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Abstract: According to the d-shock model, the system fails when the inter-arrival time
between two successive shocks falls below a given critical threshold, . Therefore, the
system’s failure depends on both the probabilistic behavior of the inter-arrival times
and the threshold 6. As a result, the factors affecting these two variables also influence
the system’s stopping time. In this paper, we consider a regression model with an ex-
planatory factor for the system’s stopping time and then apply the Bayesian D-optimal
criterion to obtain optimal designs. Assuming a uniform prior, the obtained Bayesian
optimal designs all have a general form corresponding to the design space.
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1 Introduction

Most engineering systems are often exposed to random shocks from external sources.
Shock models are usually used to study the survival of systems exposed to shock.
One of the most widely used shock models is the ¢-shock model, which has received
much attention in applied probability and reliability engineering in recent years. Under
the d-shock model, the system failure occurs when the inter-arrival time between two
successive shocks (or intershock time) is less than a critical threshold ¢ > 0. Many
studies have been done on the §-shock model, for some of them, see e.g., Eryilmaz
(2012), Eryilmaz and Bayramoglu (2014), Parvardeh and Balakrishnan (2015), Tuncel
and Eryilmaz (2018), Lorvand et al. (2020), Poursaeed (2020), Entezari (2021), and
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Farhadian and Jafari (2024). The traditional studies that have been done in d-shock
modeling mostly focus on finding the reliability characteristics of the system’s lifetime
for various extensions and generalizations of the §-shock model.

Among recent developments, studies that have considered the system stopping time
as a regression model and have revealed the role of factors affecting the stopping time by
implementing optimal design are not found in the relevant literature. This motivated
us to write about this subject in this paper. Therefore, this paper establishes a novel
approach in which the system stopping time will be considered as a regression model
based on an influencing factor, then optimal design will be applied to identify the
optimal points for estimating the regression parameters. In fact, the random behavior
of shocks requires consideration of various factors that can contribute to this random
behavior, and therefore, the optimal design approach can play a useful role in the
optimal analysis of shock behavior and the optimal performance of systems exposed to
shocks. The topic of optimal design was widely developed, so that nowadays studying
and modeling data without using optimal designs is practically not cost-effective.

In the context of experimental design, the concept of optimal design refers to a
specific category of experimental designs that are classified based on certain statistical
criteria. Usually, in model-based optimal designs, the inferential aim is to estimate
the parameters of the model so that estimators with minimum variance are of interest.
The optimization process is completely dependent on the considered optimality crite-
ria, which are usually defined in terms of the information matrix. In linear models,
the information matrix and then optimality criteria do not depend on the unknown
parameters of the model. So, reaching an optimal design does not have significant
computational complexity. However, in general linear and non-linear models, since
unknown parameters usually appear in the entries of the information matrix, so the
optimality criteria depend on these parameters. Thus deriving an optimal design from
the optimization problem may involve computational complexities. For a more ad-
vanced study on this topic, see Atkinson et al. (2007). Our focus is on the optimization
problem involving the non-linear model.

The paper is organized as follows. The description of the §-shock model is derived
in Section 2. Section 3 gives a brief introduction to optimal design. The statement
of the optimal design issue on the §-shock model is presented in Section 4. Section 5
concludes the paper.

2 The )-shock model

Assume that a system is subject to a sequence of external random shocks. Let U; be
the i¢th intershock time, i.e., the time lag between the ith and (i + 1)th shocks for
i=1,2,..., and let also Uy, Us, ... are independent and identically distributed (i.i.d.)
by an arbitrary continuous distribution with the cumulative distribution function (cdf)
F(u). Under the well-known ¢-shock model, the performance of the system is such
that if U, < § for a given threshold § > 0, the system fails. Otherwise, the system
continues to work without any performance problems under the influence of shocks.
Thus, the lifetime of the system is Ts = Zfil U;, where the stopping random variable
N is defined as follows
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for n e N={1,2,...}. Clearly, the probability mass function of N is
Pr(N =n) = F(5)(1 - F()"™, neN. (1)

Besides, the reliability probability function of the system’s lifetime T is given by the
following formula (see Eryilmaz and Bayramoglu (2014)):

00 5
Pr(Ts >t)=> (1— F(a))”*l/o Pr(S;_y >t —u)dF(u),

where S} is the nth arrival time of a renewal process whose inter-arrival times have
the cdf,
F(u) = F(5)

)=

for u> 6.

Furthermore, the mean lifetime of the system, that is, the system’s mean time to
failure (MTTF) is E(T5) = %.

Recent years have seen a significant development in the field of delta shock mod-
eling. Most of these developments have focused on providing new generalizations and
extensions. For some extension and generalization of the d-shock model, see, for ex-
ample, Wang and Peng (2017), Poursaeed (2021), Goyal et al. (2022), and Farhadian
and Jafari (2025). In fact, the simplicity and practical aspects of delta shock modeling
make it attractive for use in applied sciences. This model is used in reliability engineer-
ing, queuing systems, system safety, and management of systems. As an example in
engineering, suppose that the components of an electrical device are prone to overheat-
ing due to electrical shocks such as high voltage or low current. It is clear that if the
time interval between two consecutive electric shocks is large, the components heated
by the previous shock have enough time to cool down spontaneously. However, if the
time interval between two consecutive electric shocks is small (smaller than a threshold
0), then the components do not have enough time to cool down, and, in addition, their
temperature increases due to the next shock. This may result in the burning of the
components and then damaging the electrical device. Obviously, the performance of an
electrical device in such a scenario can be described and investigated using the d-shock
model.

3 Optimal experimental design issue

In the context of experimental design, the common problem is to find optimal points
(based on a certain criterion) to estimate the unknown parameters of a linear or non-
linear model, in which the response variable Y and the explanatory variable = (that
varies in a compact space x C R) are related with the equation E[Y|z] = n(z,8),
where 8 € ® C R™ (for m > 1) is the unknown parameter vector and 7 is a given
function. In the case where the scalar response variable Y is distributed as a member
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of the exponential family, the Fisher information matrix for the parameter @ at the
point x is given by

I(2,0) = m <;017(3:,0)> <83077(x,0)>T e RmX™. (2)

An approximate design £ for this model is a probability measure on the design space
x with finite support 1, xo,...,z, and weights wy,ws, ..., w, assigned to x;’s. This
T-point design is usually denoted by

1 Ty ... Ty _
5:{wll w22 wT}€:7 (3)

where 2 = {£|0 < w; < 1;)°_,w; = 1,2 € x} (see, e.g., Kiefer (1974)).

Note that for a nonlinear model with m parameters, the number of points in the
optimal design satisfies the inequality m < 7 <1+ w (see, e.g., Silvey (1980)).
The information matrix of the design in Eq. (3) is defined as follows (see, e.g., Atkinson
et al. (2007)):

i=1
The optimal design problem is finding £* = {xi xi o x%} which maximizes a
wy wy ... wrf’

function ¢(.) (which is defined by a proper criterion) of the information matrix M (&, 8),
ie.,

& = argrgleaécw(M(f,O)).

There are different criteria for this optimization. One of the most common such criteria
is D-optimality, that is, the criterion (M (&, 0)) = log (det(M (&, 8))) for when M (&, )
is non-singular (see, e.g., Silvey (1980) and Pukelsheim (1993)). From Egs. (2) and (4),
it can be observed that when the model is nonlinear, the information matrix M (¢, 6)
depends on the unknown parameters 6. In this case, to implement a design, the role
of the parameter in the information matrix must be solved first. A typical traditional
method is the local optimal method, which is methodologically simple, however, it
has been criticized by numerous authors because if the unknown parameters are not
properly replaced by guess values, the resulting optimal designs can be very inefficient
in real model settings. A more robust approach is to use a prior distribution instead of
guess values for the unknown parameters, which is the concept of the Bayesian optimal
design. One of the most common criteria in the Bayesian optimality is D-optimality
(see, e.g., Berger (1985) and Chaloner and Larntz (1989)). A design is called Bayesian
D-optimal with respect to a given prior 7 on 8, if it maximizes the function

. (€) = E[b(¢.0)] = / H(€,0)m(6)do, (5)

where (£, 0) = In (det (M(£,0))) is the D-optimality criterion.

Obviously, if the prior distribution 7 changes, the design that maximizes (5) may
also change. This allows the researcher to consider different prior distributions corre-
sponding to different information of the unknown parameter and hence obtain various
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designs. The process of selecting a prior is based on pre-experimental and subjective
knowledge. However, in some circumstances, it is difficult for the experimenter to
specify a prior on the parameter space 8. To address this challenge, researchers pro-
posed various solutions; for example, in some cases, an unknown prior distribution for
the parameter @ can be considered, and in some cases, the nonparametric Bayesian
approach can be used; in some cases, the local optimal design approach is suggested.
Some references are Abdollahi et al. (2023), Abdollahi et al. (2025), Dette and Neuge-
bauer (1997), Dette et al. (2006), Goudarzi et al. (2019), and Parsa Maram and Jafari
(2016).

4 Optimal design for the /-shock model

In this section, we introduce a regression model for the stopping time of a system
subjected to random shocks under the §-shock model and then investigate D-optimal
designs for this model. The main purpose of using a regression model is to show that
shock behavior depends on factors that we may be able to control and achieve optimal
values for, which helps ensure the health and optimal performance of systems and
increase their efficiency.

4.1 The model

According to the d-shock model, the number of random shocks until the system failure
has a geometric distribution with pmf Pr(N = n) = F(6)(1 — F(é))n_l, where n € N
and F'(u) is the cdf of intershock times (see (1)). So, it is clear that the system stopping
time depends on both the probabilistic behavior of the intershock times and the critical
threshold 6. Therefore, the effect of an explanatory factor on these two variables also
affects the system stopping time. Thus, the parameter F'(d) can be described in terms
of a regression model given an explanatory variable z. The choice of regression model
can be made based on the conditions under which the system operates. Here, we
consider a scenario in which increasing the value of x reduces the mean of the system
stopping time. Such a scenario describes a situation where a factor, by becoming larger
or more intense, leads to a reduction in the time interval between successive shocks.
For example, the following model can satisfy this condition:

1

F(é]z) = Tre 0z

(6)
where z € x and 6 > 0 is the unknown regression coefficient.

It is clear that model (6) preserves the property 0 < F'(4) < 1. Besides, since N is
a geometric random variable with the pmf in (1), so E(N) = ﬁ. Therefore,

E(N|z) = =1+4e %% =n(z,0). (7)

1
F(d|x)

Obviously, increasing the value of x leads to decreasing E(N|z).
In the upcoming subsection, optimal designs are obtained for the model in (7).
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4.2 Design of experiments

In the following, we investigate the D-optimal design for the regression model in (7).
It should be noted that this model is of the exponential type, and exponential models
have been widely studied in the literature. However, we outline the steps of the method
to arrive at a general form for a one-point optimal design. To this end, we first need
to get the Fisher information matrix for the model (7). For the sake of simplicity
(and without loss of generality), we assume that the system stopping time occurs
randomly with variance 1, that is, Var(N|z) = 1. This assumption actually represents
a framework in which the variance is known, meaning that if we change the known
variance, it does not affect the optimal points and consequently the optimal design.
However, it is important to note that in a framework where the variance is unknown,
the optimal points and consequently the optimal design will be different depending on
the parametric expression of the variance. Accordingly, using (2), we have

I(z,0) = z2e 20",

The Fisher information matrix for the one-point design £ = {:f} is obtained from
(4) as follows
M(E,0) = 2?20, (8)

Hence, the D-optimal criterion (i.e., 1 (M(&,0)) = log (det (M(,9)))) is
P (M(E,0)) = log (z%e ") = 2log(z) — 20x. (9)

It can be seen from (9) that the D-optimal criterion depends on 8. Thus, the parameter
0 affects the optimization process. Therefore, we must use the Bayesian D-optimal
criterion to neutralize the effect of § on the optimization process. By using (5), the
Bayesian D-optimal criterion with respect to a given prior 7(6) on 0 is

V. (&) = /0 (2log(x) — 20x) w(0)d6.

Considering the uniform prior distribution U(«, 8) (with « > 0 and 8 > «) for 0, it
becomes

V(&) = 2log(x) — (a+ p)a.

Since a one-point Bayesian D-optimal design is a design &* = {xl } that satisfies
& = argmax¢ex V. (§), therefore

& =arg max (2log(x) — (v + B)x) . (10)

Finding £* = {xl } in equation (10) requires simple calculations. Indeed, the maximum
value of 2log(z) — (a+ B)x over [0, c0) is found by identifying the root of its derivative,
where that root makes the second derivative negative. By performing calculations, we
find that the point z = T—QHB maximizes 2log(x) — (o + B)z on the interval [0, c0).
Therefore, we conclude that under the uniform prior distribution U(«, 8) with a > 0
and 8 > «, if the design space is considered to be the interval [0, 00), the Bayesian
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D-optimal point is equal to z* = —2—. Note that the expected value of the prior

a+B
distribution is equal to o‘—;ﬂ Consequently, the optimal point becomes smaller as the

expected value of the prior distribution increases. In addition, if the design space
is a non-negative interval with finite bounds, the D-optimal point is determined by
whether the upper and lower bounds are smaller and larger than aQT[i’ respectively.
Accordingly, it is possible to provide a general formulation for the Bayesian D-optimal
design for some different choices of design space. By considering the design space
X = [a,b] C [0,00), the results of the optimization process are summarized in Table 1.

Table 1: Bayesian D-optimal design for model (7).
Prior distribution Design space &= {x }

1

Ula,B),a>0,>a la,b],b< w {?}
[CL b] = (x-‘rﬁ {Cll}

2
a.b], a < 525 <b {{5}

To see how the rules in Table 1 work in practice, let’s take the case where the design

space is [0,1.5] and @ ~ U(0,1). Here, « = 0 and 8 = 1. First, we find the ideal optimal
point, which is z* = 0-%1 = 2. Since the upper bound of our design space, b = 1.5, is

less than this ideal point, we turn to the first rule in the table. Just as it guides, the

design ‘snaps’ to this boundary, giving us the final optimal design of £* = {115}.

4.3 The D-efficiency

L1 T2 T} with respect to the

The D-efficiency of a 7-point design & = {w1 wy .. 5]7

* * *
7-point Bayesian D-optimal design &* = ¢*L %2 -+ Tl for 4 model with m
wy wy ... wr

parameters is given by

. B det(./\/l (5, 0tru6)> =
Do = (Gites o)

where 0y, is the true parameter values.
For the model in (7), we have m = 1. We also have M(¢,0) = x2e~2%% (see (8)),
meaning that det M(&, 0) = z2e~20¢. Thus,

2,—2x0¢rye

xr-e €T 2 o )0,
eff(g 5) m: (E) 62( )6 rue (11)

Accordingly, for each Bayesian D-optimal design in Table 1, the D-efficiency of a design
&= {1} with respect to the Bayesian D-optimal design £* = {xl } is obtained as in

Table 2.
Figure 1 depicts the plot of the D-efficiency (11) considering the design space [0, oo},
different uniform prior distributions, and some values of y,,.. It can be seen that the
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Table 2: The D-efficiencies for the Bayesian D-optimal designs in Table 1.
Deys(€7,€)

D-efficiency increases as the expected value of the prior distribution increases.

Prior distribution

Design space

[a, b],

2
b f; z;;ig

)2e2—)0true

[a,b], a >

(
> 35 (

)262(0'_1)9“"“6

[a,8], a < 5 <b (FPa)2 e

In

addition, increasing the value of 6y.,. leads to a decrease in the growth rate of the
D-efficiency curve. Therefore, choosing a uniform prior with a large expected value
can have a significant impact on increasing the efficiency of the optimal design.

D8

801

60

10

1001

801

60

404

~~~~~ 6~T(0, 10)
— — 8~T(0, 100)
—— 6~T(0, 1000)
— - — 6~UI(0.10000)

Orrue = 2

""" 8~U(0, 10)
— — 8~1(0, 100)
—— 6~U(0, 1000)
— - — §~U(0, 10000)

Otrue = 4

=]
8]

60

p,(z2")

404

44444 6~U(0, 10)
— — 8~1J(0, 100)
—— 6~U(0, 1000)
— '~ §~U1(0.10000)

Otrue = 3

1007 -

801

60

404

----- 8~U(0,10)
— — 8~U/(0, 100)
—— ~U/(0, 1000)
— - — 8~U/(0, 10000)

Otrue =5

(8]
w
4
»

Figure 1: Plot of D-efficiency in (11) considering the design space [0, 0o].

5 Conclusions and future directions

In this paper, the optimal experimental design for the §-shock model is discussed. We
considered the mean of the system stopping time under the classical §-shock model as
a regression model and investigated the Bayesian D-optimal design for this regression
model. The regression model was chosen to represent a situation in which increasing
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the value of an explanatory variable leads to a decrease in the time interval between
successive shocks, which leads to a decrease in the mean of the system stopping time.
The purpose of establishing the optimal design problem in §-shock modeling is to give
importance to the impact of possible secondary factors on system failure. This is a
new approach to shock modeling, and the advantages of this approach include better
understanding of secondary factors in the shock environment, more detailed study of
the lifetime of a system subjected to random shocks, and finding optimal points for
estimating the parameters of the model describing the system. For future study, the
discussed approach can be developed to various extensions and generalizations of the
d-shock model as well as other shock models. Additionally, designs with more points
can be explored, such as two- and three-point designs. Moreover, since in this article
we assumed that the variance of the regression model is known, and this itself can be
a limitation, in more advanced studies the variance can be considered unknown.
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