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Abstract: According to the δ-shock model, a shock-exposed system fails when an
intershock time falls below a critical threshold δ. Recently, a generalization of the
δ-shock model was introduced by Poursaeed (2019) under which the system fails when
the intershock time falls below a threshold δ1 > 0 and also the system probably fails
with probability θ if the intershock time falls in the interval (δ1, δ2] for δ1 < δ2. In
this paper, we look at this generalized model with new assumptions for intershock
times. More precisely, we assume that the intershock times have a discrete distribu-
tion, and the chance of their occurrence at a critical time point is significantly high. We
investigate some statistical properties of the system’s lifetime, and by providing an il-
lustrative example, we examine theoretical results numerically. Numerical results show
that when the chance of intershock times occurring at a critical time point increases,
the system reliability decreases significantly. Finally, the paper ends with a conclusion.
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1 Introduction
In the real world, most systems suffer from random shocks from various sources. These
random shocks often have an adverse effect on the reliability of the systems. In relia-
bility theory, shock models are used to study the reliability behavior of systems that
are subject to random shocks at random times. There are three basic types of shock
models in the literature, which are extreme shock models, cumulative shock models,
and run shock models (see, e.g., Anderson (1988), Gut (1990), and Mallor and Omey
(2001)). The system failure scenarios under these models are as follows:
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(i) Extreme shock model: The system fails when the magnitude of a shock exceeds a
critical threshold;
(ii) Cumulative shock model: The system fails when the sum of the magnitudes of
shocks exceeds a critical threshold;
(iii) Run shock model: The system fails when there is a run of k shocks exceeding a
critical magnitude.

In addition to the above traditional shock models, there are other shock models that
have been introduced and developed in recent decades. The so-called δ-shock model is
one of them, which has received more attention. According to the δ-shock model, the
system fails when the intershock time (i.e., the time lag between two successive shocks)
falls below a prefixed threshold δ > 0. The δ-shock model was first introduced by Li et
al. (1999), after which it was widely studied by many scientists and researchers. Below
is a summary of some recent developments. Eryilmaz (2012) extended the δ-shock
model using the concept of runs. Eryilmaz (2013) studied the discrete-time version
of the δ-shock model, where shocks happen with accordance to a binomial process.
Parvardeh and Balakrishnan (2015) introduced a mixed δ-shock model, in which, the
system fails when the intershock time is smaller than a threshold δ or the magnitude
of the shock is larger than another threshold δ. Wang and Peng (2017) proposed a
generalized δ-shock model with two types of shocks and two different recovery times
such that for a type i shock for i = 1, 2, the system recovery time is δi, and the system
fails when a shock occurs while the system has not still recovered from the consequence
of the previous shock. Tuncel and Eryilmaz (2018) investigated the survival function
and the mean lifetime of the system failure under the δ-shock model, considering the
proportional hazard rate model. Zhao et al. (2018) proposed an extension of cumulative
shock and δ-shock models as a two-stage shock model with a self-healing mechanism.
Entezari and Roozegar (2020) introduced a system with multiple states of failure as a
mixed discrete-time δ-shock model, which is defined by combining δ-shock and extreme
shock models. Lorvand et al. (2020) discussed a mixed δ-shock model for multi-state
systems by assuming a renewal process of shocks, where the system fails in three specific
states. Poursaeed (2021) studied the reliability analysis of an extension of the discrete
time version of the δ-shock model by considering two different critical thresholds and a
probable failure region. Eryilmaz and Kan (2021) introduced a particular shock model
when the distributions of intershock times and magnitudes of shocks are the discrete
phase-type. Lorvand and Nematollahi (2022) studied a mixed δ-shock model that is
based on both intershock time and magnitude of shocks. Finkelstein and Cha (2024)
revisited the classical δ-shock model and generalized it to the case of renewal processes
of external shocks with arbitrary inter-arrival times and arbitrary distribution of the
recovery parameter δ. Lorvand and Eryilmaz (2024) developed a new δ-shock model
by considering the shock magnitude, based on which, if a shock follows a non-critical
shock at time less than δ1 or a shock follows a critical shock at time occurring less
than δ2, the system fails (δ1 < δ2). Farhadian and Jafari (2025) proposed a generalized
version of the δ-shock model in which the critical region for intershock times is the
interval [α, δ] for 0 ≤ α < δ and also introduced a critical situation for a system under
the classical δ-shock model.

In this paper, we will study a generalized δ-shock model by Poursaeed (2019) under
some new assumptions. In the new framework for the considered model, we assume that
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the intershock times have a discrete distribution, and the chance of their occurrence
at a critical time point of the model is significantly high. Indeed, it is expected that
increasing the chance of intershock times at a point within the critical area of the
model will make the system more sensitive and increase the system’s tendency to fail.
Such a situation is called a critical situation. The idea of the critical situations was
first introduced by Farhadian and Jafari (2025) for the classical δ-shock model. Our
motivation for studying such a model comes from the practical aspect of real-world
systems, since in many cases, the chance of intershock times occurring at a critical time
point may be increased by various factors. An illustrative example will be provided
after presenting the results.

The paper is organized as follows. Section 2 introduces the general framework of the
model. The characteristics of intershock times are derived in Section 3. The stopping
time distribution is obtained in Section 4. In Section 5, some distribution properties of
the system’s lifetime are investigated. An illustrative numerical example is presented
in Section 6. Section 7 concludes the paper.

2 Model description
Consider a system that is subject to a sequence of external shocks that occur randomly
over time. Let Xi (for i = 1, 2, . . . ) denotes the time between the ith and (i + 1)th
shocks. Let also X denote a generic random variable of Xi’s. We assume that the
intershock times X1, X2, . . . are independent and identically distributed (i.i.d.) by an
arbitrary distribution with cumulative distribution function (cdf) F (x) = 1 − F̄ (x) =
P (X ≤ x) (with F (0) = 0). Let δ1 and δ2 (with 0 < δ1 < δ2) are two critical levels and
suppose that the system fails if an intershock time is less than or equal to δ1 for the first
time in the sequence of shocks, and also the system probably fails with a probability
θ, if the intershock time falls in the interval (δ1, δ2]. Otherwise, the system continues
to work safely. In the case where the system failure is probable with probability θ,
corresponding to intervals of the form (δ1, δ2], a Bernoulli trial Y1, Y2, . . . is considered
with a success probability θ. It is assumed that Yi’s are independent of Xi’s. If N1

is the number of intershock times greater than δ2 and N2 is the number of intershock
times that fall in the interval (δ1, δ2] with Y ’s=0, then the number of intershock times
between successive shocks until system failure is equal to N = N1 + N2 + 1. Assume
that N1 and N2 are independent, and also assume that (N1, N2) is independent of Xi’s.
Therefore, the lifetime of the system can be defined as follows:

T =

N∑
i=1

Xi,

where the stopping random variable N is defined as

{N = n} ⇔ {Xn ≤ δ1} or {δ1 < Xn ≤ δ2, Yn = 1}.

The above model was first introduced by Poursaeed (2019). From here on, we look at
the above model with the following two new assumptions for intershock times:
• The intershock time X take positive integer values;
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• The probability that intershock time X occurs at a critical time point is considered
to be significantly high.

Note that when the probability that X takes a point less than δ1 or between (δ1, δ2]
increases significantly, then the reliability of the system is expected to decrease. Such
a situation is a critical situation (Farhadian and Jafari, 2025). Here, we consider
the system in a situation where the probability that X takes the borderline point δ1
increases significantly. In this case, we definitely have a critical situation because the
point δ1 is in the center of two critical areas; one is a definite failure area (that is,
(0, δ1]) and the other is a probable failure area (that is, (δ1, δ2]).

Note that in distribution theory, a significant increase in probability of a random
variable at a particular point is called inflation, and a probability distribution with this
property is called an inflated distribution.

3 Properties of the intershock time X

According to the descriptions in Section 2, the intershock time X takes positive integer
values with a probability mass function (pmf) P (X = x). We denote this pmf as
Preg(X = x) when the probability distribution of intershock times has a regular form,
that is, there is no inflation in the probability distribution. When there is inflation
in the probability distribution of intershock times, we denote the pmf as P+(X = x).
Thus, if X has support in χ and its distribution is inflated at a particular point k
(k ∈ χ), then the k-inflated pmf is given by

P+(X = x) =

{
α+ (1− α)Preg(X = x), if x = k,

(1− α)Preg(X = x), if x ∈ χ− {k},
(1)

where α ∈ [0, 1] is an inflation parameter.
For example, if X follows a 2-inflated geometric distribution, we have Preg(X =

x) = p(1− p)x−1 for x = 1, 2, . . . and 0 < p ≤ 1, thus

P+(X = x) =

{
α+ (1− α)p(1− p), if x = 2,

(1− α)p(1− p)x−1, if x ∈ {1, 3, 4, 5, 6, . . . }.
(2)

Inflated distributions are usually studied for special distributions at particular points
such as 0 and 1 (see, e.g., Rivas (2023)). In the following, we investigate some distri-
butional properties of a general k-inflated distribution.
Theorem 3.1. (Inflation property) Let the intershock time X follow the k-inflated
distribution in (1). Then P+(X = k) ≥ Preg(X = k).
Proof. We have 0 ≤ Preg(X = x) ≤ 1 for any x in its support. On the other hand,
for α = 0, we have P+(X = k) = Preg(X = k), and for α = 1, P+(X = k) is
degenerated pmf. Now, let us consider α ∈ (0, 1). Therefore, multiplying both sides of
Preg(X = k) < 1 by α and adding −αPreg(X = k) to both sides gives

α− αPreg(X = k) > 0.

Finally, adding both sides by Preg(X = k), we get α+(1−α)Preg(X = k) > Preg(X =
k), that is, P+(X = k) > Preg(X = k). This completes the proof.
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Therefore, by Theorem 3.1, in a k-inflated distribution, the probability of occurrence
of k is higher than in a distribution with regular pmf Preg(X = x).

In the next theorem, we obtain the cdf of a k-inflated random variable distributed
by (1).

Theorem 3.2. Let the intershock time X follow the k-inflated distribution in (1). If
the cdf of X in its regular mode is denoted by Freg(x), then the cdf of X in inflated
mode is given by

F+(x) =

{
(1− α)Freg(x), if x < k,

α+ (1− α)Freg(x), if x ≥ k.

Proof. Using (1), we have for x < k,

F+(x) =

x∑
j=0

P+(X = j) = (1− α)

x∑
j=0

Preg(X = j) = (1− α)Freg(x),

and if x ≥ k, we have

F+(x) =

x∑
j=0

P+(X = j)

= (1− α)

x∑
j=0

Preg(X = j))− (1− α)Preg(X = k)

+α+ (1− α)Preg(X = k)

=α+ (1− α)Freg(x).

This completes the proof.

Theorem 3.3. Let the intershock time X follow the k-inflated distribution in (1). If
the reliability function of X in regular mode is denoted by F̄reg(x), then the reliability
function of X in inflated mode is given by

F̄+(x) =

{
α+ (1− α)F̄reg(x), if x < k,

(1− α)F̄reg(x), if x ≥ k.

Proof. By using the definition of reliability function (F̄+(x) = P+(X > x)) and using
Theorem 3.2, the proof is straightforward.

In the following theorem, we obtain the moments related to intershock times under
k-inflated distribution in (1).

Theorem 3.4. Let Ereg[X
r] be the rth moment of the intershock time X in its regular

mode. The rth moment of the k-inflated version of X distributed by (1) is

E+[X
r] = αkr + (1− α)Ereg[X

r].

In particular, for r = 1, we have E+[X] = αk + (1− α)Ereg[X].
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Proof. We have

E+[X
r] =

∑
x

xrP+(X = x)

= (1− α)
∑
x

xrPreg(X = x)− (1− α)krPreg(X = k)

+kr (α+ (1− α)Preg(X = k))

= αkr + (1− α)Ereg[X
r].

The theorem is proved.

In the following, we calculate the probability generating function (pgf) of the in-
flated distribution in (1).

Theorem 3.5. If intershock time X follows the k-inflated distribution in (1), then its
pgf is

G+
X(z) = αzk + (1− α)Greg

X (z),

where Greg
X (z) is the pgf of X in its regular mode.

Proof. We have

G+
X(z) = E+[z

X ] =
∑
x

zxP+(X = x) = αzk + (1− α)
∑
x

zxPreg(X = x)

= αzk + (1− α)Ereg[z
X ]

= αzk + (1− α)Greg
X (z).

The theorem is proved.

4 Properties of the stopping time N

In this section, we derive the pmf of random variables N1, N2, and N under the crit-
ical situation. The following results are a rewrite of the corresponding results from
Poursaeed (2019) in terms of the inflated distribution of intershock times. Since n1 of
X’s are as X > δ2, and n2 of X’s are as (δ1 < X ≤ δ2, Y = 0), and one of X’s is as
X ≤ δ1 or (δ1 < X ≤ δ2, Y = 1), therefore, the joint pmf of N1 and N2 is given by (for
n1, n2 = 0, 1, 2, . . . )

P (N1 = n1, N2 = n2) =

(
n1 + n2

n1

)(
P+(X > δ2)

)n1
(
(1− θ)P+(δ1 < X ≤ δ2)

)n2

×
(
θP+(δ1 < X ≤ δ2) + P+(X ≤ δ1

)
=

(
n1 + n2

n1

)(
F̄+(δ2)

)n1
(
(F+(δ2)− F+(δ1)) (1− θ)

)n2

×
(
(F+(δ2)− F+(δ1)) θ + F+(δ1)

)
. (3)

To obtain P (N1 = n1) and P (N2 = n2) from (3), we need the following lemma.
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Lemma 4.1. (Graham et al., 1994, Page 199) Let r be an arbitrary real number such
that 0 < r < 1. Then

∞∑
i=0

(
i+ j

j

)
ri =

1

(1− r)j+1
.

Now, by using (3), the pmf of N1 is obtained as

P (N1 = n1)=

∞∑
n2=0

P (N1 = n1, N2 = n2)

=

∞∑
n2=0

{(
n1 + n2

n1

)(
F̄+(δ2)

)n1
(
(F+(δ2)− F+(δ1)) (1− θ)

)n2

×
(
(F+(δ2)− F+(δ1)) θ + F+(δ1)

)}
=
(
F̄+(δ2)

)n1
(
(F+(δ2)− F+(δ1)) θ + F+(δ1)

)
×

∞∑
n2=0

(
n1 + n2

n1

)(
(F+(δ2)− F+(δ1)) (1− θ)

)n2

=

(
F̄+(δ2)

)n1
(
(F+(δ2)− F+(δ1)) θ + F+(δ1)

)(
1− (F+(δ2)− F+(δ1)) (1− θ)

)n1+1 (by Lemma 1)

=

(
F̄+(δ2)

F̄+(δ2) + (F+(δ2)− F+(δ1)) θ + F+(δ1)

)n1

× (F+(δ2)− F+(δ1)) θ + F+(δ1)

F̄+(δ2) + (F+(δ2)− F+(δ1)) θ + F+(δ1)
, n1 = 0, 1, 2, . . . , (4)

that is, N1 follows the geometric distribution.
By a similar way, it can be shown that the random variable N2 has geometric

distribution with the following pmf

P (N2 = n2) =

(
(1− θ) (F+(δ2)− F+(δ1))

F+(δ2)

)n2 (F+(δ2)− F+(δ1)) θ + F+(δ1)

F+(δ2)
, (5)

for n2 = 0, 1, 2, . . . .
Since N = N1 + N2 + 1, and N1 and N2 have geometric distribution with pmf in

(4) and (5), respectively, therefore,

P (N = n) =

(
1−

(
F+(δ1)− F+(δ2)

)
θ + F+(δ1)

)n−1

×
((

F+(δ1)− F+(δ2)
)
θ + F+(δ1)

)
, for n = 1, 2, . . . , (6)

that is, N follows the geometric distribution.
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5 Properties of the system’s lifetime T

In general, deriving an explicit representation of the reliability function for the consid-
ered system is difficult, or very complex if obtained. Therefore, the pgf of the system’s
lifetime can be useful for the calculation of the probability mass function of the system’s
lifetime. Below, we obtain the pgf of the system’s lifetime.

Theorem 5.1. Consider the model described in Section 2. If the distribution of X is
inflated at the critical point δ1, then the pgf of the system’s lifetime is

GT (z) =

(
α+ (1− α)

((
Freg(δ2)− Freg(δ1)

)
θ + Freg(δ1)

))
1−

(
1−

(
α+ (1− α)

(
(Freg(δ2)− Freg(δ1)) θ + Freg(δ1)

)))
×
(
αzδ1 + (1− α)Greg(z)

)(
αzδ1 + (1− α)Greg(z)

) .
Proof. The pgf of the system’s lifetime T can be calculated as follows

GT (z) = E[zT ] = E
[
z
∑N

i=1 Xi

]
= E

[
E+

[
z
∑N

i=1 Xi
∣∣N]]

= E
[(
G+

X(z)
)N]

= GN

(
G+

X(z)
)
, (7)

where GN (z) is the pgf of the random variable N .
Since N has a geometric distribution with pmf in (6), therefore, the pgf of N is

obtained as

GN (z) =

(
(F+(δ2)− F+(δ1)) θ + F+(δ1)

)
z

1−
(
1−

(
(F+(δ2)− F+(δ1)) θ + F+(δ1)

))
z

. (8)

Hence, by using (8) in (7), we obtain

GT (z) =

(
(F+(δ2)− F+(δ1)) θ + F+(δ1)

)
G+

X(z)

1−
(
1−

(
(F+(δ2)− F+(δ1)) θ + F+(δ1)

))
G+

X(z)

. (9)

Since X is δ1-inflated distributed, so by applying Theorem 3.5 to (9), we get the desired
result. This completes the proof.

In the next theorem, we obtain an explicit formula for the mean lifetime of the
system, which defines the mean time to failure (MTTF) of the system.

Theorem 5.2. Consider the model described in Section 2. If the distribution of X is
inflated at the critical point δ1, then the MTTF of the system is

E[T ] =
αδ1 + (1− α)Ereg[X]

α+ (1− α)

((
Freg(δ2)− Freg(δ1)

)
θ + Freg(δ1)

) .
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Proof. The random variable N is a stopping time for X1, X2, . . . . Therefore, by using
the well-known Wald’s identity, the MTTF of the system can be computed as

E[T ] = E

[
N∑
i=1

Xi

]
= E[N ]E+[X]. (10)

Since N has a geometric distribution with pmf in (6), therefore,

E[N ] =
1

(F+(δ2)− F+(δ1)) θ + F+(δ1)
. (11)

Using (11) in (10), we get

E[T ] =
E+[X]

(F+(δ2)− F+(δ1)) θ + F+(δ1)
. (12)

Since X is δ1-inflated distributed, so by applying Theorems 3.2 and Theorem 3.4 to
(12), the desired result is obtained. This completes the proof.

Remark 5.3. Note that if we consider α = 0, the above results investigate the system’s
lifetime in a regular situation corresponding to the regular distribution of intershock
times.

6 Illustrative example
Retail shop counters in stores and shopping centers are one of the most important parts
in the sales cycle. They are the end stations for customers. The customers’ arrival at the
retail counter is a random phenomenon, and the time between the arrivals varies usually
from one minute to six minutes. Minute changes are considered discrete. Suppose the
arrival of customers when they reach the retail counters follows the Bernoulli process.
Therefore, the interarrival time between customers follows a geometric distribution. We
assume that the retail counter is a system and the customers are shocks. Accordingly,
the interarrival times between customers are considered as intershock times. Now if
the intershock time is less than or equal to 2 minutes, the sales clerk will have a
disruption in his/her work. This is considered the system failure. If the intershock
time is between 2 and 4 minutes, the sales clerk may experience a disruption in his/her
work, but this is not deterministic. So, the system failure is probable with a probability
θ when the intershock times are between 2 and 4 minutes. On busy days, the number
of customers increases. In this way, the number of customers visiting the retail counter
also increases. This will make intershock times shorter. Thus, due to the large number
of customers on busy days, the intershock time may experience excessive frequency at
a small point in time. We assume that the intershock times are the most frequent at
point 2 minutes; that is, the probability distribution of intershock times is inflated at
point 2. Obviously, this scenario follows the model described in Section 2 with δ1 = 2
and δ2 = 4.

Now, we present some computational results. Since the arrival of customers follows
the Bernoulli process, the intershock times X1, X2, . . . are i.i.d. distributed by a geo-
metric distribution with mean 1

p . That is, Preg(Xi = x) = p(1−p)x−1 for x = 1, 2, . . . .
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On busy days, the distribution of intershock times is changed to a 2-inflated geometric
distribution with inflation parameter α ∈ [0, 1] (see (2)). Using Theorems 5.1, the pmf
and then the reliability function of the system’s lifetime T are calculated. For α > 0,
we have an increase in the frequency of intershock times at point 2, indicating a busy
day (critical situation). For α = 0, we have the system’s lifetime in regular days (regu-
lar situation). All calculations are performed using the R program. The corresponding
numerical results are given in Table 1. From Table 1, it is clear that in all cases, the
reliability of the system in a critical situation (when α > 0) is significantly smaller than
the reliability of the system in a regular situation (when α = 0). Thus, the system is
more stable in a regular situation. Furthermore, Figure 1 depicts the MTTF of the
system versus p for some different values of θ and inflation parameter α. For α = 0,
we have the MTTF of the system in a regular situation.

Table 1: The pmf and reliability functions of the system’s lifetime T .
α p θ t P (T = t) P (T = t) w.r.t. α = 0 P (T > t) P (T > t) w.r.t. α = 0

0.3 0.4 0.1 1 0.2139 0.2652 0.7861 0.7348
2 0.3717 0.1948 0.4144 0.5400
3 0.1251 0.1431 0.2893 0.3969
4 0.1006 0.1052 0.1887 0.2917
5 0.0600 0.0773 0.1287 0.2144

0.6 0.6 0.2 1 0.2272 0.5201 0.7728 0.4799
2 0.6618 0.2495 0.1110 0.2304
3 0.0532 0.1197 0.0578 0.1107
4 0.0402 0.0574 0.0176 0.0533
5 0.0098 0.0275 0.0078 0.0258

0.9 0.8 0.3 1 0.0797 0.7772 0.9203 0.2228
2 0.9134 0.1687 0.0069 0.0541
3 0.0035 0.0366 0.0034 0.0175
4 0.0030 0.0079 0.0004 0.0096
5 0.0001 0.0017 0.0003 0.0079

7 Conclusions

In this paper, a generalized version of the δ-shock model, first introduced by Poursaeed
(2019), is studied under some new assumptions. We assumed that the intershock times
are discrete and then investigated the reliability behavior of the system under the
assumption that the probability that intershock times occur at a critical time point
is significantly high. We obtained the probability generating function and the mean
lifetime of the system under the new assumptions. With an illustrative example, we
examined the theoretical results numerically. This paper can motivate further studies
in this field. We recall that in the model discussed, the random variables N1 and N2

were assumed to be independent of the intershock times, and it was also clear that
Theorem 5.1 is based on the independence of N from the intershock times. Therefore,
as an idea for further work, this model can be studied based on the assumption of the
dependence of these variables.
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Figure 1: Plot of MTTF versus p for δ1 = 2, δ2 = 4, and some different values of α and θ.
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