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Abstract: This paper focuses on the M/M/m/K queuing model, where inter-arrival
and service times follow exponential distributions. We discuss the fuzzy average de-
gree of customer satisfaction and evaluate traffic intensity based on a fuzzy index,
using Bayesian, E-Bayesian, and hierarchical Bayesian methods, applying the general
entropy loss function. Additionally, the maximum likelihood estimation method is uti-
lized for estimation. To compare the performances of the proposed estimation methods,
a Monte Carlo simulation is conducted. Evaluation criteria, such as the cost function
and the average customer satisfaction index, are used to select the most appropriate
estimation method for the present paper. Finally, a numerical example is provided to
determine the most suitable estimator.
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1 Introduction
The problem of estimation concerning the parameters of the queuing model, such as
the arrival rate, service rate and traffic intensity is an important problem having wide
practical applications in real situations. The Bayesian method, as an alternative to the
classical method, is in statistical inference. In the Bayesian inference, the performance
of the estimator depends on the prior distribution and also on the loss function used.
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The parameters of a prior distribution called hyper-parameters. Dey (2008) obtained
Bayesian estimation of the traffic intensity in M/M/1 queue and queue characteristics
under quadratic loss function. Cruz et al. (2017) have Bayesian estimated of traffic
intensity based on queue length in a multi-server M/M/s queue. Golzade Gervi et
al. (2019) compared record ranked set sampling scheme with inverse sampling scheme
in empirical Bayesian estimations and predictions of exponential distribution. Das
and Pardhan (2024) considered maximum likelihood and Bayesian estimation of traffic
intensity for a bulkservice queue with batch-size-dependent service mechanism.

E-Bayesian and hierarchical Bayesian methods in estimation theory have studied
by many author. Ando (2007) studied Bayesian predictive information criterion for the
evaluation of hierarchical Bayesian and empirical Bayes models. Reyad et al. (2017)
obtained E-Bayesian and Hierarchical Bayesian estimations based on Dual generalized
order statistics from the inverse weibull model. Yousefzadeh (2017) used E-Bayesian
and hierarchical Bayesian estimations for the system reliability parameter based on
asymmetric loss function. Kizilaslan (2017) studied the E-Bayesian and hierarchi-
cal Bayesian estimations for the proportional reversed hazard rate model based on
record values. Fayyaz Heidari et al. (2022) have computed E-Bayesian and hierarchi-
cal Bayesian estimation of rayleigh distribution parameter with type-II censoring from
imprecise data. Recently, Shi et al. (2024) studied the E-Bayesian and hierarchical
Bayesian estimations for the reliability analysis of Kumaraswamy generalized distribu-
tion based on upper record values. The problem of E-Bayesian and hierarchical Bayes
estimation methods in estimation theory have been studied by several authors, see
(Richard, 2011; Han, 2009; Wang et al., 2012; Han, 2017).

Some authors have used fuzzy sets in theory estimation. Akbari and Rezaei (2007)
studied a new method for estimating fuzzy spot for uniformly minimum variance. Jenab
and Rashidi (2009) considered fuzzy Bayesian condition monitoring model based on ex-
ponential distribution. Pak et al. (2014) conducted wide studies on inferential proce-
dures for lifetime distributions based on fuzzy lifetime data. Also see, Pak et al. (2013).
Gholizadeh et al. (2016) has considered fuzzy E-Bayesian and hierarchical Bayesian es-
timations on the Kumaraswamy distribution using censoring Data. Yaghoobzadeh
(2019) studied E-Bayesian and H-Bayesian of Gompertz distribution under type II
censoring based on fuzzy data.

The Bayesian estimation methods in the field of queueing theory have attracted the
attention of many researchers. Chowdhury and Mukherjee (2013) obtained estimation
of traffic intensity based on queue length in a single M/M/1 queue. Estimation of
waiting time distribution in an M/M/1 queue was studied by Chowdhury and Mukher-
jee (2011). Ren and Wang (2012) investigated Bayes estimation of traffic intensity
in M/M/1 queue under a precautionary loss function. Nonparametric estimation of
service time characteristics in infinite-server queues with nonstationary poisson input
are derived by Goldenshluger and Koops (2019). Singh and Acharya (2019) stud-
ied the equivalence between Bayes and the maximum likelihood estimator in M/M/1
queue. Schweer and Wichelhaus (2020) introduced non-parametric estimation of the
service time distribution in discrete time queuing model. Moreover, Chandrasekhar
et al. (2021) studied classical and Bayes estimation in the M/D/1 queuing system.
Makhdoom (2023) derived a new optimum statistical estimation of the traffic intensity
parameter for the M/M/1/K queuing model based on fuzzy and non-fuzzy criteria.
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Hendi et al. (2024) have used E-Bayesian and hierarchical Bayesian estimation for
traffic intensity in the M/M/1 queueing system. Also, Makhdoom and Yaghoobzadeh
Shahrastan (2024) considered improving the quality of M/M/m/K queueing systems
using system cost function optimization. Recently, Makhdoom and Yaghoobzadeh
Shahrastani (2024) focused on Bayesian estimation in the M/M/1 queueing model un-
der a type II censoring scheme based on fuzzy data.

Queueing systems with finite capacity are important concepts and factors such as
system cost and customer satisfaction are considered evaluation criteria for a queuing
system. Efforts are made to minimize system cost and maximize customer satisfaction
in each queuing system. The aim of the present paper is the selection of the best
estimate for the traffic intensity parameter of a queuing model based on fuzzy index,
incorporating a factor called the average customer satisfaction index in choosing the
most appropriate estimate.

The remaining of this paper is organized as follows. In section 2, first M/M/m/K
queuing model and its cost function are introduced, next Bayes, E-Bayesian and hier-
archical Bayesian estimations are defined. Section 3 contains the maximum likelihood
estimation (MLE), Bayes estimation, E-Bayesian and hierarchical Bayesian estimations
of traffic intensity in M/M/m/K queuing model. Section 4, introduces the results and
compares of the proposed estimation methods for traffic intensity using Monte Carlo
simulation and a numerical example. Section 5 concludes.

2 Mathematical concepts
In the current section, first we define E-Bayesian, hierarchical Bayesian, fuzzy set prob-
ability function and average degree of customer satisfaction average degree of customer
satisfaction. Next, we introduce the M/M/m/K queuing model, evaluation criteria and
their cost function.

Definition 2.1. (Han, 1997) Suppose π(b1, b2) is the joint prior distribution of hyper-
parameters of b1 and b2 and θ̂B is Bayes estimator of θ. Then the E-Bayesian of θ,
θ̂EB, is defined as follows

θ̂EB = Eπ(b1,b2)(θ̂
B)

=

∫
Λ1

∫
Λ2

θ̂Bπ(b1, b2)db1db2, b1 ∈ Λ1, b2 ∈ Λ2.

Definition 2.2. (Han, 1997) If π(θ|λ) and π
′
(λ) are respectively the corresponding

prior distributions to parameter θ and hyper-parameter λ. Then the hierarchical prior
distribution of parameter θ is obtained by

π
′′
(θ) =

∫
Λ

π(θ|λ)π
′
(λ)dλ, λ ∈ Λ.

Definition 2.3. (Zadeh, 1968) If µÃ(ω) is membership function of Ã, for each ω ∈ Ω.
Then the probability function of Ã can be defined as

P (Ã) =
∑
ω∈Ω

µÃ(ω)Pω, µÃ(ω) : Ω → [0, 1],



Bayesian estimations for optimization of traffic intensityin the M/M/m/K queue 200

where (Ω, F, P ) is a probability space. Ω stands for the sample space, F represents the
sigma algebra on Ω, and P stands for probability measure, then Ã shows the fuzzy event
in Ω.

2.1 M/M/m/K queuing model
Queueing model has applications in various fields, particularly in estimating queue
parameters such as arrival rate, service rate, and traffic intensity. In this section, we
give a brief description of the M/M/m/K queuing model. The M/M/m/K queuing
model has m servers with a service rate of µ, independent of the number of customers
in the system and the rate of customers visiting the system is equal to λ, independent
of the system status and µ. Also, the time between visits and customer service time
is exponentially distributed with parameters λ and µ. In this model, the exit rate is
different from the service rate. If the number of customers in the system is less than
m, the exit rate is nµ, otherwise it is mµ. Therefore, the exit rate of system is defined
as

µn =


nµ, n < m,

mµ, m ≤ n ≤ K,

0, n > K.

In each queuing system, if at a certain moment the number of customers in the system is
n, then the time takes for the number of people to reach (n+ 1) is considered random
variable with exponential distribution with parameter λn. So, the login rate to the
system (λn) is

λn =

{
λ, n < K,

0, n ≥ K.

According Allen (1990) and assuming r = λ
µ , the distribution of the number of cus-

tomers in the system is as follows

Pn =

{
rn

n! P0, 1 ≤ n ≤ m− 1,
rn

m!mn−mP0, m ≤ n ≤ K,

where by assumption ρ = r
m , we have

P0 =

{
(
∑m

n=0
rn

n! +
rm(ρ−ρK−m+1)

m!(1−ρ) )−1, ρ ̸= 1,

(
∑m

n=0
rn

n! +
rm(K−m)

m! )−1, ρ = 1.
(1)

The average number of customers in the queue, denoted Lq =
∑K

n=m(n−m)Pn is given
by

Lq =

{
ρ rm

m! [1− ρK−m+1 − (K −m+ 1)ρK−m(1− ρ)]P0, ρ ̸= 1,
rm(K−m)(K−m+1)

2m! P0, ρ = 1,
(2)

and the average number of customers in the system, denoted L =
∑K

n=0 nPn, is as
follows

L =

m−1∑
n=0

nPn +

K∑
n=m

nPn = Lq +m− P0

m−1∑
n=0

rn(m− n)

n!
. (3)
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In queuing theory, the mean time that a customer remains in the system (W ) and the
mean time a customer waits in the queue (Wq) are obtained by

Wq =
Lq

λ̄
, W =

L

λ̄
, (4)

where (assuming m ≤ K), the entry rate into the system is λ̄ = λ(1− PK).

2.2 Cost function of M/M/m/K queuing model
In each queuing system, it is important to reduce the queue length and customer
waiting time and also increase customer satisfaction. For this purpose, the number of
service providers should be increased and this requires cost. In the present paper, the
cost function is considered as follows

Cm(ρ) = C1(L− Lq) + C2(m− L+ Lq) + C3m+ C4(λ− λ̄) + C5Lq + C6(L− Lq)

= (C1 + C6 − C2)(L− Lq) + (C2 + C3)m+ C4(λ− λ̄) + C5Lq, (5)

where C1(L−Lq) stands for the operating cost of service providers that provide service,
C2(m−L+Lq) denotes the cost of maintaining unemployed servants, C3m represents
the investment cost of service providers per unit of time, C4(λ − λ̄) stands the cost
of losing customers, C5Lq shows the cost of wasting customers time in the queue, and
C6(L − Lq) represents the cost of wasting customers time while receiving the service.
Therefore, by using (1) to (3) and λ− λ̄ = λrK

m!mK−mP0, the cost function defined in (5)
is rewritten as

Cm(ρ) = (C1 + C6 − C2)(m− P0

m−1∑
n=0

rn(m− n)

n!
) + (C2 + C3)m+

C4λr
K

m!mK−m
P0

+
C5r

m[ρ+ (K −m)ρK−m+2 − (K −m+ 1)ρK−m+1]

m!(1− ρ)2
P0, ρ ̸= 1. (6)

2.3 Average degree of customer satisfaction (ADCS)
Considering the importance of customer satisfaction, we want to examine this criteria
in M/M/m/K queuing model. Pardo and De la Fuente (2008) introduced degree of
customer satisfaction by observing the length of the queue at the moment of logging
into the system. If the customer faces short, medium and long queues at the moment
of arrival, degree of customer satisfaction will be high (a1), medium (a2) and low (a3),
respectively, where (a1 ≥ a2 ≥ a3). Due to the relativity of the concepts above, the
specified queues are considered as fuzzy sets in the following, respectively

short queue = Ã = {(0, µÃ(0)), (1, µÃ(1)), . . . , (K,µÃ(K))},

medium queue = B̃ = {(0, µB̃(0)), (1, µB̃(1)), . . . , (K,µB̃(K))},

long queue = C̃ = {(0, µC̃(0)), (1, µC̃(1)), . . . , (K,µC̃(K))},

where µÃ, µB̃ and µC̃ are membership function of the fuzzy sets Ã, B̃ and C̃, re-
spectively. According to Dubois and Prade (1980), we have µÃ(i) + µB̃(i) + µC̃(i) =
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1 for i = 1, 2, . . . ,K. Also, µÃ(i) represents the degree of membership of the fuzzy set
Ã when there are i customers in the queue. Therefore, according to Definition 2.3, the
probability of a customer logging into the system with short, medium and long queues
are as the following, respectively

π(Ã) =

K∑
n=0

µÃ(n)Pn, π(B̃) =

K∑
n=0

µB̃(n)Pn, π(C̃) =

K∑
n=0

µC̃(n)Pn.

Consequently, the ADCS is obtained as

ADCS = a1π(Ã) + a2π(B̃) + a3π(C̃). (7)

3 MLE, Bayes, E-Bayes and hierarchical Bayes esti-
mations

This section deals with the problem of estimation the traffic intensity (ρ = λ
mµ ) param-

eter in M/M/m/K queuing system using the MLE, Bayes, E-Bayesian and hierarchical
Bayesian estimations based on the general entropy loss function. The Bayesian method
is one of several methods used to estimate the parameters of statistical distributions.
Choosing appropriate prior distributions for the parameter space is crucial for reduc-
ing the error of the Bayesian estimator. The loss function we considered for Bayes
estimation is the general entropy loss function of the form

L(θ̂, θ) = q[(
θ̂

θ
)p − p ln(

θ̂

θ
)− 1], p ̸= 0, q > 0. (8)

It was proposed by Calabria and Pulcini (1996) and its minimum occurs at θ̂ = θ.
Because the value of q does not play any role on the optimization of the loss function,
so without loss of generality we assume q = 1. The Bayes point estimator for θ under
general entropy loss function is of the form

θ̂GB = [E(θ−p|X)]−
1
p ,

provided that expectation exist and is finite. The proper choice for p is a challenging
task for an analyst because it reflects the asymmetry of the loss function in a practical
situation.

Remark 3.1. When p = −1, the Bayes point estimator for the θ coincide with the
Bayes point estimators under the symmetric squared error loss function of the form
(θ̂ − θ)2. The corresponding Bayes point estimator of θ is given by E(θ|X).

Remark 3.2. In (8), if we replace ln( θ̂θ ) by (θ̂ − θ), we get the linear exponential
(Linex) loss function of the form q[exp (p(θ̂ − θ)) − p(θ̂ − θ) − 1]. The Bayes point
estimator of θ under the asymmetric linex loss function is given by, − 1

p lnE(e−pθ|X).

In the following, we will present the MLE, Bayes estimation, E-Bayesian and Hier-
archical Bayesian estimations of the traffic intensity (ρ = λ

mµ ) parameter in M/M/m/K
queuing system. We start with the MLE.
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3.1 MLE
Let V1, . . . , Vn1

be times between two consecutive arrivals of size n1 from exponential
distribution with parameter λ and the pdf f(v, λ) given by f(v, λ) = λe−λv, v > 0, λ >
0, and also U1, . . . , Un2

, be service times of size n2 from exponential distribution with
parameter µ and the pdf g(u, µ) given by g(u, µ) = µe−µu, u > 0, µ > 0. Also V ,

i s and
U ,
is are independent random variables. Now, let X = {U1, . . . , Un2 , V1, . . . , Vn1}, and

also T1 =
∑n1

i=1 Vi and T2 =
∑n2

i=1 Ui. It can be shown that T1 follows from gamma
distribution with the shape parameter n1 and λ. Similarly T2 follows from gamma
distribution with the shape parameter n2 and µ. As discussed before, T1 and T2 are
independent random variables. So, it can be obtained a closed-form expression for the
ML estimation of the parameters λ and µ as λ̂ = n1

T1
and µ̂ = n2

T2
, respectively. Using

the invariance property of ML estimators, one can immediately obtain the ML of ρ as

ρ̂ML =
n1

mn2

T2

T1
. (9)

3.2 Bayesian estimation
Because λ is non negative, a natural choice for the prior of λ would be to assume that
its density is of the following form

π(λ|a, b) = ba

Γ(a)
λa−1e−bλ. (10)

The hyper-parameters a(> 0) and b(> 0) are chosen to reflect the prior knowledge
about λ, Γ(.) denotes the complete gamma function. Similarly, we can use the following
informative gamma prior of µ with pdf

π(µ|r, c) = cr

Γ(r)
µr−1e−cµ, r > 0, c > 0. (11)

Based on (10) and (11), and after some algebraic computations, we obtain

π(λ, µ|X) =
Γ(n1 + a)Γ(n2 + r)

(T1 + b)T1+a(T2 + c)T2+r
λn1+a−1µn2+r−1e−λ(T1+b)−µ(T2+c).

With assumption ϕ = Γ(a+n1−p)Γ(r+n2+p)
Γ(a+n1)Γ(r+n2)

, under general entropy loss function, the
Bayesian estimator of ρ will be equal to {E(ρ−p|X)}−

1
p or equivalently

ρ̂B =
1

m
(ϕ(T1))

− 1
p
c+ T2

b+ T1
. (12)

3.3 E-Bayesian estimation
According to Han (1997), in (10), a and b are considered so that π(λ|a, b) decreases
with respect to λ. The derivative of π(λ|a, b) with respect to λ is attained as

dπ(λ|a, b)
dλ

=
baλa−2e−bλ

Γ(a)
((a− 1)− bλ) .
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It follows that b > 0 and 0 < a ≤ 1. By increasing b, Bayesian estimation of λ
decreases. As a result, the hyper-parameter b should be bounded from above, that is
0 < b < c1, where c1 is constant. On the other hand, the appropriate distribution
for b is uniform distribution (see Han (1997)). So, in this paper, we consider uniform
distribution U(0, c1) as a prior distribution for b, π(b). By considering a = 1, (10) can
be written as follows

π(λ|b) = be−bλ, λ > 0, b > 0, (13)
similarly, by using uniform distribution U(0, c2) as a prior distribution for constant c,
π(c), and also assumption r = 1, (11) is given by

π(µ|c) = ce−cµ, , µ > 0, c > 0. (14)
According to the Definition 2.1 and (12) to (14), the E-Bayesian estimation of ρ will
be derived as

ρ̂EB =
1

c1c2

∫ c2

0

∫ c1

0

ρ̂Bπ(b, c)dbdc =
(ϕ(T1))

− 1
p

[
(c2 + T1)

2 − T 2
1

]
2mc1c2

log

(
c1 + T2

T2

)
.

(15)

3.4 Hierarchical Bayesian estimation
Bayesian inference is sensitive to the choice of hyper-parameters for informative priors,
so care must be taken in the selection of values. In the Bayesian estimation, if the hyper-
parameters are unknown, they can be estimated by using the hierarchical method.
Hierarchical Bayesian modeling is a statistical model that estimates the parameters of
the posterior distribution using the Bayesian method. The sub models combine to form
the hierarchical model, and Bayes theorem is used to integrate them with the observed
data and account for all the uncertainty that is present. The result of this integration
is it allows calculation of the posterior distribution of the prior, providing an updated
probability estimate. Now, By using (13) and (14) and Definition 2.2, the hierarchical
prior distributions of λ and µ are considered, respectively

π(λ) =

∫ c1

0

π(λ|b)π(b)db = 1− (1 + c1λ)e
−c1λ

c1λ2
, (16)

π(µ) =

∫ c2

0

π(µ|c)π(c)dc = 1− (1 + c2µ)e
−c2µ

c2µ2
. (17)

Thus, according to (16) and (17), the hierarchical posterior distribution of λ and µ is
derived as

π∗∗(λ, µ|X) =
λa+n1−3µr+n2−3e−λ(b+T1)−µ(c+T2)S(λ, µ)∫∞

0

∫∞
0

λa+n1−3µr+n2−3e−λ(b+T1)−µ(c+T2)S(λ, µ)dλdµ
, (18)

where
S(λ, µ) =

(
1− c1λe

−c1λ − e−c1λ
) (

1− c2µe
−c2µ − e−c2µ

)
.

From (18), the hierarchical Bayesian estimation of ρ under the general entropy loss
function can be written as follows

ρ̂HB =
1

m

{∫∞
0

∫∞
0

λa+n1−(p+3)µr+n2+p−3e−λ(b+T1)−µ(c+T2)S(λ, µ)dλdµ∫∞
0

∫∞
0

λa+n1−3µr+n2−3e−λ(b+T1)−µ(c+T2)S(λ, µ)dλdµ

}− 1
p

. (19)
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4 Simulation study and numerical illustration
In this section, we analyze Monte Carlo simulation for illustrative purposes and a
numerical example is performed to compare performance of the methods described in
the preceding sections.

4.1 Simulation study
In this section, we conduct simulation study to compare the performance of MLE,
Bayesian, E-Bayesian, and hierarchical Bayesian estimates of ρ. Then, we calculate
the cost function values for these estimates via the Monte Carlo simulation and deter-
mine the ADCS. We use the following algorithm:
Algorithm
Step 1. Generate a random sample of size n1(=50), say (V1, . . . , Vn1) and a random
sample of size n2(=40), say (U1, . . . , Un2), from an exponential distributions with pa-
rameters λ = 3 and µ = 5, respectively, and the ρ̂ML is obtained.
Step 2. For given values of a = 3, b = 4, c = 5, r = 3, p = 2.5, c1 = 6 and c2 = 7,
compute the MLE, Bayes, E-Bayesian and hierarchical Bayesian estimations of ρ, as
given in (9), (12), (15) and (19), respectively.
Step 3. For, C1 = 400, C2 = 300, C3 = 1000, C4 = 250, C5 = 200 and
C6 = 150, calculate the cost function of estimations of ρ by using (6).
Step 4. Repeat Steps 1 to 3 for 5000 times and use the average of estimates obtained
in Step 3, ρ̂ML, ρ̂B , ρ̂EB and ρ̂HB , as the final values.

In this simulation study, we use a1 = 1, a2 = 0.6 and a3 = 0.35. Also, we consider
the fuzzy sets Ã, B̃ and C̃ as follows

Ã = {(0, 0.6), (1, 0.5), (2, 0.7), (3, 0.8), (4, 0.9), (5, 0.2), (6, 0), (7, 0.4), (8, 0.8)},
B̃ = {(0, 0.3), (1, 0.3), (2, 0.2), (3, 0.1), (4, 0), (5, 0.7), (6, 1), (7, 0.5), (8, 0.1)},
C̃ = {(0, 0.1), (1, 0.2), (2, 0.1), (3, 0.1), (4, 0.1), (5, 0.1), (6, 0), (7, 0.1), (8, 0.1)}.

The corresponding simulation results are reported in Table 1. It can observed that
the cost function increases as m increases. Moreover, the cost function values under
E-Bayesian method are smaller than those obtained under the other methods.
Table 1: Bayes, E- Bayesian and hierarchical Bayesian estimations of ρ and the cost
function values based on them for m = 1(1)8.

m ρ̂B ρ̂EB ρ̂HB ρ̂ML Cm(ρ̂B) Cm(ρ̂EB) Cm(ρ̂HB) Cm(ρ̂ML)
m = 1 0.7822 0.7349 0.8007 0.7063 1521 1503 1522 1589
m = 2 0.3886 0.3641 0.4061 0.2736 2798 2785 2807 2839
m = 3 0.2597 0.2433 0.2657 0.1412 4096 4083 4100 4106
m = 4 0.1968 0.1849 0.2001 0.1662 5399 5385 5400 5466
m = 5 0.1605 0.1510 0.1617 0.1391 6701 6689 6702 6773
m = 6 0.1313 0.1234 0.1356 0.1601 7997 7985 8003 8040
m = 7 0.1127 0.1058 0.1158 0.0861 9297 9285 9302 9350
m = 8 0.1006 0.0947 0.1012 0.0679 10601 10589 10602 10635

We obtained the distribution of the number of customers in M/M/m/8 queuing
system for m = 1(1)8 . It is clear that the distribution of the number of customers
(Pn), is decreasing with respect to n when m is kept fixed. The results are reported
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in Tables 2.We normalized the ADCS and cost function for the proposed estimation
methods. The normalization of ADCS is shown as AN

B , AN
EB , AN

HB and AN
ML

for Bayes, E-Bayes, hierarchical Bayes and ML estimations, respectively. Also, CN
B ,

CN
EB , CN

HB and CN
ML represents the normalized cost function. The results of

normalization are reported in Table 4.

Table 2: The distribution of the number of customers in the different systems of in
M/M/m/8 (stable state) for m=1(1)8.
Pn m = 1 m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 m = 8

ρ̂B

P0 0.2446 0.4404 0.4568 0.4549 0.4482 0.4548 0.4543 0.4472
P1 0.1913 0.3423 0.3559 0.3581 0.3597 0.3583 0.3584 0.3598
P2 0.1497 0.1330 0.1386 0.1409 0.1443 0.1411 0.1414 0.1448
P3 0.1171 0.0517 0.0360 0.0369 0.0368 0.0371 0.0372 0.0389
P4 0.0916 0.0201 0.0094 0.0073 0.0077 0.00729 0.00733 0.00781
P5 0.0716 0.0078 0.0024 0.0014 0.0012 0.00112 0.00115 0.00125
P6 0.0560 0.0030 0.00063 0.00028 0.00020 0.00015 0.00015 0.00017
P7 0.0438 0.0012 0.00016 5.5×10−5 3.2×10−5 1.9×10−5 1.7×10−5 3.94×10−5

P8 0.0343 0.0005 4.3×10−5 1.1×10−5 5.1×10−6 2.6×10−6 1.93×10−6 1.95×10−6

ρ̂EB

P0 0.2828 0.4662 0.4803 0.4771 0.4699 0.4769 0.4768 0.4688
P1 0.2076 0.3395 0.3506 0.3529 0.3548 0.3531 0.3537 0.3552
P2 0.1527 0.1236 0.1279 0.1305 0.1339 0.1307 0.1308 0.1345
P3 0.1122 0.0450 0.0311 0.0322 0.0337 0.0323 0.0324 0.0339
P4 0.0825 0.0164 0.0076 0.0059 0.0064 0.0059 0.0058 0.0064
P5 0.0606 0.0059 0.0018 0.0011 0.00096 0.00088 0.00089 0.00097
P6 0.0445 0.0022 0.00044 0.00020 0.00014 0.00011 0.00010 0.00012
P7 0.0327 0.0008 0.00011 3.7×10−5 2.2×10−5 1.4×10−5 1.2×10−5 1.3×10−5

P8 0.0241 0.0003 2.7×10−5 6.9×10−6 3.3×10−6 1.7×10−6 1.22×10−6 1.3×10−6

ρ̂HB

P0 0.2305 0.4226 0.4485 0.4489 0.4455 0.4433 0.4446 0.4450
P1 0.1845 0.3432 0.3575 0.3593 0.3602 0.3606 0.3604 0.3603
P2 0.1478 0.1394 0.1425 0.1438 0.1456 0.1467 0.1461 0.1458
P3 0.1183 0.0566 0.0379 0.0384 0.0392 0.0398 0.0395 0.0394
P4 0.0947 0.0229 0.0101 0.0076 0.0078 0.0080 0.0079 0.0077
P5 0.0759 0.0093 0.0027 0.0015 0.0012 0.0013 0.0014 0.0011
P6 0.0607 0.0038 0.00071 0.00030 0.00020 0.00017 0.00018 0.00016
P7 0.0486 0.0015 0.00018 6.2×10−5 3.3×10−5 2.4×10−5 2.01×10−5 2.02×10−5

P8 0.0389 0.0006 5.01×10−5 1.2×10−5 5.4×10−6 3.3×10−6 2.3×10−6 2.04×10−6

ρ̂ML

P0 0.2201 0.4017 0.4193 0.4136 0.4312 0.3133 0.3125 0.4152
P1 0.1746 0.3116 0.3218 0.3214 0.3519 0.2417 0.2411 0.3319
P2 0.1379 0.1278 0.1397 0.1386 0.1357 0.1377 0.1298 0.1279
P3 0.1082 0.0951 0.0345 0.0321 0.0312 0.0298 0.0265 0.0196
P4 0.0875 0.0211 0.0100 0.0071 0.0069 0.0072 0.0068 0.0059
P5 0.0621 0.0087 0.0025 0.0013 0.0010 0.0011 0.0012 0.0009
P6 0.0312 0.0029 0.00069 0.00029 0.00018 0.00014 0.00015 0.00012
P7 0.0217 0.0011 0.00015 5.12×10−5 2.2×10−5 1.4×10−5 1.2×10−5 1.4×10−5

P8 0.0118 0.0004 4.17×10−5 1.1×10−5 4.5×10−6 2.4×10−6 3.4×10−6 2.1×10−6

The PF sets and then the ADCS under the proposed estimation methods for m =
1(1)8 are also reported in Table 3.

In order to determine the appropriate estimator, based on the normalization of cus-
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Table 3: The values of PF and ADCS under the methods of estimating ρ.
Method PF m = 1 m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 m = 8

π(Ã) 0.5826 0.5903 0.5869 0.5870 0.5864 0.5885 0.5874 0.5879
B π(B̃) 0.3039 0.2757 0.2775 0.2771 0.2759 0.2774 0.2768 0.2760

π(C̃) 0.1135 0.1339 0.1355 0.1358 0.1357 0.1360 0.1359 0.1361
ADCS 0.8047 0.8026 0.8008 0.8007 0.7994 0.8025 0.8010 0.8011

π(Ã) 0.5894 0.5885 0.5852 0.5854 0.5878 0.5871 0.5858 0.5861
EB π(B̃) 0.2949 0.2777 0.2797 0.2793 0.2794 0.2846 0.2793 0.2783

π(C̃) 0.1165 0.1337 0.1350 0.1353 0.1362 0.1361 0.1354 0.1355
ADCS 0.8071 0.8019 0.8002 0.8003 0.8031 0.8055 0.8008 0.8005

π(Ã) 0.5496 0.5916 0.5877 0.5875 0.5879 0.5883 0.5882 0.5878
HB π(B̃) 0.3079 0.2744 0.2768 0.2764 0.2758 0.2756 0.2759 0.2757

π(C̃) 0.1124 0.1339 0.1357 0.1359 0.1357 0.1361 0.1360 0.1358
ADCS 0.7737 0.8031 0.8013 0.8009 0.8010 0.8014 0.8015 0.8008

π(Ã) 0.5316 0.5712 0.5710 0.5719 0.5782 0.5695 0.5689 0.5691
ML π(B̃) 0.2976 0.2645 0.2639 0.2682 0.2691 0.2698 0.2692 0.2689

π(C̃) 0.1112 0.1239 0.1245 0.1251 0.1293 0.1349 0.1312 0.1309
ADCS 0.7491 0.7732 0.7729 0.7766 0.7850 0.7786 0.7763 0.7762

Table 4: Normalization of average values of customer satisfaction degree and cost
function.

m AN
B AN

EB AN
HB AN

ML CN
B CN

EB CN
HB CN

ML

m = 1 0.9770 1 0.9586 1 0.9882 1 0.9875 1
m = 2 0.9994 0.9985 1 0.3874 0.9954 1 0.9922 0.5597
m = 3 0.9993 0.9986 1 0.1999 0.9968 1 0.9959 0.3869
m = 4 0.9997 0.9992 1 0.2354 0.9974 1 0.9972 0.2907
m = 5 0.9954 1 0.9973 0.1969 0.9982 1 0.9981 0.2346
m = 6 0.9963 1 0.9949 0.2267 0.9985 1 0.9978 0.1976
m = 7 0.9992 0.9912 1 0.1219 0.9987 1 0.9982 0.1699
m = 8 1 0.9993 0.9994 0.0961 0.9989 1 0.9988 0.1494

tomer satisfaction and cost function, an appropriate criteria for comparing estimators
is defined as AE = wAN + (1 − w)CN where 0 < w < 1. The acronyms AN and
CN stand for the normalized average degree of customer satisfaction and system cost,
respectively. AE index is a linear weighted combination of the normalized system cost
and ADCS used to determine the estimator of traffic intensity parameter. It is obvious
that, by increasing the degree of satisfaction and decreasing the system cost, the value
of AE increases. Therefore, an estimator with a larger AE index is considered more
suitable. For w = 0.6 and using the results of Table 3, the value of AE under Bayes esti-
mation, E-Bayes, hierarchical Bayesian and ML estimations, denoted by AEB , AEEB ,
AEHB and AEML, is calculated and the results of the selected estimator are presented
in Table 5.

From Table 5, it is observed that, for m = 7, the hierarchical Bayesian estimation
of ρ is better than the other three estimators (The bolded). In other cases, E-Bayes
estimation of ρ is better. For instant, the results for m = 5, 7 and 8 are plotted in
Figure 1. The optimal values of ρ and r = λ

µ are also shown in Table 6 . That’s mean,
system cost is minimum and the ADCS is the most.
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Table 5: The values of AE and selection of estimator.
m = 1 m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 m = 8

AEB 0.9815 0.9978 0.9983 0.9987 0.9965 0.9972 0.9990 0.9996
AEEB 1 0.9991 0.9992 0.9995 1 1 0.9946 0.9997
AEHB 0.9702 0.9969 0.9984 0.9989 0.9976 0.9961 0.9993 0.9995
AEML 0.8639 0.4908 0.3121 0.2686 0.3134 0.2092 0.1507 0.1281

Selected estimator EB EB EB EB EB EB HB EB

Figure 1: The plot of AE versus w for m = 5, 7, 8.

Table 6: Optimal values of ρ and r for m = 1(1)8 in M/M/m/8 model.
m = 1 m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 m = 8

ρ̂ 0.7349 0.3641 0.2433 0.1849 0.1510 0.1234 0.1158 0.0947
r̂ 0.7349 0.7282 0.7299 0.7396 0.7550 0.7404 0.8106 0.7576

4.2 Numerical illustration
In order to illustrate the results obtained in the preceding section, we intend to present
the analysis of a numerical example. Therefore, we consider the city’s traffic depart-
ment, only has the capacity to park six cars at a time. Cars are entered randomly
based on a Poisson distribution, and on average, one car is entered every two hours for
technical inspection (if any). This office has four parking lots. The data are given in
Table 7.

Table 7: Extracted data (in hour) of the city’s traffic department for technical inspec-
tion.

Time intervals between inputs 4.189 3.281 1.365 2.245 1.371 3.109
1.315 2.711 3.579 0.374 1.762 .360

Time intervals between services 0.852 2.154 1.178 3.121 4.228 2.621
0.997 1.193 0.2794 2.146 1.393 3.503

Here, the time of the technical inspection is a random variable with an exponential
distribution and a mean of ten hours. This is a M/M/m/K queuing system with
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λ = 0.5, µ = 0.1, m = 4, K = 6, r = λ
µ = 5 and ρ = λ

mµ = 1.25(> 1). From (1) we get
P0 = (

∑4
n=0

5n

n! +
54(1.25−1.256−4+1)

4!(1−1.25) )−1 = 0.0072. This indicates that the probability of
the system being empty is 0.0072. By using (2), the average number of cars waiting
in the technical inspection queue is equal to Lq = 0.822. Thus PK = 0.2935, λPK =
0.1467, λ̄ = λ(1 − PK) = 0.3532, L = 4.3538. Also, substituting Lq, L and λ̄ in (4),
yields Wq = 2.3268 and W = 12.3268. We consider the city’s traffic department, only
has the capacity to park one car at a time i.e. m = 1. Based on the assumed values
for parameters, various estimates for ρ and C(ρ) have been calculated in Table 8. The
values of Pn for different estimates of ρ are reported in Table 9. Now assuming a1 = 1,
a2 = 0.6, a3 = 0.35 and considering the fuzzy sets Ã, B̃ and C̃

Ã = {(0, 0.6), (1, 0.5), (2, 0.7), (3, 0.8), (4, 0.9), (5, 0.2), (6, 0)},
B̃ = {(0, 0.3), (1, 0.3), (2, 0.2), (3, 0.1), (4, 0), (5, 0.7), (6, 1)},
C̃ = {(0, 0.1), (1, 0.2), (2, 0.1), (3, 0.1), (4, 0.1), (5, 0.1), (6, 0)},

also, using (7) and the results in Table 12, we have computed the values of ADCS.
The results are presented in Table 10.

Table 8: Bayes, E-Bayesian and hierarchical Bayesian estimations of ρ and C(ρ) based
on numerical illustration.

ρ̂B ρ̂EB ρ̂HB ρ̂ML

Estimations 2.0831 2.0358 2.1018 2.0076
C(ρ̂) 0.1787 0.1542 0.1962 0.0637

Table 9: The values of Pn based on numerical illustration for different estimates of ρ.
Pn ρ̂B ρ̂EB ρ̂HB ρ̂ML

P0 0.10157 0.47085 0.20812 0.11084
P1 0.09901 0.32121 0.18988 0.10704
P2 0.09766 0.21144 0.18172 0.10337
P3 0.09651 0.15236 0.17409 0.09981
P4 0.09422 0.13425 0.16701 0.09634
P5 0.08931 0.12017 0.16043 0.09299
P6 0.08672 0.11291 0.15432 0.08974

Table 10: The values of ADCS based on numerical illustration for different estimates
of ρ.

ρ̂B ρ̂EB ρ̂HB ρ̂ML

π(Ã) 0.3587 0.8579 0.6687 0.3775
π(B̃) 0.2386 0.4922 0.4398 0.2508
π(C̃) 0.0677 0.1731 0.1271 0.0716
ADCS 0.5256 1.2138 0.9770 0.5530

5 Conclusions
In this paper, we have considered the M/M/m/K queuing model where inter-arrival and
service times follow exponential distributions with parameters λ and µ, respectively.
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We derived the ML, Bayes, E-Bayesian and hierarchical Bayesian estimations for the
traffic intensity under the general entropy loss function. A criterion for evaluating
estimates, denoted by AE, based on the normalized system cost and average degree
of customer satisfaction was defined. A better estimator has larger AE value. Monte
Carlo simulation results suggest that, the hierarchical Bayes estimation for m = 7
outperforms other estimates. But, when m = 1, 2, . . . , 6, 8, E-Bayes estimation of the
traffic intensity has a better performance than other estimators. Next, our study shows
that, the cost function increases as m increases. Moreover, the cost function values
under E-Bayesian method are smaller than those obtained under the other methods.
Also, the distribution of the number of customers are decreasing with respect to n
when m is kept fixed. Finally, the results in the numerical example section confirm the
results of the simulation study section. The proposed topic in this manuscript, can be
considered for the M/M/m/K queuing model based on fuzzy and non-fuzzy criteria,
for other methods. Work in sensitivity analysis to hyper-parameters (informative and
uninformative), comparison of empirical Bayesian and MLE methods with Bayesian
method is currently under progress and we hope to report the results in future soon.
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