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Abstract: In statistics, errors are inherent in data and models, particularly het-
eroscedasticity and skew-normal error structures. These errors were simultaneously
generated and infused into the data, leading to uncertainty in parameter estimation.
The statistician uses statistical knowledge to elicit information and guide decision-
making. Both classical and Bayesian restricted Stein-rule least squares were compared
when the data were contaminated with the aforementioned errors. This study pro-
posed an innovative Bayesian generalized restricted Stein-rule least squares method
with heteroscedastic skew-normal errors, which was ultimately found to be more ef-
ficient compared to non-Bayesian restricted Stein-rule least square estimators. The
study observed excellent performance of the Bayesian frameworks, including the Bayes
estimate and posterior mean, in comparison to the classical restricted Stein-rule least
squares estimators. Therefore, the study recommends Bayesian generalized restricted
Stein-rule least squares to analysts and researchers who may encounter such errors in
their data.

Keywords: Bayesian; Heteroscedasticity; Modeling and least squares; Skew-normal,
Simulation.
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1 Introduction
Heteroscedasticity in Statistics occurs when a breakdown of assumption of homoscedas-
ticity which resulted from the unequal variances of the diagonal elements of variance
covariance of residuals, Harvey (1976) was the proponent of regression model with
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multiplicative heteroscedasticity, Cepeda and Germaman (2000) coined Bayesian Het-
eroscedastic model and showed the efficiency of the model in their studied, Oloyede et
al. (2013) proposed Bayesian generalized heteroscedastic model as efficient method to
fit Bayesian heteroscedastic model using Markov Chain Monte Carlo (MCMC) simula-
tion. Obviously, data skewness often induces heteroscedasticity errors, so far, depen-
dent variable follows skew-normal distribution as the error is skewed, there is tendency
that such dependent variable that is skew-normal to likely induces heteroscedasticity.

O’Hagan and Leonard (1976) were the proponent of skew-normal distribution which
was afterward expanded with the work of Azzalini (1985) who later examined series
of univariate skew-normal distributions and their respective properties. Genton et
al. (2001) applied multivariate skew-normal model to time series and spatial Statis-
tics whereas Azzalini (1985, 1986) applied such to econometrics, non-linear time series
and financial Statistics. Ferreira and Steel (2007) obtained Bayesian regression model
from the construction of dual multivariate skew-normal distributions. Lachos et al.
(2007) estimated parameters of multivariate skew-normal regression model with EM
algorithms. Corrales and Cepeda-Cuervo (2022) examined Bayesian skew-normal re-
gression model where its moments are of normal regression model structures, they were
of the opinion that inappropriateness of regression skewness can result into infallible
location and scale regression parameters. Moreso, inappropriateness of location and
skewness in regression model will produce incorrect inferences.

Though most of the literature considered skew-normal regression model where the
distribution of covariates are individually skew-normal but in Azzalini (2005), regres-
sion model with skew-normal error was considered. The bane of concern is that skew-
normal error or non-normality of error can influence or lead to heteroscedasticity either
in heavy tail towards right or left.

Alhamide et al. (2019) carried out study on Bayesian linear regression with three
different prior density which includes alpha-skew-normal, normal, and non-informative.
The posterior means of the parameters under the alpha-skew-normal prior were found
to be more accurate than the comparable posterior means under the normal and non-
informative priors. Indacochea (2012) was of the opinion that practitioners will often
encounter data-generating processes (DGPs) with error terms that deviate greatly from
normality.

In Rubio and Genton (2016), skew-normal error models reflect deviations from the
conventional assumption of error normality in terms of heavy tails and asymmetry
from their work Bayesian linear regression models with skew-symmetric scale mixtures
of normal error distributions. They suggested a noninformative prior structure for
these regression models and demonstrated that the resulting posterior distribution is
appropriate under moderate conditions. Azzalini (1986) investigated the features of a
multivariate skewed normal distribution with scalar skew-normal marginal densities.
The random variable Y follows SN(µ, σ, δ) as in the Azzalini skew-normal distribution,
where the mean and variance are as follows:

E(Y ) = µ

√
2

π
σ, V ar(Y ) = σ2

(
1− 2

π
r2
)
.

The following are the sections of the study: Section 1 offers an introduction, and
Section 2 examines the skew-normal distribution, followed by Section 3 which exem-
plified heteroscedasticity skew-normal distribution errors while in Section 4 Bayesian
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heteroscedasticity skew-normal restricted Stein-rule design. Thus, bayesian restricted
least squares estimator with skew-normal and heteroscedastic errors were examined in
Section 5 which methodically synthesizes the study’s statistical foundation. Section 6
considered data generation process and performance metrics. Seventh Section covers
data analysis and interpretation, whereas Section 8 deals with the conclusion.

2 Skew-normal distribution
The density of the univariate skew-normal distribution, SN

(
ξ, ω2, α

)
is fSN

(
x; ξ, ω2, α

)
= 2ω−1ϕ(u)φ(αu), x ∈ R where u = ω−1(x− ξ), ξ ∈ R is a location parameter, ω > 0
is a scale parameter, ϕ(.) is the pdf of the univariate standard normal distribution, and
φ(.) is the cumulative distribution function of the standard normal distribution. Thus,
2φ(αu) is the skewness factor which is controlled by shape parameter α ∈ R, the α
indicates the direction of the distribution, if α > 0 the distribution is skew positively
or to the right, if α < 0 the distribution is skew negatively or to the left whereas if
α = 0, the distribution becomes normal distribution.

3 Heteroscedasticity skew-normal distribution errors
Let y = XβR+ut be restricted regression model where y is an n×1 set of observations
on the regressand, X is a set of n × p full column rank of regressors, βR is p × 1
vectors of unknown restricted parameters while u is an n × 1 vectors of disturbance
with heteroscedastic skew-normal distribution errors, where ut = σiεi, εi ∼ SN(0, 1, α)
and σi = ω exp (Xβ)

γ . Thus, α denotes the shape parameter that can vary with the
skewness of the distribution. The skew-normal regression is a linear regression with
errors from the skew-normal distribution ui

iid∼ SN
(
0, ω2, α

)
, as a result, sample y is

assumed to have a skew-normal distribution, yi
iid∼ SN

(
ξi, ω2, α

)
where ξi = Xβ. It

is of interest that the mean µ and variance ω of a skew random variate is not the same
as the location (ξ) parameter, E (ui) ̸= 0 except α = 0 as in normal linear regression.
The mean E (ui) =

√
2/πωδ, where δ = α/

√
1 + α2. thus E (yi) = ξ + E (ui), thus,

s(u) = 2f(u)φ(u), u ∈ R.

4 Bayesian heteroscedasticity skew-normal restricted
Stein-rule design

Let there be m linearly independent restriction that constrain the regression coefficients
such that

r = Rβ,

where r is an m × 1 vector and R is an m × p matrix of rank m < p , the likelihood
function for heteroscedastic skew-normal regression model is expressed as

L
(
βR, σ

2|X, y
)

=
(
2πω2

)−n
2 exp

[
−1

2
(y −XβR)

′ (
ω2Ω

)−1
(y −XβR)

]
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× exp
[
1

′

nξ0

(
α

′
ω−1 (y −XβR)

)]
.

Take log of both sides and differentiate with respect to βR, then skew-normal βR is
derived as

β̃R =
(
X ′ (ω2Ω

)−1
X
)(

X ′ (ω2Ω
)−1

y − 1
′

nξ0α
′ω−1X

)
.

Note: the derivation of β̃R can be requested from the corresponding author.
The generalized restricted least squares (GRLS) estimates is obtained as follow,

adopting the criterion of minimizing the sum of squares (y −Xβ)Ω̂Ω̂(y −Xβ) subject
to the condition that Rβ = r. Then restricted βR is expressed as Oloyede (2023).

β̂R = β̃ +
(
X ′Ω̂X

)−1

R′
[
R
(
X ′Ω̂X

)−1

R′
]−1 (

r −Rβ̃
)
,

thus β̂R is a constrained estimates, following Chaturvedi et al. (2001), the restricted
Stein-rule version of the disturbance errors can be expressed as

β̂S =

1− a

n

(
y −Xβ̃

)′
Ω̂
(
y −Xβ̃

)
β̃XΩ̂Xβ̃

 β̃.

Therfore, the restricted Stein-rule heteroscedastic skew-normal estimator is

β̂RS = β̂S +
(
X ′Ω̂X

)−1

R′
[
R
(
X ′Ω̂X

)−1

R′
]−1 (

r −Rβ̂S

)
,

where Ω̂ = Ω(b), b is a consistent and efficient estimator of βRS .

5 Bayesian restricted least squares heeroscedatic skew-
normal estimator

The posterior distribution for skew-normal restricted βR and is derived by integrat-
ing the conjugate of skew-normal-inverse gamma and the restricted likelihood, which
belong to the same distribution family. The model is expressed as

y = XβR + ut

L
(
βR, ω

2|X, y
)

=

(
2πω2

(
1− 2δ2

π

))−n
2

exp

[
− (y −XβR)

′
Ω̂ (y −XβR)

2ω2
(
1− 2δ2

π

) ]
× exp

[
1nξ0α

′ω−1(y −Xβ)
]
.

Let (y −XβR) = ω
√
n, then we have

L
(
βR, ω

2|X, y
)

=

[
2πω2

(
1− 2δ2

π

)]−n
2

exp

[
− (y −XβR)

′
Ω̂ (y −XβR)

2ω2
(
1− 2δ2

π

) ]
× exp

[
1nξ0α

′√n
]
.
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Simplify further (2π)−
n
2 is excluded because it is a constant which has no significant

impact, Oloyede (2023).

L
(
βR, ω

2|X, y
)
∝ ω−n

(
1− 2δ2

π

)
exp

[
−y

′
Ω̂y − 2βR

′
X

′
Ω̂y + β′

RX
′Ω̂XβR

2ω2
(
1− 2δ2

π

) ]
× exp

[
1nξ0α

′√n
]

(1)

L
(
βR, ω

2|X, y
)
∝ ω−n

(
1− 2δ2

π

)
exp

[
− 1

2ω2
(
1− 2δ2

π

)(y′
Ω̂y − 2βR

′
X

′
Ω̂y

+βR

′
X

′
Ω̂XβR − 2

((
X

′
Ω̂X

)−1

X
′
Ω̂y

)′

X
′
Ω̂y

+2

((
X

′
Ω̂X

)−1

X
′
Ω̂y

)′

X ′Ω̂X

((
X ′Ω̂X

)−1

X ′Ω̂y

))]
× exp

[
1nξ0α

′√n
]
. (2)

Note that (2) was obtained through replacement of βR in (1) with
(
X

′
Ω̂X

)−1

X
′
Ω̂y).

=ω−n

(
1− 2δ2

π

)
exp

[
− 1

2ω2
(
1− 2δ2

π

) (y −XbR)
′
Ω̂ (y −XbR) + bR

′
X

′
Ω̂XbR

+βR

′
X

′
Ω̂XβR − 2β′X ′Ω̂Xb

]
exp

[
1nξ0α

′√n
]

=ω−n

(
1− 2δ2

π

)
exp

[
− 1

2ω2
(
1− 2δ2

π

) (Ω̂(n− k) + (βR − bR)
′
X ′Ω̂X (βR − bR)

)]
× exp

[
1nξ0α

′√n
]

=ω−n

(
1− 2δ2

π

)
exp

[
− 1

2ω2
(
1− 2δ2

π

)(Ω̂(n− k)1nξ0α
′√n

+(βR − bR)
′
X ′Ω̂X (βR − bR) 1nξ0α

′√n

)]
.

Setting the priors

p
(
βR|ω2

)
∝ (2π)−

k
2

∣∣∣Ω̂∣∣∣− 1
2

exp

[
−1

2
(βR−B)′ Ω̂ (βR−B)

]
exp

[
1nξ0α

′ω−1 (βR−B)
]
,

p
(
βR|ω2

)
∝ (2π)−

k
2

∣∣∣Ω̂∣∣∣− 1
2

exp

[
−1

2
(βR−B)′ Ω̂ (βR−B)

]
exp

[
1nξ0α

′√n
]
,

p
(
ω2
)

∝ ω−(a−k) exp

[
− b

ω2
(
1− 2δ2

π

)] .
Note that the normal-inverse gamma priors, as explained by Oloyede (2023), were
selected as conjugate priors because of the similarity between their prior and posterior
density distributions.

p
(
βR|ω2

)
p
(
ω2
)
=(2π)−

k
2

∣∣∣Ω̂∣∣∣− 1
2

exp

[
−1

2
(βR−B)′ Ω̂ (β − B) 1nξ0α′√n

]
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×ω−(a−k) exp

[
− b

ω2
(
1− 2δ2

π

)] ,
p
(
βR|ω2

)
p
(
ω2
)
=ω−(a−k) exp

[
− 1

2ω2
(
1− 2δ2

π

) (βR−B)′ Ω̂ (βR−B) 1nξ0α′√n+ 2b

]
.

n× k size of covariates matrix X, βR unknown restricted parameters, B prior µ-vector

of βR (true value), σ2 prior variance for βR, Ω̂2 =
(y −XβR) Ω̂ (y −XβR)

n− k
, a− k and

b are hyper-parameters, and Joint posterior density

π
(
βR, ω

2|X, y
)
∝ω−n

(
1− 2δ2

π

)
exp

[
− 1

2ω2
(
1− 2δ2

π

)(Ω̂(n− k)1nξ0α
′√n

+(βR − bR)
′
X

′
Ω̂X (βR − bR) 1nξ0α

′√n
)]

ω−(a−k)

× exp

[
− 1

2ω2
(
1− 2δ2

π

) (βR−B)′ Ω̂−1 (βR−B) 1nξ0α′√n+ 2b

]

∝ω−n−a+k

(
1− 2δ2

π

)
exp

[
− 1

2σ2

(
Ω̂(n− k)1nξ0α

′√n

+(βR − bR)
′
X

′
Ω̂X (βR − bR) 1nξ0α

′√n
)

+2b+ ω2

(
1− 2δ2

π

)
(βR−B)′ Ω̂ (βR−B) 1nξ0α′√n

]
.

To determine the marginal distribution of βR, Jacobian transformation is required
after ω2

(
1− 2δ2

π

)
is substituted with s, J =

∣∣ d
dsω
∣∣ =

∣∣∣ d
dss

− 1
2

∣∣∣ = 1
2s

− 3
2 . Replace

ω2
(
1− 2δ2

π

)
with s.

π
(
βR, ω

2|X, y
)
∝
(
s−

1
2

)−n−a+k

exp

[
− s

2

(
Ω̂(n− k)1nξ0α

′√n

+(βR − bR)
′
X

′
Ω̂X(βR − bR)1nξ0α

′√n
)

+2b+ s−1 (βR−B)′ Ω̂ (βR−B) 1nξ0α′√n

](
1

2
s−

3
2

)
.

To obtain βR, perform integration with respect to s-nuisance parameter

βR=

∫ ∞

0

1

2
s

n+a−k−3
2 exp

[
− s

2

(
Ω̂(n− k)1nξ0α

′√n+ (βR − bR)
′
X

′
Ω̂X (βR − bR)

×1nξ0α
′√n

)
+ 2b+ s−1 (βR−B)′ Ω̂ (βR−B) 1nξ0α′√n

]
ds.

Recall
1 =

∫ ∞

0

qp+1

Γ(p+ 1)
spe−qsds,

Γ(p+ 1)

qp+1
=

∫ ∞

0

spe−qsds,
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where p = n+a−k−3
2 and

q =
1

2

(
Ω̂(n− k)1nξ0α

′√n+ (βR − bR)
′
X

′
Ω̂X (βR − bR) 1nξ0α

′√n

+2b+ s−1 (βR−B)′ Ω̂ (βR−B) 1nξ0α′√n
)
,

with df as v = n− k
π (β|p, q) ∝ q−(p+1) = q−

n
2 ,

then replace it

π (β|p, q) ∝ 1

2

(
Ω̂(n− k)1nξ0α

′√nX
′
Ω̂X (βR − bR) 1nξ0α

′√n+ 2b

+s−1 (βR−B)′ Ω̂−1 (βR−B) 1nξ0α′√n
)−(n+a−k−1

2 )
.

In order to derive marginal posterior density of ω2 we have

π
(
ω2|βR, X, y

)
∝

∫ ∞

0

ω−n−a+k exp

[
− 1

2σ2

(
Ω̂(n− k)1nξ0α

′√n

+(βR − b)
′
X

′
Ω̂X (βR −B) 1nξ0α

′√n
)
+ 2b

+ω2

(
1− 2δ2

π

)
(βR−B)′ Ω̂−1 (βR−B) 1nξ0α′√n

]
dβR.

The study simplified further to have

π
(
ω2|β̂R, X, y

)
∝ σ−n−a+k exp

[
− Ω̂(n− k)1nξ0α

′√n

2ω2
(
1− 2δ2

π

) ](
2πω2

(
1− 2δ2

π

)) k
2

,

π
(
ω2|β̂R, X, y

)
∝

(
ω2

(
1− 2δ2

π

))− 1
2 (n+a−2k)

exp

[
− Ω̂(n− k)1nξ0α

′√n

2ω2
(
1− 2δ2

π

) ]
.

Thus,

β̂R∼MVN

(
β̂R, ω

2

(
1− 2δ2

π

)
(X

′
Ω̂X)−1

[
1− (X

′
Ω̂X)−1R

′
[
R(X

′
Ω̂X)−1R

′
]−1

R

])
,

Ω̂2∼ IG

(
a1 −

n

2
, b1 +

1

2

n∑
i=1

(yi −XβR)
2+ 2

[
R(X

′
Ω̂X)−1R

′
]−1

(RβR − r)′(r −RβR)

)
,

β̌RS ∼MVN

(
β̂RS , ω

2

(
1− 2δ2

π

)
(X

′
Ω̂X)−1

[
1− (X

′
Ω̂X)−1R

′
[
R(X

′
Ω̂X)−1R

′
]−1

R

])
,

for restricted Stein-rule estimator.

6 Data generation processes
The MCMC simulation algorithm was adopted to examine the small sample prop-
erty of the family of skew-normal restricted least squares estimators in classical and
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Bayesian frameworks. Data were generated based on the following parameter of the
model: P = 6, n = 30, yt = XtβR + ut t = 1, . . . , 30, where εt assumed to be gen-
erated by heteroscedastic skew-normal error as defined in section 3, β̂R was set as
(1.2, 2, 0.8, 0.3, 2.1, 1.1) while seed was set at 1234. 10000 iterations were set for
both classical and Bayesian paradigm. The skew-normal error was generated for both
negatively and positively skew distribution. Heteroscedasticity was of four categories:
δ = 0 No heteroscedasticity, δ = 0.3 mild heteroscedasticity, δ = 0.6 moderately het-
eroscedasticity, and δ = 0.9 severe Heteroscedasticity. The restriction of parameters
was set as

R =

(
0 1 0 −1 0 0
0 0 1 0 1 0
0 0 0 0 0 1

)
, r = (0 1 0) ,

where β1 − β3 = 0, β2 + β4 = 1 and β5 = 0.
The relative efficiency was computed for each estimator. R(β̂R)/R(β̂RS), the value

of relative efficiency exceeding one indicates β̂RS is more efficient compared to β̂R. All
computations were carried out using R Statistical Software (2024). The dataset class
contained the posterior sample for the model parameters.

6.1 Quadratic loss and risk function
Quadratic weight loss and risk function that incorporated heteroscedastic skew-normal
errors were used to evaluate the performances of classical, Bayes estimate and posterior
mean. Let L(β̂R − β) = (β̂R − β)Q(β̂R − β) be quadratic or square error loss function
where β̂R is an estimator of β and Q are the

∑βR

i=1 β̂R weight of loss function. For the
purpose of comparison of β̂R, and β̂RS in both classical and Bayesian Paradigm, both
were compared with the weighted square error loss function and it’s associated relative
efficiency, to capture small sample properties.

7 Data analysis and discussion
Table 1 above revealed the outcome of the study the error term was either heteroscedas-
ticity skew normal error with positive or negative tail. Classical and Bayesian esti-
mators were considered in two separate occasions (negatively skill normal with het-
eroscedasticity and positively skill normal with heteroscedasticity). Risk waited preci-
sion function was adopted to assess the effectiveness of frameworks. It was discovered
that Bayesian paradigm (both posterior mean and Bayes estimates) outperformed the
family of restricted Stein-rule least squares in all scale of heteroscedasticity both in
positively and negatively skew normal error structures.

Table 2 above revealed the relative efficiency of classical and Bayesian families of
restricted least squares estimators, choosing restricted least squares as the baseline
estimator with which other estimators are compared with, it was succinctly observed
that Bayesian framework due its probabilistic nature were more efficient in comparison
with classical estimator when the error structure is simultaneously heteroscedastic and
skew-normal.
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Table 1: Depicts loss and risk function of Heteroscedastic skew-normal error regression
model.

Skew Classical Bayes-OLS Bayes-Stein
n λ OLS Stein-rule Post-mean Bayes-est Post.mean Bayes-est.
30 0 -ve Skew 9.8108 11.8857 5.9273 5.9252 6.3821 6.3758

0.3 10.2759 12.1053 6.0979 6.0958 6.5685 6.5622
0.6 10.6084 12.2122 6.1399 6.1378 6.6053 6.5987
0.9 10.9525 12.2980 6.1200 6.1178 6.5787 6.5717

250 0 9.1764 9.3722 6.0370 6.0352 6.0700 6.0685
0.3 9.2653 9.3930 6.0520 6.0502 6.0851 6.0836
0.6 9.1575 9.2503 5.9502 5.9484 5.9828 5.9813
0.9 9.2011 9.1846 5.8919 5.8901 5.9241 5.9227

30 0 +ve Skew 19.5136 19.4580 12.1814 12.1780 13.1357 13.1258
0.3 18.8017 19.1077 11.6334 11.6299 12.5391 12.5288
0.6 18.3860 19.1046 11.1300 11.1264 11.9935 11.9824
0.9 19.6369 20.0537 11.6185 11.6148 12.5197 12.5084

250 0 12.8441 12.7247 8.4891 8.4865 8.5349 8.5327
0.3 12.8383 12.8140 8.4584 8.4558 8.5039 8.5017
0.6 12.8539 12.9247 8.4175 8.4149 8.4629 8.4607
0.9 12.8164 12.9998 8.3254 8.3229 8.3705 8.3683

Table 2: Depicts relative efficiency of Heteroscedastic skew-normal error regression
model.

Skew Classical Bayes-OLS Bayes-Stein
n λ Stein-rule Post-mean Bayes-est Post.mean Bayes-est.
30 0 -ve Skew 1.211489 0.60416 0.603944 0.650511 0.6498

0.3 1.178023 0.593424 0.593216 0.639221 0.63860
0.6 1.151187 0.578783 0.578582 0.622649 0.62203
0.9 1.122848 0.558776 0.558582 0.600654 0.60002

250 0 1.021337 0.657883 0.657687 0.661479 0.6613
0.3 1.013783 0.65319 0.652996 0.656762 0.6566
0.6 1.010134 0.649762 0.649566 0.653322 0.65315
0.9 0.998207 0.640347 0.640152 0.643847 0.64369

30 0 +ve Skew 0.997151 0.624252 0.624078 0.673156 0.67264
0.3 1.016275 0.618742 0.618556 0.666913 0.66636
0.6 1.039084 0.605352 0.605156 0.652317 0.65171
0.9 1.021225 0.591667 0.591478 0.63756 0.63698

250 0 0.990706 0.660932 0.660733 0.664501 0.66432
0.3 0.998106 0.658836 0.658639 0.662389 0.66221
0.6 1.005507 0.654854 0.654657 0.658388 0.65821
0.9 1.014309 0.649589 0.649395 0.653105 0.65293

8 Conclusion
This study has proposed a novelty generalized restricted least squares with heteroscedas-
tic skew-normal error, the skew normal prior was used to conjugate heteroscedastic skew
normal likelihood, the skew normal posterior density provide Bayesian generalized re-
stricted least squares with heteroscedastic skew-normal error, the uncertainty of the
parameters is embedded in its restriction. Thus, risk weighted precision function was
adopted to evaluate the performances of the families of both classical and Bayesian
estimators considered in the study. Skew-normal prior was adopted to elicit informa-
tion about the uncertainty of parameters (state of the nature) in a Bayesian paradigm.
The study demonstrated superior performance of Bayesian frameworks (both poste-
rior mean and bayes estimate) in comparison with family of classical restricted least
squares estimators. The study therefore recommended Bayesian generalized restricted
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least squares to the analyst and research who may encounter heteroscedastic skew-
normal error in their data.
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