate model when



Goodness-of-fit tests with spacings 4

the available sample is adaptive progressively type-II censored. Therefore, the remain-
der of the article is structured as follows. In Section 2, we outline the proposed GOF
tests and derive the exact null distribution for the test statistics. Under the adaptive
progressively type-II censored data coming from a proportional hazard rate model, the
statistical inferences about the proportionality parameter θ are investigated in Section
3. The power of the proposed tests is then evaluated through Monte Carlo simulations
in Section 4, considering null distributions such as exponential, Rayleigh, and Pareto.
Section 5 is dedicated to exploring the applicability of the proposed GOF tests on
various real datasets.

2 Proposed tests

Let F be the class of all DFs of the form Fθ(x) = 1 −
(
Ḡ(x)

)θ for all x and θ > 0,
where the DF G is completely known, but the proportionality constant θ is unknown.
Hence

F ≡ F (G) =
{
Fθ(x) : Fθ(x) = 1−

(
Ḡ(x)

)θ
, θ > 0

}
. (2)

Further, let X1, . . . , XN be an independent and identically distributed sample from a
distribution F and X = (X1:n:N , . . . , Xn:n:N ) be the corresponding adaptive progres-
sively type-II censored sample with progressive censoring scheme R = (R1, . . . , Rn)
such that XJ:n:N < T < XJ+1:n:N . We would like to test the composite null hypothe-
sis

H0 : F ∈ F (G) , (3)

with specified G and F is as in Equation (2).
Under the null hypothesis H0 and transforming Wi:n:N = − ln

(
Ḡ(Xi:n:N )

)
for i =

1, . . . , n, it can be shown that W = (W1:n:N , . . . ,Wn:n:N ) is an adaptive progressively
type-II censored sample coming from the exponential distribution with parameter θ.
Now, we define the adaptive progressively type-II censored spacings as follows:

Z1 = NW1:n:N ,

Z2 = (N −R1 − 1)
(
W2:n:N −W1:n:N

)
,

...

ZJ =

N −
J−1∑
j=1

Rj − J + 1

(WJ:n:N −WJ−1:n:N

)
,

ZJ+1 =

N −
J∑

j=1

Rj − J

(WJ+1:n:N −WJ:n:N

)
,

...

Zn =

N −
J∑

j=1

Rj − n+ 1

(Wn:n:N −Wn−1:n:N

)
. (4)
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Following Theorem 6 of Cramer and Iliopoulos (2010), the spacings Z1, . . . , Zn in (4)
are independent and identically distributed as exponential with parameter θ. Let us
define

Vi =
Z1 + · · ·+ Zi

Z1 + · · ·+ Zn
, i = 1, . . . , n− 1. (5)

Based on the random sample Z1, . . . , Zn from the exponential distribution, Balakrish-
nan et al. (2002) proved that the joint distribution of V1, . . . , Vn−1 is equivalent to the
joint distribution of the n−1 order statistics U(1), . . . , U(n−1) generated from a random
sample of size n− 1 from the standard uniform distribution, denoted by U1, . . . , Un−1.
Subsequently, the distribution of test statistic

Y =
1

n− 1

n−1∑
i=1

Z1 + · · ·+ Zi

Z1 + · · ·+ Zn
=

1

n− 1

n−1∑
i=1

Vi
d
=

1

n− 1

n−1∑
i=1

U(i)
d
=

1

n− 1

n−1∑
i=1

Ui,

is similar to the distribution of the mean of n−1 independent and identically distributed
random variables from standard uniform distribution. Furthermore, the test statistic
Y can be expressed as

Y =

∑n−1
i=1 (n− i)Zi

(n− 1)
∑n

i=1 Zi
. (6)

Thus, the numerator of Y is a linear combination of the spacings with decreasing
weights, while the denominator is the sum of the spacings. When the distribution of
spacings Z1, . . . , Zn deviates from being exponential, the spacings can either be larger
or smaller than the expected values, causing the numerator of Y to become excessively
large or small. Therefore, small and large values of Y lead us to the rejection of the null
hypothesis H0 in (3). To determine the critical value tα corresponding to a significance
level α under the null distribution, Balakrishnan and Lin (2003) derived the exact value
of tα such that P (Y < tα) = α for 3 ≤ n ≤ 20. For n > 20, tα can be approximated
using the normal approximation method. Also, the power of the proposed test is

P
(
Y < tα/2

∣∣∣H1

)
+ P

(
Y > t1−α/2

∣∣∣H1

)
.

Using Vi’s in (5), we can define another test statistic as follows

S = −2

n−1∑
i=1

log Vi = −2

n−1∑
i=1

log

(
Z1 + · · ·+ Zi

Z1 + · · ·+ Zn

)
. (7)

Once again, small and large values of S lead us to the rejection of the null hypothesis
H0. On the basis of the joint distribution of V1, . . . , Vn−1, we have

S = 2

n−1∑
i=1

(− log Vi)
d
= 2

n−1∑
i=1

(
− logU(i)

) d
= 2

n−1∑
i=1

(− logUi) .

Hence, the distribution of the test statistic S under the null hypothesis is chi-square
with 2(n− 1) degrees of freedom. The power function of the proposed test is

P
(
S < χ2

α/2,2(n−1)

∣∣∣H1

)
+ P

(
S > χ2

1−α/2,2(n−1)

∣∣∣H1

)
,
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where χ2
γ,m stands for the γ-th lower quantile of the chi-square distribution with m

degrees of freedom.
In reliability and life-testing applications, the exponential, Rayleigh, and Pareto

distributions are extensively used for modeling lifetime data; see, e.g., Lawless (2003).
Therefore, in this article, we will specifically consider these three distributions. How-
ever, it is important to note that the tests discussed here are applicable to any distri-
bution that belongs to the proportional hazard rate model.
1. Exponential distribution with DF F (x) = 1− exp {−θx} , x > 0.
2. Rayleigh distribution with DF F (x) = 1− exp

{
−θx2

}
, x > 0.

3. Pareto distribution with DF F (x) = 1− x−θ, x > 1.
Also, it should be noted that the test statistics Y and S in Equations (6) and (7),
respectively, are inherently scale-invariant under the Exponential and Rayleigh distri-
butions. However, to ensure scale invariance of Y and S under the Pareto distribution,
these test statistics can be modified as

Y⋆ =
1

n− 2

n−1∑
i=2

(
Z2 + · · ·+ Zi

Z2 + · · ·+ Zn

)
,

S⋆ = −2

n−1∑
i=2

log

(
Z2 + · · ·+ Zi

Z2 + · · ·+ Zn

)
,

respectively. Under the null hypothesis, it is evident that the distribution of Y⋆ is
similar to the distribution of the mean of n−2 independent and identically distributed
random variables from standard uniform distribution. Also, the distribution of S⋆

under the null hypothesis follows a chi-square distribution with 2(n − 2) degrees of
freedom. Small and large values of Y⋆ and S⋆ indicate that the null hypothesis should
be rejected.

3 Statistical inference
After the null hypothesis (3) is accepted, it is necessary to discuss the statistical in-
ference about the unknown parameter θ. In order to achieve this, we develop optimal
statistical methods for point and interval estimation, as well as hypothesis testing for
the parameter θ. These methods are based on adaptive progressively type-II censored
data from a proportional hazard rate model as defined in Equation (1).

3.1 Point estimations
Let x = (x1:n:N , . . . , xn:n:N ) be the observed adaptive progressively type-II censored
data drawn from the DF Fθ(·) and the probability density function (PDF) fθ(·) and
assuming J = j, the likelihood function (LF) of the parameter θ is

L(θ) = C

n∏
i=1

fθ(xi:n:N )

j∏
i=1

[
F̄θ(xi:n:N )

]Ri
[
F̄θ(xn:n:N )

]N−n−
∑j

k=1 Rk , (8)
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where

C = N ×

{ ∏n
i=2 (N − i+ 1) , if j = 0,∏n
i=2

(
N − i+ 1−

∑min{i−1,j}
k=1 Rk

)
, if j = 1, 2, . . . , n.

Suppose that Fθ(x) = 1 −
(
Ḡ(x)

)θ and then with the PDF fθ(x) = θ g(x)
(
Ḡ(x)

)θ−1,
where g(x) is the PDF of the DF G(x), the LF of θ in (8) is reduced to

L(θ) = Cθn
n∏

i=1

g(xi:n:N )

Ḡ(xi:n:N )

×

{
n∏

i=1

Ḡ(xi:n:N )

j∏
i=1

[
Ḡ(xi:n:N )

]Ri
[
Ḡ(xn:n:N )

]N−n−
∑j

k=1 Rk

}θ

. (9)

Hence, the logarithm of the LF is

logL(θ) = logC + n log θ +

n∑
i=1

(
log g(xi:n:N )− log Ḡ(xi:n:N )

)
+θ

( n∑
i=1

log Ḡ(xi:n:N )

+

j∑
i=1

Ri log Ḡ(xi:n:N ) +
(
N − n−

j∑
k=1

Rk

)
log Ḡ(xn:n:N )

)
.

From ∂ logL(θ)/∂θ = 0, we conclude that the maximum likelihood estimator for θ is

θ̂ML =
n

T⋆
, (10)

where T⋆ =
∑n

i=1Wi:n:N +
∑J

i=1RiWi:n:N +
(
N−n−

∑J
k=1Rk

)
Wn:n:N with Wi:n:N =

− ln
(
Ḡ(Xi:n:N )

)
. Notice that the PDF of X = (X1:n:N , . . . , Xn:n:N ) in (9) belongs to

the exponential family of distributions. So, T⋆ is a complete and sufficient statistic for θ.
Also, from (4), we can see that T⋆ =

∑n
i=1 Zi. Moreover, since Z1, . . . , Zn are indepen-

dent and identically distributed as exponential with parameter θ, then the distribution
of T⋆ is gamma with shape and scale parameters n and θ, respectively; that is the corre-
sponding PDF is f(x) = θnxn−1 exp{−θx}/Γ(n), where Γ(n) =

∫∞
0
xn−1 exp{−θx}dx

is the complete gamma function. Thus, we have E
(
θ̂ML

)
= nθ/(n − 1) and then the

bias of θ̂ML for estimating θ is B
(
θ̂ML

)
:= E

(
θ̂ML

)
− θ = θ/(n − 1). Furthermore, by

Corollary 1.12 on page 88 of Lehmann and Casella (1998), the uniformly minimum
variance unbiased (UMVU) estimator for θ, when n > 1, is

θ̂UMVU =
n− 1

T⋆
. (11)

Using the distribution of T⋆ and after some algebraic computations, the mean squared
errors (MSEs) of θ̂ML and θ̂UMVU are derived as

MSE(θ̂ML) := E(θ̂ML − θ)2 =
(n+ 2)θ2

(n− 1)(n− 2)
,
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MSE(θ̂UMVU) =
θ2

n− 2
,

respectively. Thus, assuming n > 1, the efficiency (EFF) of θ̂ML with respect to θ̂UMVU
is given by

EFF(θ̂ML, θ̂UMVU) :=
MSE(θ̂UMVU)

MSE(θ̂ML)
= 1− 3

n+ 2
< 1.

Hence, for n > 1, θ̂UMVU dominates θ̂ML on the basis of the MSE criterion.

3.2 Interval estimations
From the distribution of T⋆, we conclude that 2θT⋆ is distributed as chi-square distri-
bution with 2n degrees of freedom. So, an equi-tailed confidence interval for θ at the
confidence level 1− α is (

χ2
α/2,2n

2T⋆
,
χ2
1−α/2,2n

2T⋆

)
.

Now, we restrict ourselves to a class of intervals for θ of the form (a/2T⋆, b/2T⋆) and
find a member of this class with the shortest width subject to Pr (a < 2θT⋆ < b) = 1−α.
Using Lagrange method and after some algebraic manipulations, the optimal values for
a and b are determined by numerically solving the following equations∫ b

a

u2n(x) dx = 1− α, and an−1 exp
(
−a
2

)
= bn−1 exp

(
− b
2

)
,

where um(x) is the PDF of the chi-square distribution with m degrees of freedom.

3.3 Tests of hypotheses
First, we discuss the problem of testing the null hypothesis H0 : θ ≤ θ0 against the
alternative hypothesis H1 : θ > θ0. Since the PDF of X = (X1:n:N , . . . , Xn:n:N ) in (9)
possesses the monotone likelihood ratio property in statistic −T⋆, then from Chapter 3
on page 61 of Lehmann and Romano (2022) the uniformly most powerful (UMP) test
of size α is given by

ψUMP (X) =
{

1, if T⋆ ≤ c,
0, if T⋆ > c, (12)

where for the determination of the constant c, we must solve Eθ0

(
ψUMP (X)

)
= α.

Since 2θT⋆ ∼ χ2
2n, therefore we have c = χ2

α,2n/2θ0. Similarly, for testing H0 : θ ≥ θ0
versus H1 : θ < θ0, the UMP test of size α is given by

ψUMP (X) =
{

1, if T⋆ ≥ c,
0, if T⋆ < c, (13)

where c = χ2
1−α,2n/2θ0. Comparing the UMP tests in (12) and (13), it is concluded

that a UMP test for testing H0 : θ = θ0 against θ ̸= θ0 does not exist. Hence, for
this case, we propose a UMP unbiased (UMPU) test. Using Chapter 4 on page 126 of
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Lehmann and Romano (2022), the UMPU test of size α for testing H0 : θ = θ0 against
H1 : θ ̸= θ0 is of the form

ψUMPU (X) =
{

1, if T⋆ ≤ c1 or ≥ c2,
0, if c1 < T⋆ < c2,

(14)

where the constants c1 and c2 are now specified by solving Eθ0

(
ψUMPU (X)

)
= α and

Eθ0

(
T⋆ ψUMPU (X)

)
= αEθ0 (T⋆). Since 2θT⋆ ∼ χ2

2n, these equations are reduced to∫ C2

C1

u2n(x) dx = 1− α, and
∫ C2

C1

xu2n(x) dx = 2n(1− α), (15)

with Ci = 2θ0ci for i = 1, 2. It is easy to show that xu2n(x) = 2nu2(n+1)(x) for any
x > 0 and n ∈ N. Then, the second equation in (15) can be rewritten as∫ C2

C1

u2(n+1)(x) dx = 1− α.

Integrating by parts and using the first equation in (15), the above equation is reduced
to

Cn
1 exp

(
−C1

2

)
= Cn

2 exp

(
−C2

2

)
.

For obtaining the generalized likelihood ratio (GLR) of size α for H0 : θ = θ0 against
H1 : θ ̸= θ0, it is necessary to derive the likelihood ratio statistic. From (9) and (10),
this statistic is obtained as follows

Λ :=
L(θ0)

L
(
θ̂ML

) =
θn0 exp (−θ0T⋆)

θ̂nML exp
(
− θ̂MLT⋆

) =

(
θ0T⋆
n

)n

exp (n− θ0T⋆) .

From Λ ≤ k, we conclude that Tn
⋆ exp (−θ0T⋆) ≤ K. Thus, the GLR test for testing

H0 : θ = θ0 versus H1 : θ ̸= θ0 is as

ψGLR (X) =

{
1, if Tn

⋆ exp (−θ0T⋆) ≤ K,
0, if Tn

⋆ exp (−θ0T⋆) > K.
(16)

On the basis of the distribution of 2θT⋆ which is the chi-square distribution with
2n degrees of freedom, one can determine the constant K by solving the equation
Eθ0

(
ψGLR (X)

)
= α.

Remark 3.1. We observed that a UMP test does not exist for testing the null hypoth-
esis H0 : θ = θ0 against H1 : θ ̸= θ0. This leads us to the non-existence of a uniformly
most accurate (UMA) confidence interval for θ. But, using the acceptance region of
the UMPU test in (14), we can show that the 100(1 − α)% UMA unbiased (UMAU)
confidence interval for θ is (C1/2T⋆, C2/2T⋆) with∫ C2

C1

u2n(x) dx = 1− α, and Cn
1 exp

(
−C1

2

)
= Cn

2 exp

(
−C2

2

)
.

Also, since the acceptance region of the UMP test of size α in testing H0 : θ = θ0
against H1 : θ ≥ θ0 is T⋆ > χ2

α,2n/2θ0, then χ2
α,2n/2T⋆ is the 100(1− α)% UMA lower

bound for θ. Similarly, from the acceptance region of the UMP test of size α in testing
H0 : θ = θ0 against H1 : θ ≤ θ0, we conclude that the 100(1− α)% UMA upper bound
for θ is χ2

1−α,2n/2T⋆.
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4 Simulation study
In this section, we evaluate the power of the proposed tests for three different null
distributions: exponential, Rayleigh, and Pareto. We examine various alternative dis-
tributions with distinct hazard functions.

For the exponential null distribution, according to Noughabi (2017), the following
alternative distributions are used
• Monotone decreasing hazard rate: Weibull(0.5,1) and Gamma(0.5,1),
• Monotone increasing hazard rate: Weibull(2,1) and Gamma(2,1),
• Non-Monotone hazard rate: Log-normal(0,0.5) and Log-normal(0,1.5).
Also, according to Jahanshahi et al. (2016), the following alternative distributions for
the Rayleigh null distribution are considered
• Monotone decreasing hazard rate: Chi-square(1) and Weibull(0.5,1),
• Monotone increasing hazard rate: Chi-square(3) and Beta(3,1),
• Non-Monotone hazard rate: Beta(1,0.5) and Exponential(2).
Additionally, according to Saldaña-Zepeda et al. (2010), the following alternative dis-
tributions for the Pareto null distribution are investigated
• Monotone decreasing hazard rate: Weibull(0.5,1) and Gamma(0.8,1),
• Monotone increasing hazard rate: Weibull(3,1) and Gamma(3,1),
• Non-Monotone hazard rate: Log-normal(1,1) and Log-normal(5,3).
The probability density functions of these alternative distributions are presented in the
table below.

alternative distribution Probability density function
Weibull(W(α, β)) f(x) = α

βαx
α−1 exp {− (x/β)

α},
x > 0, α > 0, β > 0

Gamma(G(α, β)) f(x) = 1
βαΓ(α)x

α−1 exp {−x/β},
x > 0, α > 0, β > 0

Log-normal (LN(µ, σ)) f(x) = 1√
2πσx

exp
{
−
(
log(x)− µ

)2
/2σ2

}
,

x > 0, µ ∈ R, σ > 0
Chi-square (χ2(n)) f(x) = 1

2n/2Γ(n/2)
xn/2−1 exp {−x/2},

x > 0, n ∈ N
Beta (Be(α, β)) f(x) = Γ(α+β)

Γ(α)Γ(β)x
α−1(1− x)β−1,

0 < x < 1, α > 0, β > 0
Exponential (Exp(λ)) f(x) = λ exp {−λx},

x > 0, λ > 0

We will also compare the performance of the proposed tests against alternative tests
in terms of power. Under the exponential null hypothesis, Döring and Cramer (2019)
suggested a test statistic based on sample spacings and progressive type-II censored
data, defined as follows

δ =

n−1∑
i=1

∣∣∣F̂ ⋆
n−1(Vi)− Vi

∣∣∣+ n−1∑
i=1

∣∣∣ lim
t→Vi

F̂ ⋆
n−1(t)− Vi

∣∣∣− n− 1

n
, (17)

where F̂ ⋆
n−1(t) =

n−1
n F̂n−1(t) with F̂n−1(t) =

1
n−1

∑n−1
i=1 1[0,t](Vj) as the empirical DF

of Vj ’s, and 1[0,t](x) represents the indicator function. The test statistic δ provides
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evidence against the null distribution when it is sufficiently large. Under the Rayleigh
null hypothesis, Ren and Gui (2021) proposed a test statistic based on cumulative
entropy and progressive type-II censored data, given by

η =

∑n−1
i=0 (1− τi)

(
log(1− τi)Q

(1)
i + θ̂

3Q
(3)
i

)
+
√

π
θ̂

(
Φ
(√

2θ̂Xn:n:N

)
− 1

2

)
∑n−1

i=0 (1− τi)Q
(1)
i

− 1, (18)

where θ̂ = n
(∑n

i=1(Ri + 1)X2
i:n:N

)−1 is the maximum likelihood estimator for the
parameter of the Rayleigh distribution, Φ(·) is the DF of the standard normal dis-
tribution, and Q

(j)
i = Xj

i+1:n:N − Xj
i:n:N for j = 1, 3. Additionally, we have τ0 = 0,

X0:n:N = 0, and

τi = 1−
n∏

j=n−i+1

j +Rn−j+1 + · · ·+Rn

j + 1 +Rn−j+1 + · · ·+Rn
, i = 1, . . . , n− 1.

The test statistic η provides evidence for rejecting the null distribution if its value
is too large. Furthermore, under the Pareto null hypothesis, Zhang and Gui (2020)
suggested a test statistic based on the cumulative hazard function and progressive
type-II censored data, expressed as

ξ =

∑n
i=1(Si − S̄)(Ĥ(Si)− ¯̂

H)√∑n
i=1(Si − S̄)2

√∑n
i=1(Ĥ(Si)− ¯̂

H)2
, (19)

where S̄ = 1
n

∑n
i=1 Si with Si = log (Xi:n:N ) for i = 1, . . . , n, and ¯̂

H = 1
n

∑n
i=1 Ĥ(Si)

with

Ĥ(Si) =

i∑
k=1

1

N −
∑k−1

j=1 Rj − k + 1
, i = 1, . . . , n.

The estimator Ĥ is called the Nelson-Aalen estimator of the cumulative hazard function
on the basis of the progressively type-II censored data. The test statistic ξ supports
the rejection of the null hypothesis only for small values.

The test statistics δ, η, and ξ need to be adapted for adaptive progressively type-II
censored data. To achieve this, we define the adjusted censoring scheme as follows

R′
i =

{
Ri 1(0,T )(Xi:n:N ), if i = 1, . . . , n− 1,

N − n−
∑n−1

j=1 R
′
j , if i = n,

where T is the threshold time for adaptive progressive censoring. To compute the
power of the tests δ, η, and ξ under adaptive progressively type-II censored samples, it
is essential to utilize the adjusted censoring scheme R′ = (R′

1, . . . , R
′
n) instead of the

original scheme R = (R1, . . . , Rn) in (17), (18), and (19).
Table 1 presents some choices for adaptive progressive censoring schemes, used in

the simulation study. Also, the significance level is α = 0.05. For each censoring
scheme, we generated 10,000 sets of data to estimate the power of the proposed tests.
The results of these simulations are recorded in Tables 2-4. Empirical evidences from
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Tables 2-4 show the following findings:
1. The power of the proposed tests has an increasing pattern with respect to N and
n under any null and alternative distributions. In other words, as 1− n/N (degree of
censoring) decreases, the power of the tests increases.
2. In general, we observe that the tests proposed perform very well for all null and
alternative distributions considered, except for a few cases.
3. The power of tests Y and S is influenced by the censoring scheme R1, . . . , Rn,
meaning that changing the censoring scheme while keeping other factors constant will
impact the power of the tests. Therefore, the researcher should be careful in selecting
the censoring scheme.
4. While it may seem that the effect of the threshold time T on the power of the tests
is not very noticeable, the researcher should still be careful in selecting T . This careful
selection not only helps increase the power of the tests but also reduces the duration
of the experiment.
5. In comparing the power of the two tests Y and S, it is observed that there is no
absolute superiority of either of these tests, and it depends on the null and alternative
distributions. According to Table 2, when the null distribution is exponential, the
power of test S is greater than Y for all alternative distributions except the distribution
of LN(0,1.5). However, as seen in Table 3, based on the Rayleigh null distribution,
when the alternative distribution is Be(3,1), the power of test Y is greater than S,
and the opposite is true for other alternative distributions. Finally, based on Table
4 and considering the Pareto null distribution, it appears that when the alternative
distribution is W(0.5,1), test S has superiority over test Y , while in the case of the
alternative LN(5,3) distribution, there is no absolute superiority of either of Y and S
tests, and for other alternative distributions, the superiority lies with test Y .
6. The power of tests δ, η, and ξ is influenced by both the censoring scheme R1, . . . , Rn

and the threshold time T . However, test η exhibits a significantly stronger dependence
on these factors under the alternative Be(3,1) and Be(1,0.5) distributions.
7. Table 2 shows that the δ test exhibits superior performance compared to the Y and
S tests exclusively when the alternative distribution is W(2,1). For other alternative
distributions, the δ test generally demonstrates lower power than the Y and S tests.
8. Table 3 demonstrates that, across all alternative distributions, either the Y or the
S test exhibits higher power than the η test. Furthermore, Tables 4 reveals that both
the Y and S tests outperform the ξ test.
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Table 1: Different choices for adaptive type-II progressive censoring scheme.

N n R1, . . . , Rn T No.
20 8 R1 = 12, Ri = 0 for i ̸= 1 0.25 1

2 2
10 3

R8 = 12, Ri = 0 for i ̸= 8 0.25 4
2 5
10 6

R1 = · · · = R4 = 1, R5 = · · · = R8 = 2 0.25 7
2 8
10 9

12 R1 = 8, Ri = 0 for i ̸= 1 0.25 10
2 11
10 12

R12 = 8, Ri = 0 for i ̸= 12 0.25 13
2 14
10 15

R1 = R2 = 0, R3 = · · · = R10 = 1, R11 = R12 = 0 0.25 16
2 17
10 18

16 R1 = 4, Ri = 0 for i ̸= 1 0.25 19
2 20
10 21

R16 = 4, Ri = 0 for i ̸= 16 0.25 22
2 23
10 24

R1 = · · · = R6 = 0, R7 = · · · = R10 = 1, R11 = · · · = R16 = 0 0.25 25
2 26
10 27

40 10 R1 = 30, Ri = 0 for i ̸= 1 0.25 28
2 29
10 30

R10 = 30, Ri = 0 for i ̸= 10 0.25 31
2 32
10 33

R1 = · · · = R10 = 3 0.25 34
2 35
10 36

20 R1 = 20, Ri = 0 for i ̸= 1 0.25 37
2 38
10 39

R20 = 20, Ri = 0 for i ̸= 20 0.25 40
2 41
10 42

R1 = · · · = R20 = 1 0.25 43
2 44
10 45

30 R1 = 10, Ri = 0 for i ̸= 1 0.25 46
2 47
10 48

R30 = 10, Ri = 0 for i ̸= 30 0.25 49
2 50
10 51

R1 = · · · = R10 = 0, R11 = · · · = R20 = 1, R21 = · · · = R30 = 0 0.25 52
2 53
10 54
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Table 2: Power estimates under the exponential distribution and α = 0.05.

No. W(0.5,1) W(2,1) LN(0,0.5) LN(0,1.5) G(0.5,1) G(2,1)
Y S δ Y S δ Y S δ Y S δ Y S δ Y S δ

1 0.616 0.810 0.336 0.622 0.652 0.763 0.836 0.899 0.925 0.298 0.186 0.140 0.336 0.567 0.107 0.215 0.230 0.333
2 0.622 0.806 0.333 0.696 0.705 0.813 0.933 0.965 0.972 0.300 0.184 0.140 0.330 0.556 0.106 0.3108 0.344 0.441
3 0.627 0.810 0.333 0.705 0.711 0.815 0.937 0.966 0.972 0.294 0.185 0.139 0.336 0.563 0.110 0.319 0.349 0.446
4 0.412 0.569 0.150 0.351 0.370 0.491 0.820 0.874 0.910 0.044 0.029 0.046 0.302 0.473 0.094 0.192 0.210 0.298
5 0.404 0.561 0.152 0.354 0.367 0.486 0.830 0.889 0.919 0.048 0.028 0.045 0.312 0.471 0.099 0.197 0.212 0.303
6 0.410 0.573 0.146 0.357 0.372 0.487 0.826 0.883 0.914 0.050 0.029 0.047 0.307 0.463 0.093 0.192 0.208 0.298
7 0.505 0.646 0.236 0.366 0.383 0.507 0.831 0.888 0.918 0.059 0.033 0.046 0.368 0.517 0.135 0.197 0.212 0.309
8 0.505 0.646 0.236 0.366 0.383 0.507 0.831 0.888 0.918 0.059 0.033 0.046 0.368 0.517 0.135 0.197 0.212 0.309
9 0.525 0.656 0.260 0.433 0.446 0.584 0.884 0.927 0.951 0.091 0.046 0.055 0.368 0.516 0.139 0.224 0.237 0.339
10 0.755 0.885 0.576 0.784 0.819 0.878 0.941 0.982 0.975 0.441 0.308 0.295 0.411 0.638 0.214 0.303 0.351 0.421
11 0.754 0.891 0.566 0.820 0.825 0.891 0.958 0.986 0.981 0.443 0.297 0.282 0.414 0.643 0.212 0.372 0.430 0.489
12 0.754 0.891 0.566 0.820 0.825 0.891 0.958 0.986 0.981 0.443 0.297 0.282 0.414 0.643 0.212 0.372 0.430 0.489
13 0.763 0.892 0.585 0.827 0.833 0.895 0.954 0.986 0.979 0.440 0.300 0.288 0.422 0.646 0.216 0.379 0.438 0.498
14 0.591 0.754 0.365 0.591 0.628 0.706 0.938 0.979 0.972 0.093 0.036 0.041 0.397 0.590 0.203 0.280 0.325 0.390
15 0.594 0.756 0.364 0.590 0.626 0.711 0.938 0.981 0.976 0.085 0.035 0.040 0.397 0.595 0.194 0.281 0.321 0.386
16 0.695 0.825 0.506 0.588 0.622 0.707 0.938 0.981 0.975 0.128 0.060 0.062 0.481 0.650 0.267 0.285 0.324 0.395
17 0.773 0.864 0.609 0.750 0.742 0.844 0.962 0.988 0.984 0.315 0.175 0.192 0.494 0.655 0.287 0.343 0.382 0.465
18 0.784 0.873 0.623 0.757 0.751 0.852 0.961 0.988 0.985 0.344 0.202 0.220 0.492 0.657 0.281 0.349 0.385 0.465
19 0.854 0.941 0.741 0.899 0.903 0.947 0.971 0.995 0.989 0.555 0.399 0.423 0.478 0.695 0.302 0.387 0.461 0.508
20 0.855 0.939 0.743 0.901 0.903 0.949 0.969 0.995 0.988 0.566 0.404 0.431 0.485 0.700 0.309 0.437 0.509 0.554
21 0.852 0.940 0.743 0.905 0.908 0.952 0.971 0.996 0.991 0.571 0.414 0.437 0.481 0.709 0.310 0.427 0.503 0.549
22 0.765 0.890 0.615 0.803 0.825 0.879 0.972 0.996 0.990 0.260 0.127 0.141 0.461 0.669 0.299 0.384 0.450 0.497
23 0.777 0.893 0.621 0.808 0.830 0.883 0.971 0.995 0.988 0.253 0.130 0.141 0.476 0.683 0.304 0.373 0.442 0.493
24 0.766 0.891 0.607 0.794 0.818 0.869 0.975 0.996 0.991 0.252 0.127 0.142 0.473 0.683 0.301 0.374 0.439 0.485
25 0.787 0.896 0.664 0.799 0.830 0.881 0.971 0.996 0.989 0.260 0.136 0.150 0.518 0.705 0.352 0.376 0.443 0.491
26 0.878 0.939 0.783 0.895 0.892 0.943 0.971 0.994 0.988 0.519 0.357 0.394 0.538 0.714 0.368 0.412 0.478 0.533
27 0.873 0.939 0.776 0.892 0.887 0.944 0.973 0.995 0.989 0.538 0.370 0.412 0.530 0.708 0.362 0.427 0.483 0.544
28 0.726 0.911 0.484 0.875 0.883 0.933 0.976 0.995 0.993 0.348 0.203 0.193 0.408 0.699 0.178 0.401 0.471 0.533
29 0.720 0.906 0.483 0.882 0.883 0.931 0.996 0.999 0.999 0.355 0.213 0.205 0.414 0.706 0.184 0.514 0.572 0.627
30 0.715 0.913 0.477 0.878 0.882 0.929 0.996 1.000 0.999 0.355 0.215 0.205 0.413 0.710 0.178 0.518 0.575 0.628
31 0.462 0.639 0.215 0.445 0.474 0.570 0.968 0.988 0.988 0.050 0.050 0.075 0.391 0.567 0.164 0.273 0.301 0.379
32 0.454 0.640 0.214 0.440 0.468 0.565 0.962 0.985 0.986 0.051 0.053 0.079 0.385 0.571 0.164 0.278 0.306 0.386
33 0.452 0.627 0.201 0.433 0.463 0.559 0.964 0.989 0.987 0.050 0.048 0.074 0.377 0.563 0.160 0.283 0.307 0.387
34 0.638 0.773 0.410 0.478 0.517 0.612 0.969 0.991 0.989 0.060 0.048 0.069 0.511 0.672 0.274 0.278 0.310 0.393
35 0.654 0.783 0.427 0.604 0.612 0.724 0.992 0.998 0.998 0.073 0.048 0.071 0.513 0.663 0.264 0.357 0.389 0.484
36 0.650 0.781 0.415 0.613 0.623 0.738 0.994 0.998 0.998 0.072 0.045 0.068 0.509 0.668 0.265 0.365 0.393 0.494
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Continuation of Table 2.
No. W(0.5,1) W(2,1) LN(0,0.5) LN(0,1.5) G(0.5,1) G(2,1)

Y S δ Y S δ Y S δ Y S δ Y S δ Y S δ
37 0.929 0.985 0.867 0.980 0.980 0.991 0.999 1.000 1.000 0.636 0.445 0.530 0.592 0.839 0.440 0.595 0.708 0.708
38 0.929 0.986 0.865 0.984 0.980 0.993 0.999 1.000 1.000 0.637 0.452 0.532 0.591 0.843 0.444 0.639 0.733 0.741
39 0.922 0.985 0.866 0.983 0.982 0.991 0.999 1.000 1.000 0.639 0.445 0.531 0.594 0.840 0.442 0.642 0.730 0.739
40 0.788 0.912 0.667 0.837 0.880 0.899 0.999 1.000 1.000 0.070 0.028 0.047 0.591 0.799 0.449 0.508 0.601 0.620
41 0.785 0.910 0.661 0.843 0.883 0.905 0.999 1.000 1.000 0.076 0.028 0.049 0.599 0.797 0.453 0.499 0.589 0.608
42 0.792 0.914 0.671 0.837 0.882 0.902 0.999 1.000 1.000 0.072 0.028 0.045 0.585 0.789 0.436 0.503 0.599 0.615
43 0.878 0.956 0.795 0.860 0.897 0.916 0.999 1.000 1.000 0.121 0.044 0.072 0.680 0.852 0.545 0.501 0.602 0.623
44 0.908 0.964 0.842 0.950 0.951 0.974 1.000 1.000 1.000 0.270 0.106 0.183 0.699 0.852 0.558 0.603 0.683 0.714
45 0.911 0.967 0.844 0.947 0.947 0.973 1.000 1.000 1.000 0.289 0.122 0.200 0.699 0.856 0.558 0.609 0.689 0.715
46 0.982 0.997 0.971 0.998 0.997 0.999 1.000 1.000 1.000 0.814 0.648 0.751 0.724 0.910 0.625 0.719 0.830 0.800
47 0.980 0.998 0.968 0.998 0.997 0.999 0.999 1.000 1.000 0.808 0.644 0.747 0.723 0.908 0.632 0.744 0.839 0.817
48 0.983 0.997 0.969 0.998 0.998 0.999 0.999 1.000 1.000 0.810 0.643 0.749 0.727 0.909 0.628 0.743 0.834 0.819
49 0.946 0.987 0.913 0.981 0.987 0.991 1.000 1.000 1.000 0.336 0.148 0.247 0.730 0.901 0.633 0.679 0.792 0.766
50 0.947 0.986 0.913 0.983 0.989 0.992 1.000 1.000 1.000 0.338 0.149 0.249 0.722 0.896 0.623 0.675 0.786 0.763
51 0.945 0.986 0.911 0.980 0.986 0.990 1.000 1.000 1.000 0.330 0.143 0.242 0.727 0.900 0.626 0.670 0.782 0.760
52 0.960 0.991 0.938 0.983 0.989 0.991 1.000 1.000 1.000 0.338 0.146 0.250 0.786 0.920 0.706 0.679 0.791 0.768
53 0.988 0.996 0.978 0.998 0.997 0.999 1.000 1.000 1.000 0.749 0.545 0.685 0.807 0.928 0.726 0.747 0.835 0.830
54 0.987 0.996 0.981 0.998 0.997 0.999 1.000 1.000 1.000 0.758 0.556 0.696 0.813 0.928 0.733 0.759 0.837 0.836
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Table 3: Power estimates under the Rayleigh distribution and α = 0.05.

No. W(0.5,1) χ2(1) χ2(3) Be(3,1) Be(1,0.5) Exp(2)
Y S η Y S η Y S η Y S η Y S η Y S η

1 0.950 0.999 0.954 0.873 0.994 0.877 0.273 0.350 0.225 0.315 0.270 0.000 0.066 0.139 0.009 0.616 0.809 0.636
2 0.946 0.999 0.944 0.866 0.992 0.857 0.377 0.453 0.403 0.742 0.674 0.000 0.093 0.167 0.007 0.620 0.810 0.617
3 0.947 0.999 0.943 0.869 0.991 0.856 0.382 0.451 0.405 0.749 0.686 0.000 0.096 0.167 0.008 0.616 0.811 0.608
4 0.848 0.965 0.845 0.790 0.943 0.778 0.186 0.232 0.110 0.229 0.228 0.282 0.175 0.328 0.143 0.403 0.557 0.312
5 0.852 0.966 0.850 0.789 0.944 0.780 0.186 0.232 0.115 0.232 0.233 0.282 0.175 0.330 0.137 0.400 0.560 0.307
6 0.847 0.964 0.847 0.782 0.944 0.775 0.182 0.228 0.113 0.237 0.234 0.304 0.172 0.330 0.142 0.396 0.561 0.319
7 0.910 0.984 0.976 0.852 0.965 0.955 0.185 0.239 0.115 0.238 0.239 0.244 0.159 0.327 0.230 0.509 0.648 0.837
8 0.922 0.986 0.881 0.869 0.970 0.823 0.261 0.299 0.192 0.327 0.313 0.000 0.118 0.291 0.097 0.533 0.654 0.503
9 0.921 0.985 0.886 0.861 0.969 0.815 0.274 0.299 0.294 0.321 0.313 0.000 0.114 0.292 0.092 0.528 0.658 0.499
10 0.991 1.000 0.989 0.956 0.998 0.941 0.389 0.454 0.265 0.637 0.573 0.000 0.173 0.138 0.002 0.755 0.890 0.726
11 0.991 1.000 0.988 0.954 0.999 0.939 0.509 0.573 0.505 0.909 0.827 0.000 0.206 0.165 0.001 0.756 0.889 0.724
12 0.990 1.000 0.986 0.955 0.998 0.943 0.496 0.562 0.500 0.909 0.833 0.000 0.207 0.166 0.001 0.758 0.893 0.726
13 0.967 0.997 0.978 0.926 0.989 0.943 0.294 0.354 0.244 0.512 0.489 0.514 0.112 0.290 0.162 0.590 0.749 0.571
14 0.966 0.997 0.977 0.924 0.990 0.943 0.301 0.365 0.262 0.508 0.488 0.532 0.116 0.300 0.177 0.587 0.752 0.580
15 0.970 0.998 0.979 0.931 0.990 0.946 0.298 0.362 0.259 0.517 0.497 0.531 0.111 0.292 0.173 0.593 0.754 0.572
16 0.978 0.999 0.992 0.946 0.992 0.980 0.296 0.362 0.237 0.510 0.488 0.480 0.087 0.283 0.233 0.701 0.825 0.888
17 0.991 0.999 0.933 0.972 0.997 0.898 0.412 0.468 0.075 0.753 0.661 0.000 0.060 0.214 0.002 0.785 0.867 0.687
18 0.993 1.000 0.963 0.973 0.996 0.910 0.501 0.531 0.465 0.765 0.664 0.000 0.066 0.219 0.003 0.781 0.867 0.672
19 0.999 1.000 0.997 0.986 1.000 0.981 0.519 0.578 0.306 0.904 0.858 0.000 0.296 0.159 0.000 0.856 0.939 0.835
20 0.998 1.000 0.997 0.986 0.999 0.975 0.614 0.670 0.582 0.968 0.910 0.000 0.316 0.179 0.000 0.852 0.940 0.801
21 0.998 1.000 0.996 0.986 1.000 0.976 0.597 0.661 0.575 0.969 0.907 0.000 0.321 0.180 0.000 0.854 0.938 0.811
22 0.993 1.000 0.998 0.977 0.998 0.991 0.473 0.539 0.516 0.838 0.777 0.714 0.117 0.206 0.266 0.764 0.885 0.816
23 0.996 1.000 0.998 0.976 0.998 0.990 0.469 0.530 0.508 0.838 0.781 0.715 0.116 0.212 0.272 0.772 0.884 0.819
24 0.996 1.000 0.999 0.978 0.998 0.989 0.458 0.525 0.491 0.838 0.779 0.697 0.121 0.216 0.258 0.771 0.891 0.821
25 0.995 1.000 0.998 0.980 0.999 0.993 0.454 0.533 0.502 0.844 0.778 0.718 0.112 0.209 0.264 0.787 0.900 0.864
26 0.998 1.000 0.994 0.993 0.999 0.977 0.535 0.595 0.245 0.953 0.867 0.000 0.205 0.179 0.000 0.870 0.936 0.812
27 0.999 1.000 0.997 0.993 0.999 0.981 0.614 0.645 0.596 0.951 0.861 0.000 0.182 0.173 0.001 0.873 0.937 0.824
28 0.978 1.000 0.972 0.935 1.000 0.919 0.388 0.498 0.360 0.542 0.512 0.000 0.108 0.173 0.005 0.719 0.910 0.691
29 0.978 1.000 0.970 0.935 0.999 0.914 0.481 0.569 0.480 0.886 0.825 0.000 0.101 0.173 0.003 0.719 0.908 0.680
30 0.981 1.000 0.975 0.929 0.999 0.915 0.469 0.564 0.483 0.885 0.829 0.000 0.109 0.175 0.004 0.723 0.911 0.702
31 0.909 0.984 0.914 0.878 0.979 0.881 0.184 0.233 0.113 0.239 0.246 0.307 0.281 0.467 0.224 0.460 0.630 0.377
32 0.908 0.984 0.913 0.880 0.976 0.883 0.185 0.235 0.116 0.238 0.244 0.305 0.288 0.471 0.232 0.462 0.646 0.390
33 0.905 0.984 0.909 0.876 0.976 0.880 0.189 0.246 0.116 0.237 0.242 0.301 0.280 0.470 0.225 0.472 0.641 0.393
34 0.974 0.998 0.999 0.949 0.994 0.998 0.198 0.252 0.098 0.238 0.242 0.140 0.270 0.479 0.383 0.639 0.775 0.980
35 0.973 0.998 0.936 0.950 0.994 0.896 0.321 0.348 0.263 0.376 0.366 0.000 0.230 0.457 0.171 0.647 0.775 0.571
36 0.972 0.997 0.932 0.948 0.993 0.893 0.322 0.356 0.326 0.376 0.368 0.000 0.229 0.473 0.170 0.654 0.784 0.577
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Continuation of Table 3.
No. W(0.5,1) χ2(1) χ2(3) Be(3,1) Be(1,0.5) Exp(2)

Y S η Y S η Y S η Y S η Y S η Y S η
37 1.000 1.000 1.000 0.996 1.000 0.990 0.617 0.680 0.480 0.898 0.915 0.000 0.352 0.161 0.000 0.927 0.985 0.873
38 1.000 1.000 1.000 0.997 1.000 0.991 0.720 0.790 0.659 0.994 0.969 0.000 0.350 0.156 0.000 0.927 0.983 0.868
39 1.000 1.000 0.999 0.996 1.000 0.990 0.722 0.789 0.651 0.995 0.973 0.000 0.347 0.167 0.000 0.923 0.984 0.862
40 0.998 1.000 0.999 0.992 1.000 0.996 0.419 0.503 0.358 0.678 0.670 0.703 0.205 0.494 0.256 0.783 0.906 0.773
41 0.998 1.000 0.999 0.993 1.000 0.996 0.414 0.495 0.348 0.687 0.679 0.699 0.199 0.486 0.248 0.788 0.912 0.776
42 0.998 1.000 0.999 0.993 1.000 0.997 0.415 0.502 0.357 0.681 0.670 0.705 0.207 0.490 0.255 0.783 0.913 0.777
43 1.000 1.000 1.000 0.996 1.000 0.999 0.420 0.517 0.325 0.688 0.679 0.626 0.140 0.443 0.311 0.873 0.954 0.957
44 1.000 1.000 0.996 0.998 1.000 0.982 0.570 0.628 0.059 0.921 0.854 0.000 0.063 0.353 0.003 0.910 0.967 0.789
45 1.000 1.000 0.997 0.999 1.000 0.984 0.615 0.660 0.526 0.918 0.849 0.000 0.059 0.352 0.004 0.912 0.964 0.793
46 1.000 1.000 1.000 1.000 1.000 0.999 0.787 0.822 0.557 0.998 0.996 0.000 0.569 0.169 0.000 0.983 0.998 0.949
47 1.000 1.000 1.000 1.000 1.000 1.000 0.847 0.895 0.789 1.000 0.997 0.000 0.572 0.167 0.000 0.982 0.997 0.954
48 1.000 1.000 1.000 1.000 1.000 1.000 0.851 0.893 0.787 1.000 0.996 0.000 0.571 0.178 0.000 0.982 0.997 0.957
49 1.000 1.000 1.000 1.000 1.000 1.000 0.684 0.764 0.683 0.982 0.962 0.966 0.099 0.306 0.393 0.944 0.987 0.953
50 1.000 1.000 1.000 1.000 1.000 1.000 0.679 0.756 0.677 0.981 0.962 0.964 0.110 0.304 0.395 0.946 0.987 0.955
51 1.000 1.000 1.000 1.000 1.000 1.000 0.688 0.764 0.681 0.981 0.960 0.963 0.104 0.301 0.385 0.945 0.987 0.954
52 1.000 1.000 1.000 1.000 1.000 1.000 0.692 0.773 0.695 0.979 0.957 0.966 0.108 0.298 0.411 0.962 0.990 0.978
53 1.000 1.000 1.000 1.000 1.000 0.999 0.766 0.828 0.200 1.000 0.987 0.000 0.284 0.199 0.000 0.988 0.996 0.961
54 1.000 1.000 1.000 1.000 1.000 0.999 0.869 0.890 0.791 1.000 0.990 0.000 0.287 0.203 0.000 0.988 0.997 0.959
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Table 4: Power estimates under the Pareto distribution and α = 0.05.

No. W(3,1) W(0.5,1) LN(1,1) LN(5,3) G(3,1) G(0.8,1)
Y S ξ Y S ξ Y S ξ Y S ξ Y S ξ Y S ξ

1 0.500 0.479 0.471 0.753 0.704 0.804 0.322 0.322 0.284 0.354 0.347 0.319 0.384 0.371 0.340 0.770 0.717 0.824
2 0.754 0.703 0.751 0.759 0.709 0.748 0.501 0.490 0.416 0.466 0.453 0.378 0.653 0.620 0.606 0.767 0.716 0.772
3 0.749 0.700 0.743 0.751 0.699 0.745 0.498 0.488 0.413 0.497 0.484 0.408 0.657 0.619 0.610 0.770 0.716 0.768
4 0.442 0.425 0.400 0.441 0.425 0.401 0.294 0.292 0.257 0.296 0.296 0.262 0.377 0.367 0.340 0.457 0.441 0.409
5 0.441 0.428 0.392 0.440 0.424 0.399 0.294 0.291 0.264 0.296 0.294 0.257 0.378 0.367 0.335 0.458 0.437 0.417
6 0.437 0.419 0.384 0.442 0.426 0.386 0.289 0.287 0.245 0.288 0.288 0.245 0.377 0.365 0.328 0.446 0.426 0.395
7 0.438 0.424 0.408 0.542 0.508 0.543 0.296 0.294 0.270 0.290 0.286 0.262 0.384 0.376 0.353 0.541 0.505 0.525
8 0.545 0.511 0.575 0.546 0.510 0.584 0.365 0.356 0.291 0.303 0.305 0.221 0.465 0.449 0.368 0.562 0.520 0.609
9 0.544 0.509 0.557 0.548 0.511 0.554 0.369 0.359 0.347 0.332 0.326 0.206 0.481 0.451 0.467 0.563 0.525 0.581
10 0.744 0.693 0.667 0.914 0.842 0.932 0.555 0.528 0.439 0.564 0.537 0.459 0.667 0.627 0.565 0.925 0.856 0.945
11 0.912 0.841 0.861 0.913 0.845 0.870 0.721 0.669 0.499 0.683 0.644 0.464 0.859 0.787 0.745 0.924 0.855 0.891
12 0.915 0.849 0.868 0.917 0.854 0.872 0.733 0.679 0.502 0.717 0.670 0.500 0.859 0.788 0.751 0.930 0.863 0.897
13 0.750 0.692 0.668 0.741 0.695 0.665 0.544 0.518 0.431 0.537 0.511 0.427 0.675 0.630 0.582 0.767 0.708 0.692
14 0.740 0.682 0.656 0.745 0.688 0.660 0.551 0.524 0.430 0.541 0.513 0.422 0.681 0.634 0.583 0.761 0.705 0.682
15 0.745 0.690 0.662 0.745 0.686 0.668 0.541 0.517 0.431 0.540 0.511 0.434 0.667 0.620 0.570 0.764 0.701 0.688
16 0.747 0.690 0.667 0.836 0.759 0.780 0.547 0.521 0.438 0.546 0.519 0.436 0.671 0.628 0.572 0.837 0.761 0.776
17 0.865 0.770 0.912 0.871 0.779 0.896 0.636 0.586 0.439 0.545 0.519 0.399 0.755 0.690 0.605 0.874 0.786 0.929
18 0.870 0.778 0.833 0.868 0.777 0.829 0.686 0.616 0.481 0.575 0.545 0.249 0.798 0.712 0.693 0.878 0.790 0.855
19 0.929 0.870 0.866 0.970 0.915 0.974 0.760 0.706 0.600 0.765 0.718 0.611 0.865 0.808 0.761 0.975 0.925 0.981
20 0.971 0.922 0.924 0.968 0.917 0.926 0.848 0.782 0.555 0.816 0.757 0.523 0.945 0.878 0.826 0.974 0.922 0.941
21 0.968 0.916 0.927 0.971 0.916 0.925 0.850 0.787 0.566 0.848 0.783 0.565 0.941 0.878 0.821 0.975 0.921 0.942
22 0.923 0.864 0.856 0.917 0.857 0.856 0.761 0.711 0.588 0.762 0.709 0.583 0.871 0.807 0.766 0.930 0.875 0.879
23 0.923 0.864 0.855 0.925 0.864 0.861 0.765 0.712 0.590 0.757 0.703 0.586 0.873 0.809 0.771 0.931 0.875 0.875
24 0.921 0.862 0.860 0.919 0.861 0.860 0.762 0.709 0.597 0.757 0.707 0.596 0.871 0.810 0.771 0.932 0.874 0.884
25 0.921 0.859 0.854 0.948 0.879 0.919 0.756 0.703 0.581 0.765 0.710 0.589 0.873 0.812 0.760 0.947 0.884 0.915
26 0.963 0.898 0.948 0.965 0.901 0.949 0.803 0.737 0.537 0.754 0.706 0.475 0.896 0.832 0.735 0.969 0.910 0.963
27 0.963 0.895 0.918 0.963 0.896 0.923 0.844 0.772 0.568 0.765 0.710 0.398 0.931 0.856 0.813 0.969 0.903 0.938
28 0.660 0.633 0.633 0.935 0.879 0.953 0.485 0.466 0.424 0.557 0.538 0.492 0.509 0.489 0.441 0.937 0.883 0.959
29 0.929 0.869 0.915 0.932 0.875 0.912 0.733 0.697 0.560 0.736 0.701 0.558 0.879 0.818 0.806 0.941 0.885 0.934
30 0.932 0.876 0.910 0.930 0.871 0.911 0.738 0.705 0.554 0.743 0.705 0.550 0.876 0.823 0.792 0.937 0.881 0.925
31 0.560 0.531 0.498 0.569 0.535 0.514 0.414 0.404 0.356 0.410 0.402 0.347 0.499 0.480 0.445 0.568 0.537 0.510
32 0.571 0.539 0.492 0.560 0.533 0.484 0.413 0.403 0.338 0.417 0.403 0.340 0.510 0.483 0.427 0.582 0.549 0.497
33 0.571 0.540 0.504 0.560 0.528 0.497 0.420 0.412 0.357 0.411 0.401 0.349 0.502 0.479 0.434 0.564 0.534 0.503
34 0.583 0.550 0.522 0.742 0.672 0.741 0.419 0.407 0.358 0.425 0.417 0.366 0.499 0.477 0.434 0.753 0.681 0.711
35 0.739 0.672 0.708 0.749 0.675 0.716 0.579 0.537 0.396 0.469 0.453 0.276 0.678 0.624 0.502 0.750 0.675 0.729
36 0.742 0.669 0.706 0.739 0.668 0.707 0.581 0.532 0.469 0.538 0.507 0.290 0.691 0.628 0.616 0.751 0.675 0.726
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Continuation of Table 4.
No. W(3,1) W(0.5,1) LN(1,1) LN(5,3) G(3,1) G(0.8,1)

Y S ξ Y S ξ Y S ξ Y S ξ Y S ξ Y S ξ
37 0.948 0.911 0.894 0.998 0.984 0.999 0.845 0.811 0.718 0.857 0.821 0.763 0.918 0.871 0.832 0.999 0.987 0.999
38 0.998 0.985 0.989 0.997 0.984 0.991 0.968 0.927 0.744 0.949 0.915 0.728 0.994 0.973 0.950 0.999 0.987 0.994
39 0.997 0.983 0.989 0.997 0.984 0.991 0.969 0.931 0.746 0.970 0.928 0.744 0.994 0.970 0.948 0.998 0.986 0.993
40 0.950 0.911 0.893 0.947 0.907 0.890 0.843 0.799 0.708 0.838 0.798 0.699 0.915 0.873 0.832 0.955 0.915 0.902
41 0.950 0.910 0.890 0.951 0.912 0.890 0.837 0.796 0.690 0.838 0.802 0.697 0.922 0.876 0.833 0.956 0.916 0.907
42 0.952 0.914 0.897 0.949 0.913 0.896 0.830 0.792 0.708 0.846 0.803 0.722 0.914 0.869 0.831 0.958 0.916 0.911
43 0.953 0.913 0.900 0.982 0.947 0.963 0.838 0.801 0.715 0.850 0.802 0.729 0.914 0.877 0.834 0.988 0.955 0.965
44 0.987 0.955 0.984 0.986 0.956 0.977 0.915 0.862 0.681 0.864 0.820 0.636 0.966 0.923 0.843 0.990 0.961 0.989
45 0.989 0.955 0.962 0.989 0.954 0.964 0.934 0.875 0.715 0.891 0.840 0.483 0.974 0.929 0.896 0.990 0.960 0.973
46 0.998 0.989 0.992 1.000 0.997 1.000 0.980 0.955 0.903 0.980 0.954 0.905 0.995 0.980 0.974 1.000 0.998 1.000
47 1.000 0.997 0.998 1.000 0.997 0.999 0.995 0.980 0.841 0.990 0.972 0.830 0.999 0.994 0.984 1.000 0.998 0.999
48 1.000 0.997 0.999 1.000 0.998 0.998 0.997 0.980 0.853 0.996 0.982 0.850 1.000 0.993 0.985 1.000 0.998 0.999
49 0.998 0.991 0.990 0.998 0.991 0.992 0.977 0.952 0.896 0.980 0.956 0.901 0.995 0.981 0.972 0.999 0.992 0.992
50 0.998 0.989 0.989 0.998 0.991 0.990 0.978 0.953 0.897 0.979 0.953 0.900 0.996 0.981 0.974 0.999 0.990 0.994
51 0.999 0.989 0.990 0.999 0.991 0.991 0.979 0.951 0.893 0.982 0.954 0.894 0.995 0.982 0.967 0.999 0.991 0.991
52 0.998 0.991 0.992 1.000 0.995 0.999 0.980 0.953 0.895 0.980 0.956 0.902 0.996 0.980 0.973 1.000 0.995 0.998
53 1.000 0.996 1.000 1.000 0.996 1.000 0.990 0.967 0.833 0.978 0.951 0.768 0.998 0.986 0.952 1.000 0.997 1.000
54 1.000 0.995 0.997 1.000 0.995 0.997 0.996 0.974 0.833 0.980 0.953 0.598 1.000 0.989 0.982 1.000 0.997 0.999
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5 Illustrative examples
In this section, the GOF tests demonstrated in this article are used to address the
reliability of ball bearings as an engineering challenge. The dataset, discussed by
Caroni (2002), pertains to tests on the endurance of deep-groove ball bearings. Periodic
inspections were conducted on the ball bearings to detect any potential issues. The
number of millions of revolutions before failure for 25 ball bearings was recorded, and
for our analysis, we are considering the failure times as continuous. By implementing
an adaptive type-II progressive censoring scheme with n = 10, T = 75, and R =
(0, 1, 2, . . . , 2, 1, 1) on the ball bearings lifetime data, we generated the values of X and
R′ as shown in Table 5.

Table 5: The values of running the adaptive type-II progressive censoring scheme
i 1 2 3 4 5 6 7 8 9 10
Xi:n:N 17.88 28.92 33.00 41.52 48.48 51.96 55.56 67.80 68.64 98.64
R′

i 0 1 2 2 2 2 2 2 1 1

We observe that J = 10 in the data provided in Table 5. To test the null hypothesis
that the censored dataset in Table 5 follows a Rayleigh distribution as predicted by
theory, we computed the test statistics Y = 0.55031 and S = 13.76409. Considering a
significance level of α = 0.05, we compared the test statistics with the critical values.
We found that 0.31231 = t0.025 < Y < t0.975 = 0.68769 and 8.230746 = χ2

0.025,18 < S <
χ2
0.975,18 = 31.52638. As a result, the proposed tests do not reject the null hypothesis.

These results are consistent with the findings of Baratpour and Khodadadi (2012)
and Jahanshahi et al. (2016). Therefore, the statistical analysis supports the conclusion
that the observed data in Table 5 is in agreement with a Rayleigh distribution.

Now, we must provide the statistical inferences for the parameter θ of the Rayleigh
distribution with DF F (x) = 1 − exp

{
−θx2

}
, x > 0. Using Equations (10) and

(11), the ML and UMVU estimators of θ based on the censored dataset in Table 5
are 0.000129 and 0.000116, respectively. Also, we can show that the 95% equi-tailed
confidence interval, the confidence interval with the shortest width and the UMAU
confidence interval for θ are derived as (0.000062, 0.00022), (0.000055, 0.00021) and
(0.000064, 0.000227), respectively. Finally, for testing the null hypothesis H0 : θ = θ0
against θ ≠ θ0 with θ0 = 0.0001, using the UMPU and GLR tests at the level of α =
0.05 in Equations (14) and (16), we observe that c1 < T⋆ < c2 and Tn

⋆ exp (−θ0T⋆) > K.
Hence, the null hypothesis H0 : θ = θ0 is accepted.

6 Conclusions
The article proposed two new tests for assessing the fit of a proportional hazard rate
model, accounting for situations where only a limited portion of the random sam-
ple is accessible due to observations being influenced by adaptive progressive type-II
censoring. The new tests rely on normalized spacings and involve a straightforward
computational process. The exact null distribution of the test statistics has been ad-
dressed. It is obvious that the suggested tests can be used for progressively type-II
censored data, conventional type-II censored data and uncensored data, all of which
are subsets of adaptive progressive type-II censoring.
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Clearly, the simulation study across various sample sizes and censoring schemes
indicates that the new tests effectively detect deviations from the null distribution.
The procedures of proposed tests have been demonstrated using real data corresponding
to the proportional hazard rate model. In addition, optimal confidence intervals for
the unknown parameter were developed using adaptive progressively type-II censored
data from a proportional hazard rate model. These included UMA and equi-tailed
confidence intervals, as well as the confidence interval with the shortest width. We also
obtained UMP tests for one-sided alternative hypothesis and UMPU and GLR tests
for two-sided alternative hypothesis.

There are additional noteworthy issues in this area that warrant further explo-
ration. For instance, rather than relying on normalized spacings, we could develop
goodness-of-fit tests using empirical distribution functions for adaptive progressively
type-II censored data. Additionally, we are in the process of broadening the scope of
the proposed tests to encompass general progressively type-II censored data, progres-
sively first-failure censored data, and, from a broader perspective, generalized order
statistics.

References
Asgharzadeh, A. and Valiollahi, R. (2009). Inference for the proportional hazards fam-

ily under progressive type-II censoring. Journal of the Iranian Statistical Society,
8(1):35–53.

Balakrishnan, N. and Aggarwala, R. (2000). Progressive Censoring: Theory, Methods
and Applications. Boston: Birkhäuser.

Balakrishnan, N. and Cramer, E. (2014). The Art of Progressive Censoring: Applica-
tions to Reliability and Quality. New York: Birkhäuser.

Balakrishnan, N. and Lin, C.T. (2003). On the distribution of a test for exponential-
ity based on progressively Type II right censored spacings. Journal of Statistical
Computation and Simulation, 73(4):277–283.

Balakrishnan, N., Ng, H.K.T. and Kannan, N. (2002). A test of exponentiality based on
spacings for progressively Type II censored data. In Huber-Carol, C., Balakrishnan,
N., Nikulin, M.S. and Mesbah, M. (eds) Goodness-of-Fit Tests and Model Validity,
Boston: Birkhäuser.

Balakrishnan, N., Ng, H.K.T. and Kannan, N. (2004). Goodness-of-fit tests based
on spacings for progressively type-II censored data from a general location-scale
distribution. IEEE Transactions on Reliability, 53(3):349–356.

Baratpour, S. and Khodadadi, F. (2012). A cumulative residual entropy characteriza-
tion of the Rayleigh distribution and related goodness-of-fit test. Journal of Statistical
Research of Iran, 9(2):115–131.

Basirat, M., Baratpour, S. and Ahmadi, J. (2013). Statistical inferences for stress-
strength in the proportional hazard models based on progressive type-II censored
samples. Journal of Statistical Computation and Simulation, 85(3):431–449.



Goodness-of-fit tests with spacings 22

Basiri, E. and Asgharzadeh, A. (2021). Optimal random sample size in progressively
type-II censoring based on cost constraint for the proportional hazards family. Jour-
nal of Statistical Computation and Simulation, 91(15):3154–3169.

Caroni, C. (2002). The correct “ball bearings” data. Lifetime Data Analysis, 8:395–399.

Chaturvedi, A., Pathak, A. and Kumar, N. (2019). Statistical inferences for the relia-
bility functions in the proportional hazard rate models based on progressive type-II
right censoring. Journal of Statistical Computation and Simulation, 89(12):2187–
2217.

Cox, D.R. (1972). Regression models and life tables (with discussion). Journal of the
Royal Statistical Society, 34(2):187–220.

Cramer, E. and Iliopoulos G. (2010). Adaptive progressive type-II censoring. Test,
19:342–358.

D’Agostino, R.B. and Stephens, M.A. (1986). Goodness-of-Fit Techniques. New York:
Marcel Dekker.

Doostparast, M. (2015). Goodness-of-fit tests for Weibull populations on the basis of
records. Journal of Statistical Theory and Applications, 14(3):289–300.

Döring, M. and Cramer, E. (2019). On the power of goodness-of-fit tests for the expo-
nential distribution under progressive type-II censoring. Journal of Statistical Com-
putation and Simulation, 89(16):2997–3034.

Epstein, B. (1954). Truncated life tests in the exponential case. Annals of Mathematical
Statistics, 25(3):555–564.

Fallah, A. (2022). Prediction for the future system failures based on type-II censored
coherent systems data under a proportional hazard model. Journal of Statistical
Modelling: Theory and Applications, 3(2):119–143.

Jahanshahi, S.M.A., Habibi Rad, A. and Fakoor, V. (2016). A Goodness-of-Fit Test for
Rayleigh Distribution Based on Hellinger Distance. Annals of Data Science, 3:401–
411.

Kohansal, A. and Haji, H. (2023). Estimations of the parameters for modified Weibull
distribution under adaptive type-II progressive censored samples. Journal of Statis-
tical Modelling: Theory and Applications, 4(1):75–93.

Kundu, D. and Joarder, A. (2006). Analysis of type-II progressively hybrid censored
data. Computational Statistics and Data Analysis, 50(10):2509–2528.

Lawless, J. F. (2003). Statistical Models and Methods for Lifetime Data. 2nd edition,
New York: John Wiley.

Lehmann, E. L. and Casella, G. (1998). Theory of Point Estimation. 2nd edition, New
York: Springer.



23 M. V. Ahmadi, M. Doostparast

Lehmann, E. L. and Romano, J. (2022). Testing Statistical Hypotheses. 4th edition,
New York: Springer.

Marshall, A. W. and Olkin, O. (2007). Life Distributions. New York: Springer.

Meshkat, R. and Dehqani, N. (2020). Point prediction for the proportional hazards
family based on progressive type-II censoring with binomial removals. Journal of
Statistical Modelling: Theory and Applications, 1(1):111–127.

Michael, J.R. and Schucany, W.R. (1979). A new approach to testing goodness-of-fit
for censored samples. Technometrics, 21(4):435–441.

Mirjalili, S.M. and Nadeb, H. (2020). A new simple and powerful normality test for
progressively type-II censored data. Journal of Statistical Modelling: Theory and
Applications, 1(1):129–142.

Ng, H.K.T., Kundu, D. and Chan, P.S. (2009). Statistical analysis of exponential
lifetimes under an adaptive type-II progressively censoring scheme. Naval Research
Logistics, 56(8): 687–698.

Noughabi, H.A. (2017). Testing exponentiality based on Kullback-Leibler information
for progressively Type II censored data. Communications in Statistics-Simulation
and Computation, 46(10):7624–7638.

Qin, X., Yu, J. and Gui, W. (2022). Goodness-of-fit test for exponentiality based on
spacings for general progressive type-II censored data. Journal of Applied Statistics,
49(3):599–620.

Ren, J. and Gui, W. (2021). Goodness-of-fit test for Rayleigh distribution based on pro-
gressively type-II censored sample. Communications in Statistics-Theory and Meth-
ods, 50(16):3851–3874.

Saldaña-Zepeda, D. P., Vaquera-Huerta, H. and Arnold, B. C. (2010). A goodness of
fit test for the Pareto distribution in the presence of type II censoring based on the
cumulative hazard function. Computational Statistics and Data Analysis, 54(4):833–
842.

Wang, B. (2008). Goodness-of-fit test for the exponential distribution based on progres-
sively type-II censored sample. Journal of Statistical Computation and Simulation,
78(2):125–132.

Zhang, Y. and Gui, W. (2020). A goodness of fit test for the Pareto distribution with
progressively type II censored data based on the cumulative hazard function. Journal
of Computational and Applied Mathematics, 368, 112557.

Zhao, W., Yu, J. and Wu, C. (2025). Self-starting monitoring of the progressive type
II censoring data based on goodness-of-fit test. Quality Technology & Quantitative
Management, 22(1):32–54.

Zhu, T. (2021). Goodness-of-fit tests for progressively type-II censored data: Applica-
tion to the engineering reliability data from continuous distribution. Quality Engi-
neering, 33, 128–142.


