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Abstract: The purpose of this paper is to extend the linear mixed model for han-
dling missing and heavy-tailed data. In this model, the random effects have multivari-
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1 Introduction
Linear mixed models (LMM) (Laird and Ware, 1982) have played an important role
in analyzing longitudinal data that is measured repeatedly. The introduction of LMM
paved a broad way for the development of applied statistics for analyzing data in a
large variety of fields, especially medicine, and biostatistics. The key feature of LMM
is to use a multivariate normal distribution for each sample that has been repeatedly
tested.
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In the case that the sample has participated in all periodic tests, for a set of random
vectors Y1, . . . ,Yn, the generic form of an LMM model can theoretically be defined by
a linear combination of random effects as

Yj = Xjβ +ZjBj + ϵj ,

Bj
iid∼ Nq(0,D), ϵj

iid∼ Np(0,Ψ), Bj⊥εj , (1)

where ⊥ is the indicator independence of variables, Yj ∈ Rp, β is a g-dimensional
constant effects vector and p× g known matrix Xj . Based on model (1), p× q known
matrix Zj describes the relation between Yj and Bj for j = 1, . . . , n. It is clear that
Yjs are independent and Yj |Bj = bj ∼ Np(Xjβ + Zjbj ,Ψ). LMMs are applicable in
many medical branches, like the study of Laird and Ware (1982).

When faced with frequent measures, we might observe missing values in the mea-
surements caused by either refusal, attrition, or lack of a record. In this regard, the
problem of missing data should be addressed appropriately before engaging learning
algorithms. One of the approaches to deal with the missing values is to delete that
case completely that may lead to inefficient and biased inferences. Therefore, ignoring
individuals with missing information may tend to introduce bias into inference and the
remaining information may not be representative of the population. Another approach
is that imputation with plausible values can replace missing observations. However,
many researchers have proposed the maximum likelihood approach to deal with missing
information.

The Gaussian Linear mixed models lack robustness against skewness and kurtosis
and may seriously distort the estimates and results. Pinheiro et al. (2001) used a
multivariate t distribution in the distribution of random effect and errors as a flexible
model of heavy-tail data. For handling skewed data, Lin and Lee (2008) proposed an
extension of the original LMM in which the distribution of random effect was the skew-
normal and called (SN-LMM). To overcome the lack of heavy-tail in SN-LMM, Ho and
Lin (2010) introduced a flexible skew LMM model by using the multivariate skew-t as
a distribution of random effects; called skew-t Linear mixed models with missing data.

In asymmetric LMM, Lachos et al. (2010) studied LMM by using skew-normal in-
dependent distribution including skew-t, skew-contaminated normal and skew slash
distribution for random effect variable. Recently, Negarestani et al. (2019) introduced
a new class of skew distribution by assuming the mean mixture of multivariate nor-
mal (MMN) distribution for covering skewed and atypical observations. Based on
Negarestani et al. (2019), a random vector Y is said to follow a p-variate MMN distri-
bution if it takes the linear stochastic representation

Y = µ+ λW +U , W ⊥ U , (2)

where U is the p-dimension random vector of ∼ Np(0,Σ) and W is the univariate
random variable with cumulative distribution function (cdf) H(·;ν). Very recently,
Sepahdar et al. (2022) proposed an asymmetric extension of the mixture-of-experts
model by using the MMN family for clustering multivariate observations with skewed
and heavy-tailed dealing. Recently, Schumacher et al. (2021) considered a robust skew
LMM in which the error terms have a dependence structure.

In this paper, we develop a robust model against asymmetric and heavy-tailed
data via a flexible skew distribution on the LMM in the presence of missing values.
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We called this model the mean mixture of normal linear mixed model (MMN-LMM).
The outliers can create seriously biased estimates and subsequently lead to distorted
inference. By using the representation of the MMN-LMM, we develop an expectation
conditional maximization (Meng and Rubin, 1993, ECM) as an extension of expectation
maximization (Dempster et al., 1977, EM) algorithm to carry out maximum likelihood
(ML) estimation. In this paper, we consider the missing-at-random with an ignorable
mechanism in which the cause of omission is unrelated to the missing information. To
address the presence of missing values, two auxiliary indicator matrices are incorporated
into the study to make methodological and theoretical developments more efficient. We
show the efficiency of the proposed model via two simulations studies and by analyzing
a real data set. We see that the performance of our model is better than other models.

The outline of this paper is therefore structured as follows. In Section 2, we describe
the MMN distribution model and present some important properties for two special
cases. In Section 3, we describe MMNE-LMM within the missing information and
develop an efficient ECM algorithm for calculating ML estimates of parameters in
Section 4. Extensive simulation studies are contained in Section 5. Section 6 includes
the analysis of real data set.

2 Class of the MMN distribution
2.1 Preliminaries
A random vector Y is said to follow a p-variate restricted skew-normal (rSN) distribu-
tion if it obtains the probability density function (pdf)

frSN (y;µ,Σ,λ) = 2ϕp(y;µ,Ω)Φ

(
λ⊤Ω−1(y − µ)√
1− λ⊤Ω−1λ

)
, y ∈ Rp, (3)

where Ω = Σ + λλ⊤, ϕp(·;µ,Σ) denotes the pdf of Np(µ,Σ), and Φ(·) is the cdf
of standard Gaussian distribution with a zero mean and a variance equal to unity,
N(0, 1) (Pyne et al., 2014). It is clear from pdf rSN that the stochastic representation
of rSN distribution is (2) when we replace pdf of W with standard truncated normal,
W ∼ TN(0, 1; (0,∞)). The notation Y ∼ rSN(µ,Σ,λ) will be used if Y has pdf
(3). Moreover, since the truncated normal distribution belongs to the elliptical class
of distributions, the rSN distribution is a skew elliptically contoured model. In this
paper, we will refer to the p-variate random vector Y ∈ R with MMN distribution is
refer to as Y ∼ MMN(µ,Σ,λ,ν) and the hierarchical stochastic representation can
be gives

Y |W = w ∼ Np(µ+ λw,Σ), W ∼ h(w;ν).

The p-dimension random vector Y takes the pdf

fMMN(y;µ,λ,Σ,ν) =

∫ ∞

−∞
ϕp(y;µ+ λw,Σ)h(w;ν) dw, y ∈ Rp, (4)

where ϕp(·;µ,Σ) indicates the pdf of Np(µ,Σ). It is clear that

E(Y ) = µ+ E(W )λ and Cov(Y ) = Σ+ Var(W )λλ⊤. (5)
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By using (5), the mean of MMN distribution changes for any members of this family
upon W being changed. Moreover, notice how the skewness is caused by the mixing
random variable W . If W is distributed symmetrically and/or elliptically the resulting
distribution of Y is also symmetric and/or elliptical. Moreover, the pdf (4) may result
in non-elliptically contoured distribution. When H degenerates with w = 1, or when
λ → 0, the p-dimension random vector normal distribution is computed. We observe
that the MMN model subclass, designated W, conforms to any positive or skewed
distribution.. This setting results in nice skew distributions. In the rest of this section,
some special cases of the MMN models are presented that will be considered later.

2.2 Special cases
• Convolution with exponential distribution. Let Y ∼ MMNE(µ,Σ,λ) denotes the
mean mixture normal exponential (MMNE) distribution such that in (2), we replace
W ∼ E(ν) where E(ν) exponential distribution with the mean 1/ν. Its pdf function
MMNE(µ,Σ,λ, ν) can be expressed as

fMMNE(y;µ,Σ,λ, ν) =
ν
√
2π

τ
exp

{A2
E

2

}
ϕp(y;µ,Σ)Φ(AE), y ∈ Rp,

where τ2 = λ⊤Σ−1λ, and AE = τ−1
[
λ⊤Σ−1(y − µ)− ν

]
.

• Convolution with exponential and half-normal distribution. Let Y ∼ MMNEH
(µ,Σ,λ,ν) denotes the mean mixture normal exponential half normal (MMNEH) dis-
tribution such that in (2), we replace W with the following pdf

f(w; ν) = ν1ν2 exp{−ν2w}+ 2(1− ν1)ϕ(w), w, ν2 > 0, 0 < ν1 < 1. (6)

Its pdf function MMNEH(µ,Σ,λ,ν) can be expressed as

fMMNEH(y;µ,Σ,λ,ν) = ν1fMMNE(y;µ,Σ,λ, ν2)

+(1− ν1)frSN(y;µ,Σ,λ), y ∈ Rp,

where ν = (ν1, ν2). It is clear that the pdf of MMNEH is a mixture of two pdfs and
E(W ) = ν1ν

−1
2 +

√
2/π(1− ν1).

• Convolution with Weibull distribution. The mixed-Weibull MMN (MMNW) distri-
bution, denoted by Y ∼MMNW (µ,Σ,λ, ν), arises from (2) when W follows Weibull
distribution with scale parameter ν and shape parameter 2. The pdf of Y is given by

fMMNWp
(y;µ,Σ,λ) =

2ν2
√
2π

τ2WE

exp

{
A2

WE

2

}
ϕp (y;µ,Σ)

× (AWEΦ(AWE) + ϕ(AWE)) , y ∈ Rp,

where τ2WE = τ2+2ν2 and AWE = τ−1
WE

[
λ⊤Σ−1(y − µ)

]
. The MMNW model is a non-

elliptically contoured distribution with a log-concave pdf (since the Weibull distribution
with shape parameter grater than 1 has a log-concave pdf).
• Convolution with Gamma distribution. In this case, the mixing random variable
W in (2) is distributed by Gamma(2, ν), where Gamma(a, b) denotes the gamma
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distribution with mean and variance are E(W ) = 2/ν and V ar(W ) = 2/ν2. Then, the
pdf of Y ∼MMNG(µ,Σ,λ, ν) takes the form

fMMNGp(y;µ,Σ,λ, ν) =
ν2

√
2π

τ2
exp

{
A2

E

2

}
ϕp (y;µ,Σ)

× (AEΦ(AE) + ϕ(AE)) , y ∈ Rp.

It is also clear that the pdf of MMNG distribution belongs to the class of skew non-
elliptically contoured distributions and is a log-concave function.
• Convolution with Lindley distribution. Let the random variable W in (2) follows a
Lindley distribution with the pdf

fW (w; ν) =
ν2

1 + ν
(1 + w) exp{−νw}, w, ν > 0.

The mean and variance of W are

E(W ) =
2 + ν

ν(ν + 1)
and V ar(W ) =

ν2 + 4ν + 2

ν2(ν + 1)2
.

We note that, the Lindley distribution is a mixture of E(ν) and Gamma(2, ν) distribu-
tions with mixing parameter ν/(ν+1). Then, the pdf of Y following the mixed-Lindley
MMN (MMNL) distribution is

fMMNLp
(y;µ,Σ,λ, ν) =

1

1 + ν

(
νfMMNEp

(y;µ,Σ,λ, ν)

+fMMNGp
(y;µ,Σ,λ, ν)

)
, y ∈ Rp.

3 The MMN linear mixed model with incomplete
data

To introduce a robust extension of the LMM (1), we consider that the joint vector
of random effects and residual errors follow a (p + q)-variate of MMN distribution.
Specifically,

Yj = Xjβ +Zjbj + ϵj ,

bj
iid∼ MMNq(0,D,λ, ν), ϵj

iid∼ Np(0,Ψ), bj⊥ϵj , (7)

where λ = (λ1, . . . , λq) is a q× 1 vector of skewness parameters and covariance matrix
of error is assumed Ψ = σ2R, where R is known matrix, unless otherwise noted.
Then, using the representation in (2), MMN-LMM in (7) has the following hierarchical
stochastic representation Alternatively, by the linear representation (2), the proposed
MMN-LMM model in (7) admits the following two-level representation

Yj | wj , ∼ Np(Xjβ +Zjλwj ,ZjDZ⊤
j +Ψ),

Wj ∼ h(wj ;ν). (8)
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Let Θ = {β,D,λ, ν, σ2} denote all unknown parameters in the MMN-LMM. Based on
the assumption (7) together with applying (8), it is straightforward to see

Yj ∼MMNp(Xjβ,Σ,Zjλ,ν), with Σ = ZjDZ⊤
j +Ψ.

By using (5), Yj has the following expectation and covariance

E(Yj) = Xjβ + E(Wj)Zjλ and Cov(Yi) = Σ+ Var(Wj)Zjλ (Zjλ)
⊤
.

From (7), models based on MMN-LMM can be represented hierarchically at the fol-
lowing three levels

Yj | (bj , wj) ∼ Np(Xjβ +Zjbj ,Ψ), bj | wj ∼ Nq

(
wjλ,D

)
, Wj ∼ h(wj ;ν). (9)

Consequently, the log-likelihood function for Θ associated with the matrix of observa-
tions Y = (y1, . . . ,yn) is

ℓ(Θ|Y ) =

n∑
j=1

log fMMN (yj ;Xjβ,Σ,Zjλ,ν). (10)

where fMMN (·) is the pdf of MMN distribution. To carry out ML estimation of the
model (10), some of the observed data yi is incomplete because in some cases, the
sample refuses to repeat the test or lacks the data. Under this assumption, we partition
Yj to the observed component Y o

j ∈ Rpo
j and the missing component Y m

j ∈ Rpm
j , where

poj + pmj = p. For easy notation and computation, two ancillary permutation matrices
are introduced as Oj (poj × pj) and Mj ((p− poj)× pj) to identify yo

j and ym
j as

Y o
j = OjYj and Y m

j = MjYj , such that Yj = O⊤
j Y

o
j +M⊤

j Y m
j and

O⊤
j Oj +M⊤

j Mj = Ip.

The following proposition presents some significant consequences, which help obtain
the Q-function of the ECM algorithm.

Proposition 3.1. From the MMN-LMM model (7), we have
a. With wj, Y o

j has the following conditional distribution:

Y o
j | wj ∼ Npo

j

(
Oj (Xjβ +Zjλwj) ,Σ

oo
j

)
,

where Σoo
j = OjΣO⊤

j .
b. Y o

j has a marginal distribution:

Y o
j ∼MMN(ξoj ,Σ

oo
j ,η

o
j ,ν) (11)

where ξoj = OjXjβ and ηo
j = OjZjλ.

c. With wj and bj, Y o
j has the following conditional distribution:

Y o
j | bj , wj ∼ Npo

j

(
Oj (Xjβ +Zjbj) ,Ψ

oo
j

)
,
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where Ψoo
j = OjΨO⊤

j .
d. With yo

j , bj and, wj, Y m
j has the following conditional distribution:

Y m
j | (yo

j , bj , wj) ∼ Np−po
j
(φm.o

ij ,Ψmm.o
j ),

where φm.o
j = Mj

[
Xjβ +Zjbj +ΨCoo

j (yj −Xjβ +Zjbj)
]
, Coo

j = O⊤
j

(
OjΨO⊤

j

)−1

Oj, and Ψmm.o
j = Mj

(
Ip −ΨCoo

j

)
ΨM⊤

j .
e. we have

f(wj | yo
j ) =

ϕpo
j

(
yo
j ;Oj (Xjβ +Zjλwj) ,Σ

oo
j

)
f(wi)

fMMNpo
j
(yo

j ; ξ
o
j ,Σ

oo
j ,η

o
j ,ν)

.

f. we have

bj | (yo
j , wj) ∼ Nq(λwj + F o

j
⊤(yj − ξj − wjηj),

(
Iq − F o

j
⊤Zj

)
D),

where ξj = Xjβ, ηj = Zjλ and F o
j = Coo

j ZjD.

Proof. See Appendix 7.1.

4 Estimation process via ECM algorithm
4.1 Parameter estimation
The ECM algorithm is a well-known framework for computing ML parameter estima-
tion when data are incomplete or treated as such. This algorithm iterates two steps
wherein the missing and latent data are estimated by their conditional expectations in
the E-step to obtain the expected value of the complete-data log-likelihood and the CM-
step maximizes the conditional expectation of complete-data log-likelihood function to
update parameter estimates. These E- and CM-steps are iterated until a convergence
criterion is attained.

To implement our feasible ECM procedure for learning the MMN-LMM, let Yc =
(yo,ym, b,w) be the complete data, where ym = (ym

1 , . . . ,y
m
n ) denotes the missing

portion of the data, yo = (yo
1 , . . . ,y

o
n) are part of the data that has been observed,

b = {b1, . . . , bn} is the set of random effect, and w = (w1, . . . , wn) are the missing
variables. The complete-data log-likelihood function for Θ based on the complete data
Yc, and omission of constant values, is

ℓc(Θ | Yc) =

n∑
j=1

log h(Wi;ν)−
n

2
log |Ψ| − 1

2

n∑
j=1

tr
(
Ψ−1Υ1j

)
− n

2
log |D|

−1

2

n∑
j=1

tr
(
D−1Υ2j

)
where Υ1j =

(
yj −Xjβ−Zjbj

)(
yj −Xjβ−Zjbj

)⊤, Υ2j =
(
bj −Wjλ

)(
bj −Wjλ

)⊤
and tr(M) denotes the trace of matrix M .

The following proposition can be used to evaluate the Q-function.
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Proposition 4.1. Given the hierarchical representation of the MMN-LMM (9), we
have

E(bi | yo
i ) = λE(Wj | yo

j ) + F o
j
⊤(yj − ξi − E(Wj | yo

j )η
o
j ),

E(Wibi | yo
i ) = λE(W 2

j | yo
j ) + F o

j
⊤((yj − ξi)E(Wj | yo

j )− E(W 2
j | yo

j )η
o
j ),

E(bjb
⊤
j | yo

j ) = E(bj | yo
j )(F

o
j
⊤(yj − ξj))

⊤ + E(Wibi | yo
j )(λ− F o⊤

j ηo
j )

⊤

+
(
Iq − F o

j
⊤Zj

)
D.

Proof. By using Proposition 3.1 part (f), the proof is straightforward and omitted.

Let Θ̂(k) =
(
β̂(k), D̂(k), λ̂(k), ν̂(k), σ̂(k)2

)
denote all estimations of model parame-

ters, Θ, at the kth iteration. We then have the following conditional expectations.

ŵ
(k)
1j = E(Wj | yo

j , Θ̂
(k)), t̂

(k)
j = E(W 2

j | yo
j , Θ̂

(k)),

ζ̂
(k)
0j = E(bj | yo

j , Θ̂
(k)), ζ̂

(k)
1j = E(Wibj | yo

j , Θ̂
(k)), Φ̂

(k)
j = E(bjb

⊤
j | yo

j , Θ̂
(k)),

for j = 1, . . . , n. Evaluations can be produced using Proposition 4.1. Notice that ŵ(k)
1j

and t̂(k)j can be easily evaluated using the results stated in 7.2. Considering Θ̂(0) in the
beginning, our proposed ECM algorithm for ML estimates of the MMN-LMM, iterates
the following steps:
E-step: Given the observed data yo and the current estimate Θ̂(k), the E-step cal-
culates the conditional expectation of the complete-data log-likelihood function. This
leads to the so-called Q-function:

Q(Θ) =

n∑
j=1

[
E
(
log h(Wi;ν) | yo

j , Θ̂
(k)

)
− 1

2
log |Ψ| − 1

2
tr
(
Ψ−1Υ̂1j

(k)
)

−1

2
log |D| − 1

2
tr
(
D−1Υ̂2j

(k)
)]

, (12)

where Υ̂
(k)
1j = E

((
Yj − Xjβ − Zjbj

)(
Yj − Xjβ − Zjbj

)⊤ | yo
j , θ̂

(k)

)
and Υ̂2j

(k)
=

Φ̂
(k)
ij − ζ̂

(k)
1j λ⊤ − λζ̂

(k)⊤

1j + t̂
(k)
j λλ⊤.

CM-step 1: Let Ψ = σ2R. Maximizing Q-function (12) over Θ̂ leads to the parameter
updates

β̂(k+1) =

 n∑
j=1

X⊤
j R−1Xj

−1  n∑
j=1

X⊤
j R−1

[
q̂
o(k)
j − Ψ̂(k)Ĉoo(k)

j Z
(k)
j ζ̂

(k)
0j

]
σ̂2(k+1) =

1

np
tr

Diag

 n∑
j=1

Υ̂
(k+1)
1j

 ,
λ̂(k+1) =

∑n
j=1 ζ̂

(k)
1j∑n

j=1 t̂
(k)
j

, D̂(k+1) =
1

n

n∑
j=1

Υ̂
(k+1)
2j
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ν̂(k+1) =



n∑n
j=1 ŵ

(k)
1j

, for MMNE-LMM,

2n∑n
j=1 ŵ

(k)
1j

, for MMNG-LMM,(
n∑n

j=1 ŵ
(k)
2j

)1/2

, for MMNW-LMM,√
8

∑n
j=1

ŵ
(k)
1j

n +(1−
∑n

j=1
ŵ

(k)
1j

n )2+(1−
∑n

j=1 ŵ
(k)
1j

n )

2

∑n
j=1

ŵ
(k)
1j

n

, for MMNL-LMM

where q̂
o(k)
j = Xjβ̂

(k) + Ψ̂(k)Ĉoo(k)

j (yj −Xjβ̂
(k)), Êoo(k)

j =
(
Ip − Ψ̂(k)Ĉoo(k)

j

)
Zj and

Υ̂
(k+1)
1j =(q̂

o(k)
j −Xjβ̂

(k+1))(q̂
o(k)
j −Xjβ̂

(k+1))⊤ +
(
Ip − Ψ̂(k)Ĉoo(k)

j

)
Ψ̂(k)

+
(
Êoo(k)

j −Zj

)
Φ̂

(k)
j

(
Êoo(k)

j −Zj

)
+
(
q̂
o(k)
j −Xjβ̂

(k+1)
)
ˆ̃
ζ
(k)⊤

0j

×
(
Êoo(k)

j −Zj

)⊤
+
(
Êoo(k)

j −Zj

)
ˆ̃
ζ
(k)
0j

(
q̂
o(k)
j −Xjβ̂

(k+1)
)⊤

.

CM-step 2: We can update ν for the MMNEH-LMM using the following relation:

ν̂(k+1) = argmax
ν

n∑
j=1

log fMMNEHpo
j

(
yo
j ; ξ

o(k+1)

j ,Σoo(k+1)

j ,ηo(k+1)

j , ν
)
,

where ξ̂o
(k+1) , η̂o(k+1)

j , and Σ̂oo(k+1)

j are ξoj , ηo
j and Σoo

j in (11), respectively, obtained
at the prevalent estimation at the beginning of the (k + 1)-th repetition. By using
functions optim and nlminb in R programming, we can update ν, but calculating
ν̂(k+1) is still complicated.

Remark 4.2. It can be seen that the update estimate of ν for the MMNEH-LMM is
obtained by CM-step 2. To circumvent this entangled form in CM-step 2, we introduce
an indicator variable Vj as follows the hierarchical representation

Y o
j | (Wj = wj , Vj = 1) ∼ Npo

j
(Oj(Xjβ + wjZjλ),Σ

oo
j ),

Wj | Vj = 1 ∼ E(ν2)

Vj ∼ Ber(1, ν1), (13)

where Ber(1, ν) denotes the Bernoulli trail with probability ν. Here, Vj = 1 if yo
j comes

from the MMNE-type distribution, and Vj = 0 if yo
j generated by the rSN model. By

using (13), the parameter ν can be updated as

ν̂
(k+1)
1 =

∑n
j=1 π(y

o
j )

n
, and ν̂

(k+1)
2 =

∑n
j=1 π(y

o
j )∑n

j=1 ŵ
(k)
1j π(y

o
j )
,

where

π(yo
j ) =

ν̂
(k)
1 fMMNE(y

o
i ; ξ

o(k+1)

j ,Σoo(k+1)

j ,ηo(k+1)

j , ν̂
(k)
2 )

fMMNEH(yo
i ; ξ

o(k+1)

j ,Σoo(k+1)

j ,ηo(k+1)

j , ν̂(k))
.
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4.2 Predicting random effect and missing information
To calculate predicting random effect and missing information, we indicate the ML
estimations by Θ̂ =

(
β̂, D̂, λ̂, ν̂, σ̂2

)
. From Proposition 4.1, the estimator of random

effect can be evaluated as follows

b̂j = E(bj | yo
j , Θ̂) (14)

where E(bj | yo
j , Θ̂) is obtained by replacing Θ̂ with Θ in Proposition 4.1 part (a). As a

by-product of our ECM algorithm and Proposition 3.1 part (d), conditional imputation
is used to estimate missing values as

ŷm
j = Mj

[
Xjβ̂ +Zj b̂j + Ψ̂Ĉoo

j (yj −Xjβ̂ +Zj b̂j)
]
, (15)

where b̂j is defined in (14). We use the mean squared deviation (MSD) as a measure
of the difference between the true value of ym

j and the imputed value of ŷm
j . MSD can

be calculated as follows

MSD =
1

n∗

n∑
j=1

(ym
j − ŷm

j )⊤(ym
j − ŷm

j ), (16)

where n∗ is the number of missing items.

4.3 Estimation of standard errors based on EM algorithm
The asymptotic covariance matrix of the ML estimates can be approximated by the
inverse of the observed information matrix (Efron and Hinkley, 1978). Before showing
the main result, we need to define some notation. Let ℓcj(Θ | ycj) be the log-likelihood
formed from the single complete observation ycj = (yo

j ,y
m
j , wj , bj) such that

ℓcj(Θ | Ycj) = log h(Wj ;ν)−
1

2
log |Σ| − 1

2
tr
(
Σ−1Υ1j

)
− 1

2
log |D| − 1

2
tr
(
D−1Υ2j

)
.

Also, Let di = Diag(Di) denote a p× 1 vector containing entries on the main diagonal
of Di.

According to Meilijson (1989) formula, the observed information matrix can be
estimated by

Îo = Io(Θ̂ | yo) =

n∑
j=1

s(yo
j | Θ̂)ŝ⊤(yo

j | Θ̂), (17)

where
s(yo

j | Θ̂) = E

(
ℓc(θ | ycj)

∂Θ
| yj , Θ̂

)
,

is the individual score vector containing elements of
(
ŝ⊤j,β, ŝ

⊤
j,d, ŝ

⊤
j,λg

, ŝj,ν , ŝj,σ2

)
.

Explicit expressions for the above elements can be obtained by standard matrix
differentiation. Technical derivations are given below:

ŝj,β = X⊤
j R−1

[
q̂o
j − Ψ̂Ĉoo

j Zj ζ̂0j

]
− βX⊤

j R−1Xj ,
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ŝj,σ2 = −p log σ̂ − 1

2σ̂2
tr
(
Υ̂1j

)
ŝj,d = Diag

(
−1

2

{
D̂−1 − D̂−1Υ̂2jD̂

−1
})

,

ŝj,λ = −2ζ̂1j + 2t̂jλ̂,

ŝj,ν =


1
ν̂ − ŵ1j , for MMNE-LMM,
2
ν̂ − ŵ1j , for MMNG-LMM,
1
ν̂2 − t̂j , for MMNW-LMM,
2+ν̂

ν̂(ν̂+1) − ŵ1j , for MMNL-LMM.

It can be seen that the standards errors of ν for the MMNEH-LMM is obtained by

ŝj,ν1 = ν̂1 − π(yo
j ) and ŝj,ν2 = ν̂2ŵ1jπ(y

o
j )− π(yo

j ).

The standard errors can be approximated by calculating the square root of the diag-
onal elements of the inverse of (17). If the standard errors are obtainable, they are
useful to assess the significance of parameter estimates as well as other inferential is-
sues. The observed information-based estimator for the variances of ML estimators is
asymptotically consistent if the model is correctly specified (White, 1996).

4.4 Notes on implementation
Like any other EM-type algorithm, if the ECM algorithm is given good parameter
estimates, convergence may be sped up or made easier. When the skewness parameter
in the MMN-LMM tends to zero, we have the original LMM. Therefore, we put λ̂(0) = 0
corresponding to an initial supposition close to the original LMM. The initial values of
β̂(0), σ̂2(0) and D̂(0) are described in the R command “lmm”. In addition, we started
the algorithm with ν̂(0) = 0.5 for MMNEH-LMM.

The Akaike information criterion (AIC) and the Bayesian Information Criterion
(BIC) (Schwarz, 1978) are measures to select the number of classes and factors. It
calculates as

AIC = −2ℓmax + 2m, BIC = −2ℓmax +m log n,

where m is the number of free parameters, and ℓmax is the maximized log-likelihood
value. Models with fewer AIC and BIC values are generally better fitted.

5 Simulation Study
In this section, we investigate the asymptotic properties of the ML estimates as well
as the performance of our models in transactions with skewed and heavily tailed data.
In all simulations, we considered the different percentages of missing values.

5.1 Asymptotic properties
In this simulation, we regain true parameters for two special cases of the MMN-LMM
based on the ECM algorithm and compare these estimates with their true parameters.
For this simulation, we generate 100 samples from MMNE-LMM with q = 2, p = 5,
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and n = 100, 200, 400, 800, and 1600. The true parameters values are specified
as β = (3, 2, 1)⊤, λ = (1, 2)⊤, Ψ = σ2I where σ2 = 0.25 and I is identity matrix,
D = diag(1, 1), ν = 2

Zj =
[
1 1 1 1 1
−2 −1 0 1 2

]⊤
, Xj =

[ 1 1 1 1 1
−2 −1 0 1 2
t t t t t

]⊤
.

To empirically study, the flexibility of MAR model when dealing with missing value,
data deletion method is used. In the MAR experience, missing items are obtained by
random deletion under three levels, without missing value (r = 0%), moderate (r =
10%), and upper (r = 20%) rates of omission.

To evaluate the estimation accuracy, we obtain the relative mean absolute bias
(RBias) and the root mean squared error (RMSE):

RBias = 1

100

100∑
r=1

|θ̂(r) − θtrue| and RMSE =

√∑100
r=1(θ̂

(r) − ¯̂
θ)2

100
,

where θ̂(r) explains the ML estimate obtained using Section 4.1 as a specific parameter
at the rth replication and θtrue is its true value.

In addition, investigating the standard error’s estimation consistency is of our in-
terests. So, by using the approximate standard errors (ASE), we measured the sample
standard deviation of parameters (STD) and the average standard errors:

STD(θ̂) =

√√√√ 1

99

100∑
r=1

[
θ̂(r) − 1

99

100∑
r=1

θ̂(r)

]2

and ASE(θ̂) = 1

100

100∑
r=1

SE(θ̂(r)),

where SE(θ̂(r)) denotes the asymptotic standard errors of θ̂ at the rth replication.
We examine the accuracies of STD estimators with ASE as well as n increase for the
above model using discrepancy measures: sum of absolute deviation of STD with ASE
computed by

SAD(θ̂) = |STD(θ̂)− ASE(θ̂)|,

where STD(θ̂) is standard deviation of θ̂ and ASE(θ̂) is average standard errors using
the observed information matrix for parameter θ̂ with sample size n.

The numerical results displayed in Figures 1 disclose that both values of RBias and
RMSE tend to zero as the sample size increases, confirming the empirical consistency
of the ML estimators. According to Figures 1, the estimate parameters are close to the
true value that shows the better and more effective performance of the ECM algorithm
proposed in Section 4.1. Also, Table 1 show that the values of SAD are tending to zero
as n increases. This suggests that as the value of n increases, the difference between
STD and ASE diminishes, indicating a convergence between the two.

5.2 Behavior of proposed models vs heavy-tailed data
In this subsection, the performance of robust extension of LMM based on MMN distri-
bution in dealing with heavy-tailed data is tested in terms of estimating missing values.
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Table 1: Simulation results for assessing the sum of absolute deviation of STD with
ASE of parameters estimates across various sample sizes.

n measure β0 β1 β2 d11 d22 σ2 λ1 λ2 ν
100 SAD 0.2702 0.3642 0.4626 0.3538 0.4384 0.0520 0.2957 0.2267 0.2239
200 SAD 0.1170 0.1521 0.1533 0.1117 0.1689 0.0233 0.1940 0.1590 0.0757
400 SAD 0.0648 0.0848 0.1003 0.0664 0.0990 0.0176 0.0895 0.0663 0.0405
800 SAD 0.0390 0.0491 0.0577 0.0347 0.0559 0.0093 0.0310 0.0229 0.0238
1600 SAD 0.0316 0.0402 0.0383 0.0307 0.0490 0.0052 0.0178 0.0108 0.0167
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Figure 1: Mean of Rbias and RMSE for parameters based on ECM algorithm with increase sample
size, MMNE-LMM.

For this aim, we considered three levels of missing data based on MAR and two scenar-
ios to generate heavy-tailed data. We simulate n = 200 from MMN-LMM with q = 2
and p = 5. The mixing variable W in (2) is considered Birnbaum-Saunders distribution
(Birnbaum and Saunders, 1969) with α and 1 for scale and shape parameter for the
first scenario (S1) and generalized inverse Gaussian (GIG) (Good, 1953) with param-
eter χ = 1, ψ = 2 and κ = 0.5 for the second scenario (S2). These models, referred to
as MMNBS-LMM and MMNGIG-LMM, are not discussed in Section 4 since the pdf
and conditional expectations are not available. The other true parameters values for
proposed models are specified as β = (4, 2, 1)⊤, λ = (2, 3)⊤, Ψ = σ2I where σ2 = 0.5
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and I is the identity matrix,

D =
[

1 0.25
0.25 1

]⊤
, Zj =

[
1 1 1 1 1
−2 −1 0 1 2

]⊤
, Xj =

[ 1 1 1 1 1
−2 −1 0 1 2
t t t t t

]⊤
,

where t = 1 for j ≤ n/2 and t = 0 for j > n/2. For each run of 100 simulations, four
models normal linear mixed model (N-LMM), SN-LMM, MMNE-LMM, and MMNEH-
LMM as well as three levels of missing data 0%, 10%, and 20% are applied to the
generated data. For each model, we employed two information criteria the Akaike in-
formation criterion (AIC) (Aitken, 1926) and the Bayesian information criterion (BIC)
(Schwarz, 1978) and obtained MSD in (16) to measure the difference between the true
value of missing data and the imputed value of missing data. For the sake of different
models comparison, Table 2 report the average value of AIC, BIC and MSD for three
levels missing rate. As seen in Table 2, the MMN-LMMs carry out better than the
standard LMM and its extended based on SN, which confirms the positive effect of the
presence of family of MMN distributions in random effects. It can be observed that the
proposed models are superior more consistently compared to LMM and SN-LMM. In
addition, LMMs based on heavy-tailed distributions, such as MMMNG and MMMNEH
distributions, consistently presented more suitable values for three criterion values. It
can clearly be seen that the fitting performance of the MMNEH-LMM and MMNG-
LMM are improved in S1 and S2, respectively. For S1 and S2, the MMNEH-LMM and
MMNG-LMM performed similarly in terms of estimating missing data.

Figures 2 and 3 give visuals comparison of different LMMs for BIC and MSD based
on two scenarios. It is obviously observed that the MMNE-LMM provides a better
fit in terms of BIC for two scenarios. Besides, the MMNEH-LMM provides the best
estimated missing values in two scenarios.
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Table 2: Comparison of the estimation performance of four LMMs based on AIC, BIC, and MSD for three levels of missing rate
simulated in two scenarios.

scenario measure missing rate N-LMM SN-LMM MMNE-LMM MMNEH-LMM MMNG-LMM MMNW-LMM MMNL-LMM

S1 AIC 0% 4268.178 4186.393 4167.104 4163.246 4165.374 4167.846 4167.566
10% 3958.915 3877.380 3858.105 3854.215 3855.573 3857.035 3862.760
20% 3643.714 3562.691 3543.473 3537.625 3541.799 3540.292 3542.914

BIC 0% 4297.863 4216.078 4196.789 4190.229 4193.058 4195.829 4199.251
10% 3988.600 3907.065 3887.790 3880.198 3883.258 3882.018 3889.445
20% 3673.398 3592.376 3573.158 3570.608 3572.484 3575.275 3574.599

MSD 10% 0.499 0.497 0.447 0.398 0.445 0.396 0.455
20% 1.132 1.124 1.073 1.024 1.075 1.026 1.030

S2 AIC 0% 4253.281 4201.226 4196.041 4197.843 4192.895 4194.842 4198.053
10% 3940.631 3888.915 3883.764 3885.580 3881.466 3883.424 3886.577
20% 3622.899 3571.728 3566.796 3568.597 3562.810 3564.757 3567.792

BIC 0% 4282.966 4230.911 4225.726 4230.826 4222.580 4227.825 4227.738
10% 3970.315 3918.599 3913.449 3918.563 3911.151 3916.407 3916.262
20% 3652.584 3601.413 3596.481 3601.580 3592.494 3597.740 3597.476

MSD 10% 0.520 0.517 0.467 0.417 0.406 0.416 0.446
20% 1.156 1.146 1.035 1.045 1.011 1.031 1.052
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Figure 2: Comparison of BIC and MSD of seven LMMs for three levels missing rate with 100
simulations from the MMNBS-LMM model.
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Figure 3: Comparison of BIC and MSD of seven LMMs for three levels missing rate with 100
simulations from the MMNGIG-LMM model.

6 Analysis of milk data sets
The Milk data was analyzed first by Diggle et al. (1994) and is available in the nlme
package. The milk data sets describe the protein of cow’s milk in the weeks following
calving. This study has been done in 19 weeks (p = 19) with 79 cows (n = 79), and
in some weeks, the protein content of cow’s milk has not been recorded. We consider
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these cases as missing data. Cows are fed with three levels diets including barley,
barley+lupins, and lupins. In the experiment, we assume a linear mixed model with
random effects Bj = (B1j , B2j)

⊤ and fixed effects β = (β0, β1, β2). Moreover, let
t = (t1, . . . , t19) with ti = (weeki−10)/10 i = 1, . . . , 19 and dietj be the type indicator
with 0=barley+lupins, 1=barley and 2=lupins. Thus Xj = (1, t, dietj)

⊤ is matrix
19× 3 and Z = (1, t)⊤ is matrix 19× 2. By using model (7), we fitted four models of
MMN-LMM consisting of N-LMM, SN-LMM, MMNE-LMM, and MMNEH-LMM to
the observations. At first, we fit N-LMM to the value of the observations as well as
the missing value and obtain an estimation of random effects. Figure 4 clearly shows a
skew distribution for random effects and thus MMN-LMMs are better to fit this data
set. However, the estimation intercept random effects are positively skewed with 1.501
value and kurtosis 2.981, and therefore the offered original LMM does not fit well.
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Figure 4: Scatter plot and normal Q-Q plots of for estimation random effects of milk data set based
on N-LMM.

According to the above description, we assume an MMN distribution with two
specific models for bj and multivariate normal distribution for ϵj with high-dimension
as well as asymmetric data. In our fit for the analysis aims, we consider MMNE,
MMNEH, and SN distributions from the MMN class.

The estimation of parameters, standard errors, maximum likelihood (ℓ(Θ)), AIC,
and BIC values of entire LMMs used data are reported in Table 3. The AIC and
BIC criterion show that the MMNEH-LMM and MMNG-LMM with heavy tails give
a suitable fit in comparison to the SN-LMM and N-LMM models. Furthermore, the β
estimations for three models with longer tails are almost similar, but the estimates for
the σ2s are not similar.

To assess the estimates of missing value with SN-LMM, MMNE-LMM, and MMNEH-
LMM, we drop out the last five measurements of ym

1 = (y15, . . . , y19) from cow 1, then
obtain the ML estimates by the new data. The estimate of ym

1 is created by formula
(15). We use the MSD in (16) as a measure of precision. The comparison of the
estimates based on the four models is presented in Table 4. The result showed that
the MMNE and MMNEH distributions give better estimate than the SN and the Nor-
mal. Thus, the MMN-LMM not only provides a better fitting model, but it also yields
almost accurately estimates of missing value for the milk data.
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Table 3: Results from fitting the four models to the milk data set.
parameter N-LMM SN-LMM MMNE-LMM MMNEH-LMM MMNG-LMM MMNW-LMM MMNL-LMM

Est. SE Est. SE Est. SE Est. SE Est. SE Est. SE Est. SE
β0 3.449 1.158 3.462 0.998 3.460 1.452 3.462 1.052 3.425 1.253 3.470 1.489 3.458 1.326
β1 -0.043 0.008 -0.043 0.027 -0.044 0.056 -0.043 0.072 -0.045 0.039 -0.044 0.061 -0.043 0.041
β2 -0.125 0.015 0.179 0.098 0.075 0.041 0.179 0.099 0.152 0.074 0.201 0.125 -0.231 0.168
d11 0.033 0.015 0.033 0.019 0.032 0.009 0.033 0.040 0.039 0.020 0.042 0.017 0.040 0.013
d12 0.012 0.007 0.010 0.009 0.010 0.008 0.010 0.005 0.015 0.009 0.014 0.019 0.08 0.020
d22 0.063 0.029 0.013 0.033 0.028 0.019 0.013 0.031 0.059 0.042 0.060 0.037 0.057 0.030
σ2 0.062 0.022 0.079 0.046 0.073 0.044 0.081 0.022 0.078 0.042 0.080 0.023 0.039 0.010
λ1 – – -2.016 1.230 -2.010 1.054 -3.016 1.523 -2.536 1.203 -2.790 1.429 -2.410 1.019
λ2 – – -1.382 0.993 -1.201 0.985 -1.382 1.009 -1.503 0.963 -1.423 1.052 -1.296 1.132
ν1 – – – 1.223 0.425 0.425 0.271 1.429 0.975 2.014 1.553 1.986 1.289
ν2 – – – – – 1.426 0.764
ℓ(Θ) -175.225 -170.342 -165.220 -162.725 -163.792 -164.086 -164.736

Num. Par. 7 9 10 11 10 10 10
AIC 364.450 358.684 350.440 347.450 346.384 348.172 349.472
BIC 381.965 380.009 374.1345 373.5139 370.038 371.866 373.166

Table 4: Comparison of estimates of missing values accuracy in terms of MSD dropout of the last five measurements of the protein
of milk for cow 1.

points being estimates N-LMM SN-LMM MMNE-LMM MMNEH-LMM MMNG-LMM MMNW-LMM MMNL-LMM
y15 = 4.13 4.551 4.428 4.029 4.033 4.051 4.037 4.042
y16 = 4.08 4.367 4.241 3.942 3.961 3.976 3.966 4.140
y17 = 4.22 4.883 4.854 4.155 4.184 4.260 4.170 4.177
y18 = 4.44 4.991 4.867 4.268 4.367 4.396 4.383 4.385
y19 = 4.30 4.915 4.880 4.181 4.180 4.442 4.462 4.470

MSD 0.507 0.420 0.119 0.089 0.041 0.053 0.047
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7 Concluding remarks and future work
In this study, we have presented a new class of asymmetric LMMs by using the class
of MMN distribution. By using two auxiliary indicator matrices, an ECM algorithm
is developed for obtaining the ML estimates of model parameters in the presence of
missing data. The performance of the proposed LMMs has been studied using two
simulation experiments and a world data set. Outcomes show that the efficiency of
the MMN-LMM is better than SN-LMM and N-LMM. We believe that the approaches
proposed here can also be used to study other asymmetric multivariate models. All
calculations were carried out using R 4.2.2.

There are a few issues and possible modifications to the proposed methodology that
deserves further attention. As has been indicated in the models (7), ϵj is considered
Normal distribution, its skew distribution can be challenged in LMMs. Thus, a change
of Z for any sample is one of the future directions of our work. Bai et al. (2016)
introduced a finite mixture linear mixed model in which the multivariate t distribution
is used for random effects and error distribution. Using the MMN class it will then be
of interest to extend the finite mixture linear mixed model for handling multi-modal,
skewed, and heavy-tailed distributed data. We are currently working on these subjects
and expect to present the findings in our future papers.
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Appendix
7.1 Proof Proposition 3.1
(a) We have bmYj | wj ∼ Np(ξj + ηwj ,Σ), thus[

Y o
j

Y m
j

]
| wj ∼ Np

([
Oj(ξj + ηwj)
Mj(ξj + ηwj)

]
,

[
OjΣO⊤

j OjΣM⊤
j

MjΣO⊤
j MjΣM⊤

j

])
.

It follows
Y o
j | wj ∼ Npo

j
(Oj(ξj + ηwj),OjΣO⊤

j ).

(b) Based on part (a), the proof is straightforward.
(c) We have[

Y o
j

Y m
j

]
| bj , wj ∼ Np

([
Oj (Xjβ +Zjbj)
Mj (Xjβ +Zjbj)

]
,

[
OjΨO⊤

j OjΨM⊤
j

MjΨO⊤
j MjΨM⊤

j

])
.

Thus, by the marginal distribution of normal, we can see that

Y o
j | (bj , wj) ∼ Npo

j
(Oj (Xjβ +Zjbj) ,OjΨO⊤

j ).

(d) We have Yj | (bj , wj) ∼ Np(Xjβ +Zjbj ,Ψ), thus[
Y o
j

Y m
j

]
| bj , wj ∼ Np

([
Oj (Xjβ +Zbj)
Mj (Xjβ +Zjbj)

]
,

[
OjΨO⊤

j OjΨM⊤
j

MjΨO⊤
j MjΨM⊤

j

])
.

By Theorem 2.5.1 of Anderson (2003), we can see that

E(Y m
j | yo

j , bj , wj) = Mj (Xjβ +Zjbj)

+MjΨO⊤
j (OjΨO⊤

j )
−1(yo

j −Oj (Xjβ +Zjbj))

= Mj

[
(Xjβ +Zbj)

+ΨO⊤
j (OjΨO⊤

j )
−1Oj(yj − (Xjβ +Zjbj))

]
,

cov(Y m
j | yo

j , bj , wj) = MjΨM⊤
j −MjΨO⊤

j (OjΨO⊤
j )

−1OjΨM⊤
j

= Mj

(
Ip −ΨO⊤

j (OjΨO⊤
j )

−1Oj

)
ΨM⊤

j .

(e) By using part (a), the proof is straightforward.
(f) It follows by part (c) that

E(Y o
j B

⊤
j | wj) = E

[
E(Y o

j | Bj , wj)B
⊤
j | wj

]
= E

[
Oj (Xjβ +ZBj)B

⊤
j | wj

]
= Oj

[
XjβE(B⊤

j | wj) +ZjE(BjB
⊤
j | wj)

]
= Oj

[
Xjβλ

⊤wj +Zj(D + λλ⊤w2
j )
]
,

cov(Y o
j B

⊤
j | wj) = E(Y o

j B
⊤
j | wj)− E(Y o

j | wj)E(B⊤
j | wj)

= Oj

[
Xjβλ

⊤wj +Zj(D + λλ⊤w2
j )
]
−Oj(ξj + ηwj)λ

⊤wj
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= OjZjD.

Thus, we have[
Y o
j

Uij

]
| wj ∼ Np

([
Oj(ξj + ηwj)

wjλ

]
,

[
OjΣiO

⊤
j OjZD

(OjZD)⊤ D

])
.

We then have the following results:

E(Bj | yo
j , wj) = λwj + F o

j
⊤(yj − ξj − wjηj),

cov(Bj | yo
j , wj) =

(
Iq − F o

j
⊤Zj

)
D.

7.2 Some properties of particular members of the MMN family
Lemma 7.1. If W ∼ TN(ξ, ω; (a1, a2)), then

E(W ) = ξ − ω
ϕ(α2)− ϕ(α1)

Φ(α2)− Φ(α1)
,

E(W 2) = ξ2 + ω2 − ω2α2ϕ(α2)− α1ϕ(α1)

Φ(α2)− Φ(α1)
− 2ξω

ϕ(α2)− ϕ(α1)

Φ(α2)− Φ(α1)
,

where αi = (ai − ξ)/ω, for i = 1, 2.

Proposition 7.2. a. Let Y o ∼ MMNEpo(ξo,Σoo,ηo, ν) and W ∼ E (ν). Then,
conditional distribution of W given Y o = yo is Wyo ∼ TN

(
Ao

Eτ
o−1, τo−2; (0,∞)

)
where τo2E = ηo⊤Σoo−1ηo and Ao

E = τoE
−1

[
ηo⊤Σoo−1(yo − ξo)− ν

]
.

b. Let Y o ∼MMNEHpo(ξo,Σoo,ηo,ν) and W have a density in (6). Then, Wyo has
pdf

fWyo (w) = π(yo)
ϕ
(
w;Ao

EHτ
o
E
−1, τo−2

)
Φ(Ao

EH
)

+ (1− π(yo))
ϕ
(
w; ξ, ω2

)
Φ(ξ/ω)

,

where

π(yo) =
ν1ν2

√
2π

τoEfMMNEHpo
(yo; ξo,Σoo,ηo, ν)

ϕp (y
o; ξo,Σoo) exp

(
Ao

EH

2

)
Φ(Ao

EH
).

Ao
EH = τoE

−1
[
ηo⊤Σoo−1(yo − µo)− ν2

]
, ξ = ηo⊤Ωoo−1(yo − ξo) and ω2 = 1 −

ηo⊤Ωoo−1ηo for Ωoo = Σoo+ηoηo⊤. Furthermore, for any yo
j ∈ Rpo

j , and k = 1, 2, . . . ,

E(W k
y ) = π(y)E

(
V k
1

)
+ (1− π(y))E(V k

2 ),

such that V1 ∼ TN
(
Ao

EHτ
o
E
−1, τoE

−2; (0,∞)
)
, V2 ∼ TN

(
ξ, ω2; (0,∞)

)
.

Proposition 7.3. Let Y o ∼MMNWpo(ξo,Σoo,ηo, ν) and W follows Weibull distri-
bution with scale and shape parameters ν and 2, respectively. Then, Wyo has pdf

fW |Y o=yo(w) =
wτoWE

Ao
WEΦ(A

o
WE) + ϕ(Ao

WE)
ϕ
(
w;Ao

WEτ
o−1

WE , τ
o−2

WE

)
, w > 0.
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where τo2WE = τo2E + 2ν2 and Ao
WE = τo

−1

WE

[
ηo⊤Σoo−1(yo − ξo)

]
. Moreover, for k =

1, 2, ...,
E(W k

yo) =
τoWEΦ(A

o
WE)

Ao
WEΦ(A

o
WE) + ϕ(Ao

WE)
E(V k+1),

where V ∼ T N
(
Ao

WEτ
o−1

WE , τ
o−2

WE ; (0,∞)
)

.

Proposition 7.4. If Y o ∼ MMNGpo(ξo,Σoo,ηo, ν) and W ∼ Gamma(2, ν). Then,
the pdf of Wyo is

fWyo (w) =
τoE

2w√
2π(Ao

GΦ(A
o
G) + ϕ(Ao

G))
exp

(
− (τoEw −Ao

G)
2

2

)
, w > 0,

where Ao
G = τoE

−1
[
ηo⊤Σoo−1(yo − ξo)− ν

]
. Moreover,

E(W k
yo) =

τoΦ(Ao
G)

Ao
GΦ(A

o
G) + ϕ(Ao

G)
E(V k+1),

where V ∼ TN
(
Ao

Gτ
o
E
−1, τoE

−2; (0,∞)
)
.

Proposition 7.5. If Y o ∼MMNLpo(ξo,Σoo,ηo, ν) and W ∼ Lindley(ν). Then, the
pdf of Wyo is

fWyo (w) = π(yo)
ϕ
(
w;Ao

Eτ
o
E
−1, τoE

−2
)

Φ(Ao
E
)

+(1− π(yo))
τoE

2w exp
(
− (τo

Ew−Ao
E)2

2

)
√
2π(Ao

EΦ(A
o
E) + ϕ(Ao

E))
, w > 0,

where
π(yo) =

νfMMNEpo
(yo; ξo,Σoo

j ,η
o, ν)

(v + 1)fMMNLpo
(yo; ξo,Σoo,ηo, ν)

.

Moreover,
E(W r

yo) = π(y)E(V r
1 ) + (1− π(y))E(V r

2 ),

where V1 ∼ TN
(
Ao

Eτ
o
E
−1, τoE

−2; (0,∞)
)

and

E(V r
2 ) =

τoEΦ(A
o
E)

Ao
EΦ(A

o
E) + ϕ(Ao

E)
E(V k+1),

in which
V ∼ TN

(
Ao

Eτ
o
E
−1, τoE

−2; (0,∞)
)
.


