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Abstract: This paper addressed parameter estimation in the Poisson regression model
in the presence of multicollinearity when it is surmised that the parameter vector is
restricted to a linear subspace. To improve the efficiency of parameter estimation, we
proposed the Stein-Liu and positive Stein-Liu strategies. The proposed estimators’
asymptotic distributional biases and variances were derived, and their variances were
compared. The performance of the proposed estimators was investigated through an
extensive Monte Carlo simulation study. The suggested estimators were also applied
to data from Swedish football. The results confirmed that the performances of our
estimators were superior to the unrestricted Liu estimator. As an important result,
the Stein-Liu estimators uniformly perform better than the unrestricted Liu estimator.
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1 Introduction
Many scientific fields such as economics, engineering, public health, insurance, and
epidemiology research may comprise count data. The Poisson regression model is ap-
propriate to analyze count data with the same mean and variance. The great source for
the Poisson model is the textbook Cameron and Trivedi (2013). The multicollinearity
problem occurs in modeling count data when there are some highly correlated predic-
tor variables. This problem leads to the enhancement of the variance of the maximum
likelihood estimator (MLE) of the parameters vector, therefore, the interpretations
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based on this estimator are not correct. The ridge estimator introduced by Hoerl and
Kennard (1970) is a solution to this problem. The ridge estimator has been applied
by Lukman et al. (2023) and Roozbeh et al. (2024) among several others in regression
models. Another popular method is the Liu estimator proposed by Liu (1993). This es-
timator is a linear function of shrinkage parameter, hence has more advantages over the
ridge estimator. Several authors have applied the Liu methods in different regression
models such as Akdeniz et al. (2022), Arashi et al. (2022), Gelman and Golam Kibria
(2020), Qasim et al. (2020), Algamal and Asar (2018), Asar (2016), and Månsson et
al. (2016) among many others.

In the context of a regression model, the MLE is commonly used for parameters
estimation. However, using uncertain prior information or simply prior information
in the estimation process may improve the performance of the estimators. Therefore,
the estimator based on the prior information called the restricted estimator performs
better than the estimator with no prior information well known unrestricted estimator
(or MLE). The prior information is incorporated in the model via a linear restriction
on the parameters vector as follows (Ahmed, 2014)

Rβ = r, (1)

where R is a known matrix of order p2 × p and r is a p2 × 1 vector with constant
elements. To improve the estimation of parameters, Stein (1956) introduced Stein and
positive Stein estimators by combing the unrestricted and restricted estimators. These
estimators perform superiorly better than the maximum likelihood estimator in some
parts of the parameter space. We can refer to two great textbooks of Ahmed (2014)
and Saleh (2006) in the context of Stein estimators. In recent years, the Stein strate-
gies have been applied in several regression models to improve estimation strategies by
various authors. For example, see Zandi et al. (2021, 2023), Al-Momani and Arashi
(2024), Plessis et al. (2023) Yuzbasi et al. (2020), and Arashi and Roozbeh (2019)
among many others. Recently some authors proposed Stein-Liu estimators to improve
estimation of the parameters in the zero-inflated negative binomial model (Zandi et al.,
2024), the beta regression model (Arabi Belaghi et al., 2022), and the elliptical linear
regression model (Arashi et al., 2014). Also Gelman and Golam Kibria (2020) consider
both the unrestricted and restricted Liu estimators in the Poisson regression model
with correlated predictor variables. In order to improve this study, our main moti-
vation is to propose improved estimation strategies for estimation of the parameters
in the Poisson regression model under a linear restriction on the parameters vector.
We also assume that there is near collinearity between the predictor variables. Un-
der these assumptions, we propose the Stein-Liu and positive Stein-Liu estimators.
We derive the asymptotic distributional biases (ADBs) and asymptotic distributional
variances (ADVs) of the proposed estimators and compare their asymptotic variances.
We conduct a Monte Carlo simulation study and apply a real application to compare
the benefit of the performance of our estimators with respect to the unrestricted Liu
estimator. The results demonstrate the advantage of our estimators in different parts
of the parameter space. Based on our results, the performance of the Stein-Liu and
positive Stein-Liu estimators are uniformly better than the unrestricted Liu estimator.

The following is how this paper is organized: The Poisson regression model and
proposed estimators are discussed in Section 2. In Section 3, it is determined how to
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obtain the ADBs and ADVs to probe the theoretical properties of the proposed estima-
tors. The asymptotic variances of the proposed estimators are compared in Section 4.
In Section 5, a Monte Carlo simulation study is conducted as a numerical comparison
to investigate and confirm the theoretical results of the suggested estimators. A real
data application to illustrate our findings is analyzed in Section 6. Concluding remarks
are presented in Section 7.

2 Model specifications and estimators
The Poisson regression model, unrestricted Liu, and restricted Liu estimators, and
Stein-Liu estimators are discussed in this section.

2.1 The Poisson regression model and Liu estimators
Let Y1, . . . , Yn be independent random variables from the Poisson distribution and
y1, . . . , yn be the corresponding observations having the probability mass function as
follows

PYi
(yi;µi) =

µyi

i e−µi

yi!
, yi = 0, 1, 2, . . . ,

where log(µi) = x′
iβ is the link function of the Poisson regression model where, xi =

(xi1, . . . , xip)
′ is the ith row of design matrix X of order n×p with p predictor variables

and β = (β1, . . . , βp)
′ is the unknown regression parameter vector. The mean and

variance in the Poisson regression model are the same as E(Yi) = V (Yi) = µi. The
log-likelihood function of the Poisson model is given as follows

L(β; yi) =
n∑

i=1

{
yi x

′
iβ − ex

′
iβ − ln(yi!)

}
. (2)

The maximum likelihood estimator (or unrestricted estimator) of the parameter vector
β in this model can be obtained utilizing the iterative weighted least squares (IWLS)
algorithm to maximize the log-likelihood function (2) as follows

β̂MLE =
(
X ′ŴX

)−1
(X ′Ŵz),

where Ŵ = diag(µ̂1, µ̂2, . . . , µ̂n), µ̂i = ex
′
iβ̂MLE , and zi = x′

iβ̂MLE + yi−µ̂i

µ̂i
is the ith

element of the vector z, for i = 1, 2, . . . , n. The MLE is commonly used to estimate the
parameter vector β when the predictor variables are independent. However, this esti-
mator is sensitive to the multicollinearity problem. In this situation, the Liu estimator
introduced by Liu (1993) is widely applied to solve this problem. The Liu estimator (or
unrestricted Liu (UL)) is defined by Gelman and Golam Kibria (2020) in the Poisson
regression model as follows

β̂UL =
(
X ′ŴX + Ip

)−1(
X ′ŴX + d Ip)β̂MLE ,

where Ip is an identity matrix of order p and 0 ≤ d ≤ 1 is the shrinkage parameter.
Following Gelman and Golam Kibria (2020), the MSE function of the UL estimator is
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defined as

MSE(β̂UL) =

p∑
j=1

(λj + d)2

λj(λj + 1)2
+ (d− 1)2

p∑
j=1

α2
j

(λj + 1)2
, (3)

where λj is the jth eigenvalue of matrix C = X ′ŴX and αj is the jth element of
G′β, where G is a p× p matrix whose its jth column is the corresponding eigenvector
of λj where, λ1 ≥ λ2 ≥ · · · ≥ λp. Based on the work of Månsson (2013), we estimate
the shrinkage parameter d as follows

d̂ = max
(
0,median

{ α̂2
j − 1

λ−1
j + α̂2

j

})
,

where α̂ = (α̂1, . . . , α̂p)
′ = G′β̂MLE and the expression α̂2

j−1

λ−1
j +α̂2

j

is obtained by taking
the first derivative of (3) with respect to d and setting it to zero.

Under the linear restriction (1), the restricted estimator or restricted maximum
likelihood estimator of β is more efficient than the unrestricted estimator which is
defined by Gelman and Golam Kibria (2020) in the Poisson regression model as follows

β̂R = β̂MLE −C−1R′(RC−1R′)−1(Rβ̂MLE − r),

Indeed, the restricted estimator is obtained by maximizing the log-likelihood function
(2) with respect to β under the linear restriction (1). In the presence of multicollinear-
ity, C may be a singular matrix, thus β̂R is not suitable because of having high
variance. One solution is using restricted Liu (RL) estimator as follows (Gelman and
Golam Kibria, 2020)

β̂RL = Aβ̂MLE −AC−1R′(RC−1R′)−1(Rβ̂MLE − r),

where A =
(
X ′ŴX + Ip

)−1(
X ′ŴX + d Ip). The RL estimator has been applied by

Zandi et al. (2024), Gelman and Golam Kibria (2020), and Wu and Asar (2017), and
Månsson et al. (2016).

2.2 Improved estimators
The Stein and positive Stein estimators first have been introduced by Stein (1956) by
combining the unrestricted and restricted estimators when the predictor variables are
independent and there is the prior information as a linear restriction. Our goal in
this paper is to improve the estimation process in the Poisson regression model in the
presence of multicollinearity and under the linear restriction (1). Parallel to the idea
of Zandi et al. (2024), Arabi Belaghi et al. (2022), and Arashi et al. (2014), we propose
the Stein-Liu (SL) estimator utilizing β̂UL and β̂RL as follows

β̂SL = β̂RL +
(
1− p2 − 2

Tn

)(
β̂UL − β̂RL

)
, p2 = 3, 4, 5, . . . ,

here Tn denotes the likelihood ratio test statistic for testing the validity of the prior
information as the following hypotheses

H0 : Rβ = r vs. H1 : Rβ ̸= r.
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Therefore, Tn is defined as follows

Tn = 2{L(β̂UL; yi)− L(β̂RL; yi)},

where L(β̂UL; yi) and L(β̂RL; yi) are, respectively, the log-likelihood function (2) values
for the unrestricted and restricted Liu estimators. The test statistic Tn under H0 has
the asymptotically Chi-squared distribution with p2 degree of freedom when n → ∞.
To remedy the Stein-Liu estimator’s over-shrinking issue, an adjusted version of this
estimator is called the positive Stein-Liu (PSL) estimator that eliminates the negative
values of weighted function 1− p2−2

Tn
and is defined as follows

β̂PSL = β̂RL +max
{
0, 1− p2 − 2

Tn

}(
β̂UL − β̂RL

)
, p2 = 3, 4, 5, . . . .

For
(
X ′ŴX + Ip

)−1(
X ′ŴX + d Ip) = Ip, the Stein-Liu and positive Stein-Liu

estimators reduce to the Stein and positive Stein estimators, respectively.

3 Asymptotic properties
Now, the ADB and the ADV of the β̂UL, β̂RL, β̂SL, and β̂PSL are theoretically
discussed under the sequence of local alternatives as

K(n) : Rβ = r +
δ√
n
, (4)

where δ = (δ1, δ2, . . . , δp2
)′ ∈ Rp2 is a p2 × 1 known vector. Let β̂⋄ be any of the

proposed estimators of β, the ADB of β̂⋄ is defined as follows

ADB(β̂⋄) = lim
n→∞

E
(√

n(β̂⋄ − β)
)
.

Also, the ADV of β̂⋄ is defined as:

ADV (β̂⋄) = lim
n→∞

E
(√

n(β̂⋄ − β)
√
n(β̂⋄ − β)′

)
.

In the following theorem, the asymptotic distributional biases of the proposed estima-
tors are obtained.

Theorem 3.1. Under the sequence of local alternatives in (4) and the usual regularity
conditions of the MLE, as n → ∞, the ADBs of the proposed estimators are

ADB(β̂UL) = (A− Ip)β,

ADB(β̂RL) = (Ip −J R)(A− Ip)β −J δ,

ADB(β̂SL) = ADB(β̂UL)− (p2 − 2)J [R (A− Ip)β + δ]E
[ 1

χ2
p2+2(∆

∗)

]
,

ADB(β̂PSL) = ADB(β̂SL)− J [R(A− Ip)β + δ]

{
Ψp2+2(χ

2
p2,α;∆

∗)
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+(p2 − 2)E

[
I(χ2

p2+2(∆
∗) < p2 − 2)

χ2
p2+2(∆

∗)

]}
,

where J = C−1R′(RC−1R′)−1, Ψv(.;∆
∗) is the cumulative distribution function of

the χ2
v(∆

∗) distribution, and ∆∗ = δ′(RC−1R′)−1δ is the non-centrality parameter.

Proof. See Appendix.

The asymptotic distributional variances of the proposed estimators are presented n
the following theorem.

Theorem 3.2. Under the local alternatives in (4) and the usual regularity conditions
of the MLE, as n → ∞, the ADVs of the estimators are

ADV (β̂UL)=AC−1A′ +
[
(A− Ip)β

] [
(A− Ip)β

]′
,

ADV (β̂RL)=AC−1 A′ −J RAC−1 A′

+
[
(Ip −J R) (A− Ip)β −J δ

] [
(Ip −J R) (A− Ip)β −J δ

]′
,

ADV (β̂SL)=ADV (β̂UL)− 2 (p2 − 2)

([
(Ip −J R) (A− Ip)β −J δ

]
×
[
J R[A− Ip]β +J δ

]
E
[ 1

χ2
p2+2(∆

∗)

])
+(p2 − 2)(p2 − 4)JRAC−1A′

(
E
[ 1

(χ2
p2+2(∆

∗))2

]
− E

[ 1

χ2
p2+2(∆

∗)

])
+(p2 − 2) (p2 − 4) [J R (A− Ip)β +J δ] [J R (A− Ip)β +J δ]′

×
(
E
[ 1

(χ2
p2+4(∆

∗))2

]
− E

[ 1

χ2
p2+4(∆

∗)

])
,

ADV (β̂PSL)=ADV (β̂SL)− 2

(
{(Ip −J R) (A− Ip)β −J δ} [J R (A− Ip)β]

×E
[(

1− p2 − 2

χ2
p2+2(∆

∗)

)
I(χ2

p2+2(∆
∗) < p2 − 2)

])
−
(
J RAC−1 A′ E

[(
1− p2 − 2

χ2
p2+2(∆

∗)

)2
I(χ2

p2+2(∆
∗) < p2 − 2)

]
+[J R (A− Ip)β +J δ] [J R (A− Ip)β +J δ]′

×E
[(

1− p2 − 2

χ2
p2+4(∆

∗)

)2
I(χ2

p2+4(∆
∗) < p2 − 2)

])
.

Proof. See Appendix.

4 Comparison the asymptotic variances of the pro-
posed estimators

We now compare the ADVs of the proposed estimators following Arabi Belaghi et al.
(2022). The following definition, which is helpful for this comparison, is presented first.
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Definition 4.1. Let B be the parameter space of β. If β̂∗ and β̂∗∗ be two estimators
of β, such that ADV (β̂⋆) ≤ ADV (β̂⋆⋆) for all values of β ∈ B, with strict inequality
for at least one β, we say that β̂∗ dominates β̂∗∗.

Comparing β̂RL and β̂UL

β̂RL dominates β̂UL if

ADV (β̂RL)−ADV (β̂UL)=JRAC−1A′ −
[{

(A− Ip)β
}{

JR(A− Ip)β +J δ
}′]

×
[{

JR(A− Ip)β +J δ
}{

(A− Ip)β
}′]

×
(
JR(A− Ip)β +J δ

)(
JR(A− Ip)β +J δ

)′
≤ 0, ∀ ∆∗ ∈ (0,∞).

Comparing β̂SL and β̂UL

β̂SL dominates β̂UL if

ADV (β̂SL)−ADV (β̂UL)=−2 (p2 − 2)

([
(Ip −J R) (A− Ip)β −J δ

]
×
[
J R[A− Ip]β +J δ

]
E
[ 1

χ2
p2+2(∆

∗)

])
+(p2 − 2) (p2 − 4)J RAC−1 A′

(
E
[ 1

(χ2
p2+2(∆

∗))2

]
−E
[ 1

χ2
p2+2(∆

∗)

])
+ (p2 − 2)(p2 − 4)

×[JR(A− Ip)β +J δ][J R (A− Ip)β +J δ]′

×
(
E
[ 1

(χ2
p2+4(∆

∗))2

]
− E

[ 1

χ2
p2+4(∆

∗)

])
≤ 0, ∀ ∆∗ ∈ (0,∞).

Comparing β̂PSL and β̂UL

β̂PSL dominates β̂UL if

ADV (β̂PSL) −ADV (β̂UL) = −2(p2 − 2)

([
(Ip −JR)(A− Ip)β −J δ

]
×
[
JR[A− Ip]β +J δ

]
E
[ 1

χ2
p2+2(∆

∗)

])
+(p2 − 2)(p2 − 4)JRAC−1A′

(
E
[ 1

(χ2
p2+2(∆

∗))2

]
− E

[ 1

χ2
p2+2(∆

∗)

])
+(p2 − 2)(p2 − 4)[JR(A− Ip)β +J δ][JR(A− Ip)β +J δ]′

×
(
E
[ 1

(χ2
p2+4(∆

∗))2

]
− E

[ 1

χ2
p2+4(∆

∗)

])
−2

(
{(Ip −JR)(A− Ip)β −J δ}[JR(A− Ip)β]
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×E
[(

1− p2 − 2

χ2
p2+2(∆

∗)

)
I(χ2

p2+2(∆
∗) < p2 − 2)

])
−
(
JRAC−1A′E

[(
1− p2 − 2

χ2
p2+2(∆

∗)

)2
I(χ2

p2+2(∆
∗) < p2 − 2)

]
+[JR(A− Ip)β +J δ][JR(A− Ip)β +J δ]′

×E
[(

1− p2 − 2

χ2
p2+4(∆

∗)

)2
I(χ2

p2+4(∆
∗) < p2 − 2)

])
≤ 0, ∀∆∗ ∈ (0,∞).

Comparing β̂PSL and β̂SL

β̂PSL dominates β̂SL if

ADV (β̂PSL) −ADV (β̂SL) = −2

(
{(Ip −J R) (A− Ip)β −J δ} [J R (A− Ip)β]

×E
[(

1− p2 − 2

χ2
p2+2(∆

∗)

)
I(χ2

p2+2(∆
∗) < p2 − 2)

])
−
(
J RAC−1 A′ E

[(
1− p2 − 2

χ2
p2+2(∆

∗)

)2
I(χ2

p2+2(∆
∗) < p2 − 2)

]
+[J R (A− Ip)β +J δ] [J R (A− Ip)β +J δ]′

×E
[(

1− p2 − 2

χ2
p2+4(∆

∗)

)2
I(χ2

p2+4(∆
∗) < p2 − 2)

])
≤ 0, ∀ ∆∗ ∈ (0,∞).

5 Simulation study
We do a Monte Carlo simulation study to evaluate and compare the performance of
the suggested estimators to the unrestricted Liu estimator using the simulated relative
efficiency (SRE) criteria, which is defined as follows

SRE(β̂UL, β̂∗) =
SMSE(β̂UL)

SMSE(β̂∗)
,

where β̂∗ is any one of the β̂RL, β̂SL, and β̂PSL, and SMSE(β̂∗) is the simulated
mean squared error of β̂∗ and is defined

SMSE(β̂∗) =

∑2000
t=1 (β̂∗ − β)′t(β̂∗ − β)t

2000
.

It’s clear that, for the value of SRE is greater than one, β̂∗ dominates the unrestricted
Liu estimator.

We generate the correlated predictor variables in the Poisson model as follows
(Zandi et al., 2024)

xij =
√

1− ρ2uij + ρ uip, i = 1, 2, . . . , n, j = 1, 2, . . . , p,

where xijs are elements of X, ρ represents the correlation level between the predictor
variables and uijs are generated independently from N(0, 1). Hence, the response
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variable Yi is generated from the Poisson distribution with the mean parameter as
follows

µi = ex
′
iβ. (5)

We consider a special case of the linear restriction (1), where R = [0p1×p2
, Ip2×p2

] such
that 0 is a zeros matrix and I is an identity matrix and r = 0. In this case, the pa-
rameter vector β can be partitioned as β = (β′

1,β
′
2)

′. Therefore, the linear restriction
reduces to β2 = 0, which means that some of the predictors do not have a significant ef-
fect on the response variable. So, β1 and β2 are p1×1 and p2×1 sub-vectors contain the
parameters related to the significant (active) and non significant (inactive) predictors,
respectively. We set β1 = (0.09, 0.27, 0.34)′ and β2 = (0p2

)′ in (5) to generate Yi. For
performance comparison of our proposed estimators to the unrestricted Liu estimator
in different parts of the parameter space, we define a distance between the proposed
sub-model and the simulated model as ∆ = ∥β − β0∥2, in which β0 = (β′

1,0p2
) is

the true parameter and ∥.∥ is the Euclidean norm. The simulation is conducted in R
statistical software for different values of ∆ = {0, 0.4, 0.6, 0.8, 1, 2, 3, 4}, the number of
active parameter p1 = 3, the number of inactive parameters p2 = 3, 5, 7, two sample
sizes n = 35, 50, and three values of the correlation level between the predictor vari-
ables ρ = 0.90, 0.93, 0.95. The simulations are replicated 2000 times for each case to
accurate the simulation results. The SREs of the proposed estimators are reported in
Tables 1-3 and Figures 1-2. Our findings are summarized as follows
1. The SREs of all estimators increase as the number of inactive predictors p2 increases.
2. The simulated relative efficiency of all estimators increases by increasing the corre-
lation ρ between the predictor variables.
3. The SRE of all estimators decreases as the sample size n increases.
4. The restricted Liu estimator outperforms better than the Stein-Liu estimators at
∆ = 0. However, as ∆ moves away from zero, the performance of this estimator sharply
decreases, so that for ∆ > 1, its SRE becomes unbounded.
5. As we would expect, the positive Stein-Liu estimator dominates the Stein-Liu es-
timator at ∆ = 0 and near it in any situation. These two estimators perform equally
well and better than the restricted Liu estimator for ∆ ≥ 2.
6. An important result is that the SREs of the Stein-Liu and positive Stein-Liu esti-
mators are greater than one for all values of ∆. It means that these two estimators
uniformly outperform the unrestricted Liu estimator.

6 Empirical application
To evaluate the performance of our proposed estimators, we apply Swedish football
data during 2021 by considering the performance of Swedish football teams in the
top Swedish league (Allsvenskan). This dataset includes n = 242 observations and
contains six predictor variables as the pinnacle home win odds (x1), pinnacle away win
odds (x2), oddsportal maximum home win (x3), oddsportal maximum away win (x4),
average oddsportal home win (x5) and average oddsportal away win (x6). The response
variable is the number of full-time away team goals (FTATG) (Qasim et al. (2020)).
Based on the Chi-square goodness of fit test in Qasim et al. (2020), the test statistic
value is χ2 = 1.7359 and p− value = 0.8843. Therefore, the obtained p-value confirms
that at a 0.05 significance level, the response variable follows a Poisson distribution.
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Table 1: SREs of the proposed estimators with respect to β̂UL for p2 = 3.
n = 35 n = 50

ρ ∆ RL SL PSL RL SL PSL
0.90 0.0 4.946 1.456 1.627 3.139 1.198 1.490

0.4 3.125 1.374 1.439 2.001 1.167 1.319
0.6 2.115 1.259 1.303 1.313 1.172 1.197
0.8 1.453 1.196 1.201 0.879 1.111 1.119
1.0 1.035 1.136 1.137 0.614 1.078 1.078
2.0 0.303 1.037 1.037 0.173 1.019 1.019
3.0 0.139 1.017 1.017 0.078 1.008 1.008
4.0 0.079 1.010 1.010 0.044 1.005 1.005

0.93 0.0 5.627 1.532 1.661 3.365 1.288 1.493
0.4 3.946 1.450 1.512 2.469 1.285 1.383
0.6 2.836 1.350 1.385 1.756 1.213 1.269
0.8 2.030 1.264 1.275 1.238 1.156 1.175
1.0 1.485 1.192 1.195 0.894 1.109 1.115
2.0 0.456 1.053 1.053 0.264 1.029 1.029
3.0 0.211 1.024 1.024 0.121 1.012 1.012
4.0 0.121 1.014 1.014 0.068 1.007 1.007

0.95 0.0 5.764 1.464 1.595 3.534 1.386 1.507
0.4 4.418 1.417 1.501 2.853 1.295 1.433
0.6 3.381 1.343 1.408 2.178 1.245 1.335
0.8 2.540 1.223 1.317 1.619 1.176 1.243
1.0 1.922 1.222 1.241 1.210 1.158 1.172
2.0 0.632 1.070 1.070 0.382 1.044 1.044
3.0 0.298 1.031 1.031 0.177 1.019 1.019
4.0 0.171 1.018 1.018 0.101 1.010 1.010

Table 2: SREs of the proposed estimators with respect to β̂UL for p2 = 5.
n = 35 n = 50

ρ ∆ RL SL PSL RL SL PSL
0.90 0.0 5.661 2.025 2.450 5.035 1.871 2.440

0.4 3.374 1.787 1.960 2.684 1.715 1.829
0.6 2.312 1.588 1.650 1.667 1.433 1.510
0.8 1.614 1.425 1.437 1.086 1.310 1.322
1.0 1.166 1.301 1.303 0.749 1.216 1.216
2.0 0.356 1.075 1.075 0.208 1.057 1.057
3.0 0.166 1.030 1.030 0.094 1.026 1.026
4.0 0.095 1.015 1.015 0.053 1.014 1.014

0.93 0.0 5.889 2.028 2.461 5.282 1.803 2.465
0.4 3.911 1.892 2.076 3.274 1.833 1.977
0.6 2.845 1.641 1.786 2.194 1.577 1.662
0.8 2.073 1.525 1.560 1.498 1.409 1.443
1.0 1.542 1.393 1.401 1.063 1.302 1.307
2.0 0.498 1.107 1.107 0.310 1.084 1.084
3.0 0.235 1.044 1.044 0.142 1.038 1.038
4.0 0.136 1.022 1.022 0.081 1.021 1.021

0.95 0.0 6.098 2.071 2.340 5.518 1.987 2.457
0.4 4.379 1.860 2.046 3.844 1.956 2.105
0.6 3.354 1.717 1.819 2.762 1.702 1.820
0.8 2.544 1.578 1.622 1.978 1.495 1.586
1.0 1.949 1.457 1.472 1.448 1.401 1.420
2.0 0.672 1.148 1.148 0.447 1.118 1.118
3.0 0.323 1.065 1.065 0.207 1.052 1.052
4.0 0.188 1.035 1.035 0.118 1.029 1.029
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Table 3: SREs of the proposed estimators with respect to β̂UL for p2 = 7.
n = 35 n = 50

ρ ∆ RL SL PSL RL SL PSL
0.90 0.0 8.802 2.783 3.203 6.337 2.661 3.269

0.4 5.482 2.470 2.730 3.680 2.202 2.414
0.6 3.751 2.156 2.331 2.359 1.860 1.920
0.8 2.605 1.910 1.992 1.563 1.596 1.609
1.0 1.871 1.714 1.714 1.088 1.423 1.424
2.0 0.560 1.238 1.238 0.306 1.120 1.120
3.0 0.259 1.111 1.111 0.139 1.056 1.056
4.0 0.148 1.064 1.064 0.079 1.033 1.033

0.93 0.0 9.044 2.756 3.091 7.187 2.770 3.305
0.4 6.285 2.550 2.822 4.680 2.385 2.621
0.6 4.593 2.326 2.509 3.188 2.052 2.149
0.8 3.342 2.096 2.201 2.196 1.773 1.803
1.0 2.478 1.894 1.944 1.565 1.567 1.573
2.0 0.788 1.333 1.333 0.458 1.167 1.167
3.0 0.369 1.156 1.156 0.210 1.077 1.077
4.0 0.212 1.089 1.089 0.119 1.044 1.044

0.95 0.0 9.157 2.638 2.878 7.285 2.779 3.216
0.4 6.822 2.490 2.694 5.228 2.466 2.709
0.6 5.274 2.315 2.474 3.804 2.178 2.299
0.8 4.018 2.121 2.238 2.745 1.899 1.960
1.0 3.083 1.944 2.020 2.019 1.691 1.712
2.0 1.058 1.405 1.406 0.626 1.223 1.223
3.0 0.507 1.203 1.203 0.291 1.105 1.105
4.0 0.294 1.119 1.119 0.166 1.061 1.061

Figure 1: SREs of the proposed estimators with respect to the β̂UL for n = 35.
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Figure 2: SREs of the proposed estimators with respect to the β̂UL for n = 50.

The summary statistics of the data is reported in Table 4. The correlation matrix of
the predictor variables in Table 5 shows that there are high correlations between all
predictors. Based on the Akaike information criterion (AIC) and Bayesian information
criterion (BIC), x2, x3 and x6 are the active predictors. Thus, the linear restriction
(1) is written as follows

(
1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

)
β1
β2
β3
β4
β5
β6

 =


0
0
0
0
0
0
0

 .

Hence, β1 = β4 = β5 = 0 are the non-significant parameters and so p1 = 3, p2 = 3 and
p = 6. We set β0 = (0,−0.2740,−1.3879, 0, 0, 0.4684)′ in the candidate sub model. We
chose M = 80 observations and used bootstrap sampling to replace them 2000 times
from the original data in order to compare the performance of the different estimators.
The results for the significant parameters β̂2, β̂3 and β̂6 at ∆ = 0 are reported in Table
6 that completely agree with the theoretical and numerical results.

7 Conclusions
In this paper, we improved parameters estimation in the Poisson regression model
with correlated predictor variables under linear restriction on the parameters vector
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Table 4: Summary statistics of Swedish football data.
Variables Min Q1 Median Mean Q3 Max

y 0.000 0.000 1.000 1.145 2.000 5.000
x1 1.150 1.735 2.295 2.686 3.145 9.280
x2 1.340 2.442 3.310 4.280 5.040 23.210
x3 1.180 1.790 2.380 2.781 3.223 10.210
x4 1.370 2.462 3.420 4.436 5.152 23.350
x5 1.150 1.702 2.250 2.604 3.060 9.240
x6 1.300 2.342 3.185 4.016 4.770 18.490

Table 5: Correlation matrix of Swedish football data.
Variables x1 x2 x3 x4 x5 x6
x1 1.000
x2 −0.610 1.000
x3 0.995 −0.600 1.000
x4 −0.605 0.997 −0.595 1.000
x5 0.999 −0.609 −0.609 0.998 1.000
x6 −0.632 0.997 −0.622 0.997 −0.631 1.000

Table 6: Estimates, standard errors (in parentheses), and SREs of the active coeffi-
cients in Swedish football data with respect to the unrestricted Liu estimator.

β̂2 β̂3 β̂6 SRE
UL 0.345 (2.488) 0.028 (3.200) −0.516 (2.530) 1.000
RL 0.454 (1.866) 0.101 (0.152) −0.497 (1.893) 9.738
SL 0.366 (2.191) 0.053 (2.430) −0.500 (2.268) 1.649
PSL 0.372 (2.196) 0.061 (2.245) −0.503 (2.263) 1.751

using the Stein-Liu and positive Stein-Liu estimators. We developed the ADBs and
ADVs of suggested estimators and compared their variances. We used a Monte Carlo
simulation study and a real dataset to investigate the performance of the proposed
estimators. The results revealed that the Stein-Liu and positive Stein-Liu estimators
uniformly outperform the unrestricted Liu estimator. The restricted Liu estimator
performed better than the Stein-Liu estimators at ∆ = 0 (i.e. when candidate sub-
model was corrected), however the performance of the Stein-Liu estimators was better
than the restricted Liu estimator when ∆ moved away from zero.

Acknowledgement
The authors are thankful to the reviewers for the insightful comments and suggestions
that have resulted in a much improved version of this paper.

References
Ahmed, S.E. (2014). Penalty, Shrinkage and Pretest Strategies-Variable Selection and

Estimation. Heidelberg: Springer.

Akdeniz, F., Roozbeh, M., Akdeniz, E. and Khan, N.M. (2022). Generalized difference-



Improved parameters estimation in the multicollinear Poisson 90

based weighted mixed almost unbiased Liu estimator in semiparametric regression
models. Communications in Statistics-Theory and Methods, 51(13):4395–4416.

Algamal, Z.Y. and Asar, Y. (2018). Liu-type estimator for the gamma regression model.
Communications in Statistics-Simulation and Computation, 49(8):2035–2048.

Al-Momani, M. and Arashi, M. (2024). Ridge-type pretest and shrinkage estimation
strategies in spatial error models with an application to a real data example. Math-
ematics, 12(3):390.

Arabi Belaghi, R., Asar, Y. and Larsson, R. (2022). Improved shrinkage estimators
in the beta regression model with application in econometric and educational data.
Statistical Papers, 64(6):1891–1912.

Arashi, M., Kibria, B.G., Norouzirad, M. and Nadarajah, S. (2014). Improved pre-
liminary test and Stein-rule Liu estimators for the ill-conditioned elliptical linear
regression model. Journal of Multivariate Analysis, 126:53–74.

Arashi, M., Lukman, A.F. and Algamal, Z.Y. (2022). Liu regression after random
forest for prediction and modeling in high dimension. Journal of Chemometrics,
36(4):e3393.

Arashi, M. and Roozbeh, M. (2019). Some improved estimation strategies in high-
dimensional semiparametric regression models with application to the Riboflavin
production data. Statistical Papers, 60(3):317–336.

Asar Y. (2016). Liu-type logistic estimators with optimal shrinkage parameter. Journal
of Modern Applied Statistical Methods, 15(1):738–751.

Cameron, A.C. and Trivedi, P.K. (2013). Regression Analysis of Count Data. Econo-
metric Society Monograph No. 53, Cambridge University Press.

Gelman, K. and Golam Kibria, B.M. (2020). Estimating the unrestricted and restricted
Liu estimators for the Poisson regression model: method and application. Computa-
tional Economics, 58:311–326.

Hoerl, A.E. and Kennard, R.W. (1970). Ridge regression: Biased estimation for non-
orthogonal problems. Technometrics, 21(1):55–67.

Judge, G.G. and Bock, M.E. (1978). The Statistical Implications of Pre-Test and Stein-
Rule Estimators in Econometrics. North-Holland, Amsterdam: North-Holland Pub.
Co.

Karlsson, P., Månsson, K. and Golam Kibria, B.M. (2020). A Liu estimator for the
beta regression model and its application to chemical data. Journal of Chemometrics,
34(10):e3300.

Khalaf, G. and Shukur, G. (2005). Choosing ridge parameter for regression problems.
Communications in Statistics-Theory and Methods, 34(5):1177–1182.

Liu, K. (1993). A new class of biased estimate in linear regression. Communications in
Statistics-Theory and Methods, 22:393–402.



91 Z. Zandi, H. Bevrani

Lukman, A.F., Arashi, M. and Prokaj, V. (2023). Robust biased estimators for Pois-
son regression model: Simulation and applications. Concurrency and Computation:
Practice and Experience, 35(7):e7594.

Månsson, K. (2013). Developing a Liu estimator for the negative binomial regression
model Journal of Statistical Computation and Simulation, 83:1773–1780.

Månsson, K., Golam Kibria, B.M. and Shukur, G. (2016). A restricted Liu estimator for
binary regression models and its application to an applied demand system. Journal
of Applied Statistics, 43(6):1119–1127.

Månsson, K., Golam Kibria, B.M. and Shukur, G. (2012). Improved Liu estimators
for the Poisson regression model. International Journal of Statistics and Probability,
1(1):2.

Plessis, Du., Arashi, M., Maribe, G. and Millard, S.M. (2023). Efficient estimation and
validation of shrinkage estimators in big data analytics. Mathematics, 11(22):4632.

Qasim, M., Kibria, B.M.G., Månsson, K. and Sjölander, P. (2020). A new Poisson
Liu regression estimator: Method and application. Journal of Applied Statistics,
47(12):2258–2271.

Roozbeh, M., Maanavi, M. and Mohamed, N.A. (2024). A robust counterpart approach
for the ridge estimator to tackle outlier effect in restricted multicollinear regression
models. Journal of Statistical Computation and Simulation, 94(2):279–296.

Saleh, A.M.E. (2006). Theory of Preliminary Test and Stein-Type Estimation with
Applications. New York: John Wiley.

Stein, C. (1956). The admissibility of Hotelling’s T 2-test. Mathematical Statistics,
27:616–623.

Wu, J. and Asar, Y. (2017). More on the restricted Liu estimator in the logistic regres-
sion model. Communications in Statistics-Simulation and Computation, 46(5):3680–
3689.

Yuzbasi, B.M., Arashi, M. and Ahmed, S.E. (2020). Shrinkage estimation strategies
in generalized ridge regression models: Low/high-dimension regime. International
Statistical Review, 88(1):229–251.

Zandi, Z., Arabi Belaghi, R., and Bevrani, H., (2024). Liu-type shrinkage strategies in
zero-inflated negative binomial models with application to expenditure and default
data. Communications in Statistics-Simulation and Computation, 53(8):4071–4101.

Zandi, Z., Bevrani, H. and Arabi Belaghi, R. (2021). Improved shrinkage estimators in
zero- inflated negative binomial regression model. Hacettepe Journal of Mathematics
and Statistics, 50(6):1855–1876.

Zandi, Z., Bevrani, H., and Arabi Belaghi, R. (2023). Using shrinkage strategies to es-
timate fixed effects in zero-inflated negative binomial mixed model. Communications
in Statistics-Simulation and Computation, 52(7):3201–3222.



Improved parameters estimation in the multicollinear Poisson 92

Appendix
Proof of Theorem 3.1
We present the following lemmas which are useful for proof of the Theorems 3.1 and
3.2.

Lemma 7.1. Let y be a p2-dimensional random vector distributed as Np2(µy,Σy).
Then, for any measurable function φ, we have

E[y φ(y′y)] = µy E[φ(χ2
p2+2(∆

∗))],

E[yy′ φ(y′y)] = Σy E[φ(χ2
p2+2(∆

∗))] + µ′
y µyE[φ(χ2

p2+4(∆
∗))], (6)

where ∆∗ is the non-centrality parameter.

Proof. See Judge and Bock (1978).

Lemma 7.2. Under the sequence of local alternatives {K(n)} in (4) and the usual
regularity conditions of MLE, as n → ∞

Pn =
√
n(β̂UL − β)

D−→ P ∼ Np

(
A− Ip , AC−1A′

)
,

Qn =
√
n(β̂RL − β)

D−→Q ∼ Np

(
(Ip −JR)(A− IP )β −J δ ,AC−1A′ −JRAC−1A′

)
,

Sn =
√
n(β̂UL − β̂RL)

D−→ S ∼ Np

(
J [R (A− Ip)β + δ] , JRAC−1A′

)
,(

Pn
Qn
Sn

)
D−→

(
P
Q
S

)
∼ N3k

[(
0

(Ip −JR) (A− Ip)β −J δ
JR(A− IP )β +J δ

)
,(

AC−1A′ AC−1A′ −JRAC−1A′ JRAC−1A′

AC−1A′ −JRAC−1A′ 0
JRAC−1A′

)]
,

where J = C−1R′(RC−1R′)−1.

Now, we proof Theorem 3.1 using Lemma 7.2 as follows

ADB(β̂UL) = lim
n→∞

E

[√
n

(
β̂UL − β

)]
= E[P ] = (A− Ip)β,

ADB(β̂RL) = lim
n→∞

E

[√
n

(
β̂RL − β

)]
= E[Q] = (Ip −J R)(A− Ip)β −J δ.

For β̂SL, we have

ADB(β̂SL) = lim
n→∞

E

[√
n

(
β̂SL − β

)]
= lim

n→∞

{
E

[√
n

(
β̂UL − β

)]
− (p2 − 2)E

[
T−1
n

√
n

(
β̂UL − β̂RL

)]}
= E[P ]− (p2 − 2)E[T−1

n S]
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= ADB(β̂UL)− (p2 − 2)J [R (A− Ip)β + δ]E
[ 1

χ2
p2+2(∆

∗)

]
.

Finally,

ADB(β̂PSL)= lim
n→∞

E

[√
n

(
β̂PSL − β

)]
= lim

n→∞
E

[√
n

(
β̂SL − β

)
− (1− (p2 − 2)T−1

n )

×
√
n

(
(β̂UL − β̂RL)I(Tn < p2 − 2)

)]
=ADB(β̂SL)

− lim
n→∞

E

[√
n

(
β̂UL − β̂RL

)
(1− (p2 − 2)T−1

n )I(Tn < p2 − 2)

]
=ADB(β̂SL)− E[S(1− (p2 − 2)T−1

n )I(Tn < p2 − 2)]

=ADB(β̂SL)− E[S]

{
Ψp2+2(χ

2
p2,α;∆

∗) + (p2 − 2)E

[
I(Tn < p2 − 2)

χ2
p2+2(∆

∗)

]}
=ADB(β̂SL)−J [R(A− Ip)β + δ]{

Ψp2+2(χ
2
p2,α;∆

∗) + (p2 − 2)E

[
I(χ2

p2+2(∆
∗) < p2 − 2)

χ2
p2+2(∆

∗)

]}
.

Proof of Theorem 3.2
Here, we compute the asymptotic distributional variances of the proposed estimators

ADV (β̂UL) = lim
n→∞

E
(√

n(β̂UL − β)
√
n(β̂UL − β)′

)
= lim

n→∞
E(Pn Pn

′)

= E(P P ′)
= V ar(P) + E(P)E(P ′)

= AC−1A′ +

[
(A− Ip)β

] [
(A− Ip)β

]′
,

ADV (β̂RL) = lim
n→∞

E
(√

n(β̂RL − β)
√
n(β̂RL − β)′

)
= lim

n→∞
E(Qn Qn

′)

= E(QQ′)
= AC−1 A′ −J RAC−1 A′

+

[
(Ip −J R) (A− Ip)β −J δ

] [
(Ip −J R) (A− Ip)β −J δ

]′
.

The asymptotic distributional variance of β̂SL can be obtained as follows

V(β̂SL) = lim
n→∞

E
(√

n(β̂SL − β)
√
n(β̂SL − β)′

)
= lim

n→∞
E
[√

n
(
β̂UL + {1− (p2 − 2}T−1

n ) (β̂UL − β̂UL)− β
)

= lim
n→∞

E[(Pn − (p2 − 2)T−1
n Sn) (Pn − (p2 − 2)T−1

n Sn)
′]



Improved parameters estimation in the multicollinear Poisson 94

= E[(P P ′]− 2(p2 − 2) E[P S ′ T−1
n ]︸ ︷︷ ︸

m1

+(p2 − 2)2 E[S S ′ T−2
n︸ ︷︷ ︸

m2

],

we can write m1 as follows

m1 = E[P S ′ T−1
n ]

= E[S S ′ T−1
n ] +

[
(Ip −J R) (A− Ip)β −J δ

]
E[S T−1

n ]

= V ar[S]E
[ 1

χ2
p2+2(∆

∗)

]
+ E[S]E[P ′]E

[ 1

χ2
p2+4(∆

∗)

]
+
[
(Ip −J R) (A− Ip)β −J δ

]
E[S T−1

n ],

and by using (6), m2 becomes

m2 = E[S S ′ T−2
n ] = V ar[S]E

[ 1

(χ2
p2+2(∆

∗))2

]
+ E[S]E[P ′]E

[ 1

(χ2
p2+4(∆

∗))2

]
,

Therefore,

ADV (β̂SL) = ADV (β̂UL)− 2(p2 − 2)

([
(Ip −JR)(A− Ip)β −J δ

]
×
[
JR[A− Ip]β +J δ

]
E
[ 1

χ2
p2+2(∆

∗)

])
+ (p2 − 2)(p2 − 4)

×JRAC−1A′
(
E
[ 1

(χ2
p2+2(∆

∗))2

]
− E

[ 1

χ2
p2+2(∆

∗)

])
+(p2 − 2)(p2 − 4)[JR(A− Ip)β +J δ][JR(A− Ip)β +J δ]′

×
(
E
[ 1

(χ2
p2+4(∆

∗))2

]
− E

[ 1

χ2
p2+4(∆

∗)

])
.

Finally, we can write ADV (β̂PSL) as follows

ADV (β̂PSL)= lim
n→∞

E
(√

n(β̂PSL − β)
√
n(β̂PSL − β)′

)
= lim

n→∞
E
[√

n
(
β̂SL − (1− (p2 − 2)T−1

n )I(Tn < p2 − 2)(β̂UL − β̂RL)− β
)

×
√
n
(
β̂SL − (1− (p2 − 2)T−1

n )I(Tn < p2 − 2)(β̂UL − β̂RL)− β
)′]

=ADV (β̂SL)− 2E[SQ′(1− (p2 − 2)T−1
n )I(Tn < p2 − 2)]︸ ︷︷ ︸

m3

−E[SS ′(1− (p2 − 2)T−1
n )2I(Tn < p2 − 2)]︸ ︷︷ ︸

m4

,

Now, we obtain m3 as follows

m3=E[SQ′(1− (p2 − 2)T−1
n )I(Tn < p2 − 2)]

=E[SE{Q′(1− (p2 − 2)T−1
n )I(Tn < p2 − 2)|S}]

=E[S{(Ip −JR)(A− Ip)β −J δ}′ × (1− (p2 − 2)T−1
n )I(Tn < p2 − 2)]

={(Ip −JR)(A− Ip)β −J δ}E[S(1− (p2 − 2)T−1
n )I(Tn < p2 − 2)]

={(Ip −JR)(A− Ip)β −J δ}E[S]E
[(

1− p2 − 2

χ2
p2+2(∆

∗)

)
I(χ2

p2+2(∆
∗) < p2 − 2)

]
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={(Ip −JR)(A− Ip)β −J δ}[JR(A− Ip)β −J δ +J δ]

×E
[(

1− p2 − 2

χ2
p2+2(∆

∗)

)
I(χ2

p2+2(∆
∗) < p2 − 2)

]
Based on Equation (6), m4 becomes

m4 = E[SS ′(1− (p2 − 2)T−1
n )2I(Tn < p2 − 2)]

= V ar(S)E
[(

1− p2 − 2

χ2
p2+2(∆

∗)

)2
I(χ2

p2+2(∆
∗) < p2 − 2)

]
+E(S)E(S)E

[(
1− p2 − 2

χ2
p2+4(∆

∗)

)2
I(χ2

p2+4(∆
∗) < p2 − 2)

]
= JRAC−1A′E

[(
1− p2 − 2

χ2
p2+2(∆

∗)

)2
I(χ2

p2+2(∆
∗) < p2 − 2)

]
+[JR(A− Ip)β +J δ][JR(A− Ip)β +J δ]′

×E
[(

1− p2 − 2

χ2
p2+4(∆

∗)

)2
I(χ2

p2+4(∆
∗) < p2 − 2)

]
Therefore, ADV (β̂PSL) becomes

V(β̂PSL) = ADV (β̂SL)

−2

(
{(Ip −JR)(A− Ip)β −J δ}[JR(A− Ip)β −J δ +J δ]

×E
[(

1− p2 − 2

χ2
p2+2(∆

∗)

)
I(χ2

p2+2(∆
∗) < p2 − 2)

])
−
(
JRAC−1A′E

[(
1− p2 − 2

χ2
p2+2(∆

∗)

)2
I(χ2

p2+2(∆
∗) < p2 − 2)

]
+[JR(A− Ip)β +J δ][JR(A− Ip)β +J δ]′

×E
[(

1− p2 − 2

χ2
p2+4(∆

∗)

)2
I(χ2

p2+4(∆
∗) < p2 − 2)

])
.


