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Abstract: This study proposes a novel framework for the realistic economic design of
Shewhart control charts, addressing a critical yet overlooked limitation in traditional
economic design models. Unlike classical approaches, the realistic economic design
model explicitly incorporates the probability that no new assignable causes arise after
the first assignable cause appears within a quality cycle an event previously assumed
to be deterministic, despite its unrealistic nature in dynamic industrial environments.
By integrating the flexible Burr-XII shock model, which accommodates various hazard
rate behaviors (increasing, decreasing, constant, unimodal, and U-shaped), the pro-
posed model offers a more accurate and practical tool for economic decision-making
in process monitoring. The approach extends the widely cited Lorenzen and Vance
(1986) framework, enabling a more comprehensive analysis of control chart perfor-
mance under multiple independent assignable causes. Numerical results demonstrate
that models such as that of Saadatmelli et al. (2018), based on Duncan (1971) assump-
tions and Burr-XII failure times, substantially underestimate the average cost per unit
time. This discrepancy highlights the importance of using more realistic frameworks
like our model to ensure cost-effective quality control.
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1 Introduction
The economic design of control charts has been a central topic in quality control re-
search since Duncan (1956), who proposed a cost-based model assuming exponentially
distributed failure times and the presence of a single assignable cause. Early models
were based on fixed sampling intervals and simplified cost structures. Subsequent stud-
ies refined these assumptions by adopting more flexible failure time distributions and
incorporating complex process behaviors. Notably, Baker (1971), Heikes et al. (1974),
and Montgomery and Heikes (1976) introduced non-exponential distributions to ac-
count for varying hazard rates. McWilliams (1989) considered alternative sampling
schemes, while Banerjee and Rahim (1988) employed Weibull distributions and non-
uniform sampling intervals to better reflect real-world failure dynamics. Chung (1990)
developed a simplified parameter estimation procedure to enhance model usability.

More recent advancements have focused on integrating uncertainties in input pa-
rameters (Safaei et al., 2015) , non-normal quality characteristics (Seif et al., 2015), and
autocorrelated process data (Naderi et al., 2018, 2021). These efforts have significantly
narrowed the gap between theoretical development and industrial applicability. A ma-
jor milestone in this field was the introduction of the Lorenzen and Vance (1986) model,
which replaced fixed cost-per-sample approaches with average run length (ARL)-based
designs, thereby capturing the stochastic nature of process failures. This model has
since become a foundational reference, adapted across numerous extensions involving
alternative distributions and failure mechanisms. Despite these improvements, many
models retain restrictive assumptions, particularly the occurrence of only one assignable
cause at a time and the absence of any new causes until the first is detected. In real
industrial environments, multiple independent assignable causes, such as tool wear,
sensor drift, or human error, can occur simultaneously or sequentially, often impact-
ing the process independently. Ignoring this complexity leads to underestimation of
detection delay and total quality costs. Recognizing this limitation, Duncan (1971)
introduced two modeling assumptions: (i) the independence of assignable cause oc-
currence times, and (ii) the absence of any new causes after the first failure until a
correct alarm is issued. Although Duncan acknowledged the second assumption as un-
realistic, its implications on cost estimation and model accuracy remained unexamined
in subsequent studies. Notably, if the second assumption holds strictly in practice, it
contradicts the first assumption of independence, implying dependence among cause
occurrence times. Therefore, assuming independence makes the second condition only
a special case among many possible process states. To address this inconsistency, Sho-
jaei et al. (2022) introduced the realistic economic design (RED) framework, which
explicitly models the probability that no further assignable cause occurs between the
initial shift and its detection. Using a Weibull failure model, they demonstrated that
optimal control parameters and average cost estimates differ substantially from those
obtained through traditional models.

While Weibull and Gamma distributions are widely used for modeling failure times,
recent literature emphasizes the enhanced flexibility of the Burr-XII distribution. Orig-
inally proposed by Burr (1942), this distribution has been employed across domains
such as econometrics, hydrology, medical statistics, and quality control. Applications
include variable sampling plans (Zimmer and Burr, 1963), life data modeling (Wingo,
1993), economic-statistical control charts (Chou et al., 2000), and extreme value mod-
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eling for flood prediction (Shao et al., 2004).
Burr-XII’s cumulative distribution function (CDF) is

F (t) = 1− (1 + (t/s)c)−k, s, k, c > 0,

where’s represents the scale parameter, and c and k are shape parameters. The Burr-
XII distribution offers significant advantages due to its ability to approximate several
well-known distributions, including the exponential, gamma, Weibull, normal, and
Pareto II. It features a flexible hazard rate function, capable of taking constant, in-
creasing, decreasing, unimodal, or U-shaped forms, making it particularly suitable for
modeling diverse failure mechanisms in quality and reliability engineering.

0.0

0.1

0.2

0.3

0.4

0.5

0 5 10 15 20
x value

f(x
)

Parameters (c, k)

1, 5

10, 0.1

10, 1

Probability Density Function (PDF) of Burr−XII Distribution

Figure 1: Burr density function for convert distributions.

Figure 1 illustrates various density shapes corresponding to different parameter set-
tings, and Figure 2 shows how varying the Burr-XII parameters (c and k) can produce
L-shaped, decreasing, or bathtub-shaped hazard rate functions. Such flexibility makes
Burr-XII an excellent candidate for modeling complex, real-world failure behavior.
Heydari et al. (2016) were among the first to utilize Burr-XII in control chart design,
confirming its suitability for processes with non-monotonic hazard rates.

Recent studies have significantly advanced control chart methodologies, particu-
larly in addressing complex industrial challenges. Notably, Hajiesmaeili et al. (2025)
introduced adaptive Lasso charts for high-dimensional processes with dependent state
sampling, reflecting the increasing complexity of modern manufacturing systems. Pour
et al. (2024) applied log-logistic EWMA charts using MOPSO and VIKOR for car-
diac surgery monitoring, demonstrating the relevance of advanced failure modeling in
healthcare. Similarly, Lee and Chou (2024) integrated Tukey-based synthetic charts
with Taguchi loss functions under log-normal assumptions. In parallel, Huang et al.
(2023) proposed economic designs for p-charts considering multiple assignable causes.
Healthcare applications have seen progress through Rafiei et al. (2023) risk-adjusted
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Figure 2: Plots of the hazard rate function; (a) L-shape, (b) Upside-down bathtub, (c) Decreasing.

charts, demonstrating cross-industry potential. Particularly noteworthy is Salmas-
nia et al. (2024) integration of maintenance policies with quality control for cascade
processes, offering valuable insights for extending our model. These advancements
collectively underscore the growing importance of robust, economically designed con-
trol charts in modern quality management systems, while highlighting opportunities to
enhance our RED model’s applicability across diverse industrial contexts.

Despite these contributions, no existing study has unified RED principles, Burr-XII-
based shock modeling, and multiple independent assignable causes into a single control
chart framework. This paper addresses this research gap by proposing a novel economic
design model for Shewhart control charts that integrates these three dimensions.

Specifically, our work builds on and differentiates itself from
• Saadatmelli et al. (2018, 2023), who optimized X̄charts under independent assignable
causes and a Burr-XII shock model, but did not incorporate RED logic.
• Shojaei et al. (2022) and Shojaei and Moghadam (2023) , who developed RED frame-
works using Weibull-based shocks under multiple independent causes, but did not ex-
ploit the flexibility of Burr-XII.

To the best of our knowledge, this is the first study to extend the Lorenzen and
Vance RED framework under a Burr-XII shock model while accounting for multiple
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independent assignable causes. The proposed model offers enhanced accuracy in cost
estimation and performance analysis for industrial quality control systems.

The remainder of this article is structured as follows:
• Section 2 introduces key definitions and assumptions for RED Shewhart control
charts.
• Section 3 presents the RED framework developed by Lorenzen and Vance (1986)
under the Burr_XII shock model, and the proposed optimization model.
• Section 4 concludes with discussion and suggestions for future research.

2 Assumptions and notations
2.1 Assumptions
The assumptions used to design a realistic economic model in the following sections
are:
1) The quality characteristic of the process follows the normal distribution with a known
mean µ and a known variance σ2 (σ2 is constant during the process). The process is
under statistical control if µ = µ0. When the i-th assignable cause occurs, the average
of the process moves from µ0 to µ0+δiσ

2, in which case the process is out of statistical
control. δi is the amount of transmission in the average due to the occurrence of the
i-th assignable cause.
2) Upper control limit is µ0 + L σ√

n
and lower control limit is µ0 − L σ√

n
.

3) The probability of the type I error, assuming that the quality characteristic has
N(µ0 − σ2

0) distribution, is α = 2(1− Φ(L)).
4) The probability of discovering a change in the average process after the i-th assignable
cause occurrence is 1− βi = 1− (Φ(L− δi

√
n)− Φ(−L− δi

√
n)).

5) The occurrence time of the i-th assignable cause (i = 1, 2, ...,m) has a density
function distribution of Burr12(s, c, ki);

fTi(t) =
kic(t/s)

c−1

s(1 + (t/s)c)ki+1
, s, ki, c > 0, 0 ≤ t < ∞.

6) The occurrence times of the assignable causes are independent. Therefore, T =
min(T1, T2, ..., Tm)has Burr12(s, c, k0) distribution that is k0 =

∑m
i=1 ki.

7) By selecting a random sample of size n from the production process at the time wν

(wν =
∑v

l=1 hl), the process is evaluated. hl is the l-th sampling interval and they are
determined so that the probability of the process leaving the controlled state at the
time when the beginning of the interval is under control remains a constant value for all
sampling intervals. In other words, the following relationship must be established for
i = 1, ...,m; P (T < wν |T > wν−1) = P (T < w1|T > 0) then, F̄ (wν) = F̄ (h1)F̄ (wν−1).
From induction, when v = k; F̄ (wk) = (F̄ (h1))

k. So, F̄ (wv) = (F̄ (h1))
v, for v = 1, 2, ....

According to T ∼ Burr12(s, c, k0), then (1 + (wv/s)
c)−k0 = ((1 + (h1/s)

c)−k0)v so,

hv = wv −wv−1 = s((1+(h1/s)
c)v −1)1/c−s((1+(h1/s)

c)v−1−1)1/c, v = 2, 3, ....

8) The time of sampling and drawing the graph is assumed to be insignificant.
9) The process is not self-correction. In other words, when the process goes out of
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control, it is possible to return to the controlled state only with the intervention of the
human factor.
10) The process starts from the controlled state.
11) After the occurrence of an assignable cause, another assignable causes shall not
occur until a correct alarm is issued. This reception is an event that we show with I.

2.2 Notations
The cost and time parameters are as follows:
Z0: The average time to search for false alarms,
Z1: The average time to discover the i-th assignable cause when detected by the control
chart,
Z2i: The average time to repair the i-th assignable cause when discovered.
D0: The average cost of quality per unit time for the on-control state,
D1i: The average quality cost per time unit for the out-of-control state related to the
i-th assignable cause,
Y : The average cost of checking false alarms when the process is under control,
D2i: The cost of locating and repairing the i-th assignable cause,
a: The fixed cost of sampling,
b: The cost of each sample unit,
γ1: Zero and one variable; If the process continues during the search time for the
deviations of the cause, the value will be one and if it is stopped, the value will be zero.
γ2i: Zero and one variable; If the process continues during the process modification
time, when the i-th assignable cause has occurred, the value will be one and if it is
stopped, the value will be zero.

In this article, after the occurrence of the i-th assignable cause, the value of change
that occurs in the average process is equal to di, which three uniform distributions, half-
normal (1/

√
2π)e−(1/2)((1/2)di)

2 , and negative exponential (1/2)e−(1/2)di is considered
as the prior distribution for di.

3 Constructing realistic Lorenzen and Vance cost
model of Shewhart control charts

3.1 Calculation the ARL of the Shewhart control charts
The ARL is a key metric used to evaluate the effectiveness of control charts in statis-
tical process control and is a key parameter in Lorenzen and Vance’s economic model.
It represents the average number of samples or points plotted before the first alarm oc-
curs. For Shewhart control charts, the ARL corresponds to the mean of the geometric
distribution when the process is in control (δ = 0).

ARLδ=0 = ARL0 = E(RL) =

∞∑
r=1

rPr(RL = r) =

∞∑
r=1

r(1− α)r−1 α =
1

α
,

where RL represents the time it takes for the sample mean to fall out of control. This
can occur in the first, second, or any subsequent logical subgroup, up to the r-th logical
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subgroup. If, after the occurrence of the i-th assignable cause, the process mean shifts
by an amount δi, resulting in a new process mean of µ0+δi σ

2
0 , the out-of-control ARL

is expressed as

ARLδ>0 = ARL1 = E(RL) =

∞∑
r=1

rPr(RL = r) =

∞∑
r=1

rβi
r−1 (1− βi) =

1

(1− βi)
.

3.2 Calculating the probability of occurrence of the event I
based on the Burr-XII shock model

Building upon the foundational assumptions outlined in Section 2, our economic model
simplifies the computation of expected cycle time (E(T )) and expected cost (E(C)) by
adopting the critical assumption that no additional assignable causes emerge during the
interval between an initial assignable cause’s occurrence and its subsequent detection
(event I). This modeling assumption establishes a well-defined quality cycle structure
that
• Cycle Definition: Each quality cycle initiates in the in-control state,
• State Transition: Progresses through an out-of-control phase following an assignable
cause,
• Termination Condition: Concludes with complete process correction and restora-
tion.

The mathematical foundation derives from Ross’s renewal reward theorem (Ross,
2013), which establishes that the long-run average cost per unit time (E(A)) equals the
ratio of expected cycle cost to expected cycle duration (E(C)/E(T )), provided both
expectations remain finite.

The total cycle duration comprises four distinct temporal components:
X1: In-control duration (including false alarm investigations),
X2: Out-of-control period until proper signal generation,
X3: Diagnostic interval post-signal until assignable cause identification,
X4: Corrective action and repair time,
then,

E (T )= E (X1)+E (X2+X3+X4) . (1)

Theorem 3.1. Let Ii denote the occurrence of the i-th assignable cause, such that
no other assignable causes occur between its occurrence and the issuance of a correct
alarm. Then:

P (I) = P

(
m⋃
i=1

Ii

)
=

m∑
i=1

P (Ii),

where,

P (Ii) =
(1− βi)[1− (1 + (h1/s)

c)−ki ](1 + (h1/s)
c)−k−i)

(1− βi(1 + (h1/s)c)−k−i)(1− (1 + (h1/s)c)−k0)
.

Proof. The proof is given in the Appendix
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3.2.1 The expected time of a quality cycle

To address the inherent complexity in computing the expected cycle time (E(T )) when
considering multiple assignable causes, we employ the methodological framework de-
veloped by Shojaei et al. (2022), which decomposes E(T ) into two distinct components
under the occurrence of Event I: 1) the in-control duration, representing the expected
time the process remains in control while incorporating time allocated for false alarm
investigations (corresponding to the first term in (1)), and 2) the out -of-control dura-
tion (constituting the second term in (1)), with this decomposition ultimately yielding
the simplified formulation presented in (2):

E (T ) = E

(∑4

l=1
Xl

)
≃ E (X1) + E

(∑4

l=2
Xl|I

)
P (I) , (2)

(Shojaei et al., 2022). Considering that the out-of-control average time is finite, estab-
lishing the above equation requires that P (I) be sufficiently close to 1. Clearly, P (I) ≈
1 implies that the probability of more than one assignable cause occurring within each
quality cycle is almost zero. The average time of the on-control state is determined by
sum of the average time until the first assignable cause occurs and the average time
spent investigating false alarms. According to the Lorenzen and Vance model, produc-
tion may either be stopped or continue during the search for an assignable cause (γ1),
furthermore let NFa be the number of false alarms per quality cycle, then the average
time of the on-control state will be E(X1) = E(T )+(1−γ1)Z0E(NFa). Let NIn be the
number of sampling in the controlled state. Therefore;(NFa|NIn = v) ∼ Bin(v, α)and
E(NFa) = E(E(NFa|NIn)) = E(αNIn). Considering that NIn is a non-negative ran-
dom variable so, E(NIn) =

∑∞
v=1 P (NIn ≥ v), where NIn ≥ v ∼= T > wv then;

E(NIn) =
∑∞

v=1 P (T > wv) =
∑∞

v=1([1 + (h1/s)
c]−k0)v = [1+(h1/s)

c]−k0

1−[1+(h1/s)c]−k0
, so

E(NFa) = α
(1 + (h1/s)

c)−k0

1− (1 + (h1/s)c)−k0
.

Therefore,

E(X1) = sk0
Γ(k0 − (1/c))Γ(1 + (1/c))

Γ(k0 + 1)
+ (1− γ1)Z0α

(1 + (h1/s)
c)−k0

1− (1 + (h1/s)c)−k0
. (3)

The average time of the out-of-control state E(X2|I) can be calculated as E(X2|I) =
E(X − X1|I) = E(X|I) − E(X1|I). Considering that the process is stopped after
each alarm by the control chart, then the random variables X and X1 include the
time of checking false alarms. So X ′ = X − Z0NFa and X ′

1 = X1 − Z0NFa, therefore
E(X2|I) = E(X ′|I)− E(X1

′ |I).
The analytical derivation of the out-of-control period is systematically addressed

through Lemmas 3.2 to 3.4.

Lemma 3.2. The average time from the beginning of the quality cycle to the issuance
of a correct alarm (X) under the condition that only one assignable cause (I) occurs:

E(X ′|I) =

∞∑
v=1

m∑
i=1

wv
1

P (I)
(1− βi)

[
1− (1 + (

h1

s
)c)−ki

]
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×
((1 + (h1

s )
c
)
−k0

)
v

− (βi(1 + (h1

s )
c
)
−k−i

)
v

(1 + (h1

s )
c
)
−ki − βi

Proof. The proof is given in the Appendix.

Lemma 3.3. Let fT (t|I) be the density function of the on-control time of the process
under the condition that only one assignable cause occurs until the issuance of a correct
alarm, then the on-control average time under that condition (I) is equal to:

E(X ′
1|I)=

∫ ∞

0

tfT (t|I)dt =
∞∑
v=1

∫ wv

wv−1

tfT (t|I)dt

=
1

P (I)

m∑
i=1

∞∑
v=1

(1− βi)
(1 + (h1

s )
c
)
−vk−i

1− βi(1 + (h1

s )
c
)
−k−i

∫ wv

wv−1

−k0(1 + (
t

s
)
c

)
−k0−1 ctc

sc
dt

Proof. The proof is given in the Appendix.

Lemma 3.4. Let E(X3 + X4|I)denotes the average time required to detect, correct,
and repair the i-th assignable cause, under the condition that only one assignable cause
occurs until the correct alarm is issued. Then,

E(X3 +X4|I) =
m∑
i=1

(Z1 + Z2i)
P (Ii)

P (I)
.

Proof. The proof is given in the Appendix.

Theorem 3.5. According to 2 and considering this feature of the Lorenzen and Vance
model that production can be stopped while searching for an assignable cause or not
(γ1) and this feature that production is stopped or not during the repair process (γ2),
with regard to relationships;

ARL00 =
1

α
⇒ α = ARL0

−1, (4)

ARL10 =
1

1− βi
⇒ (1− βi) = ARL1i

−1 ⇒ βi = 1−ARL1i
−1. (5)

In the design of Shewhart control charts, the expected time of a quality cycle is
given by

E(T ) = sk0
Γ(k0 − (1/c))Γ(1 + (1/c))

Γ(k0 + 1)
+ (1− γ1)Z0(ARL0

−1)
(1 + (h1/s)

c
)
−k0

1− (1 + (h1/s)
c
)
−k0

+

∞∑
v=1

m∑
i=1

wv
1

P (I)
(ARL1

−1
i )[1− (1 + (

h1

s
)c)−ki ]

×
((1 + (h1

s )
c
)
−k0

)
v

− ((1−ARL1i
−1)(1 + (h1

s )
c
)
−k−i

)
v

(1 + (h1

s )
c
)
−ki − (1−ARL1i

−1)
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− 1

P (I)

m∑
i=1

∞∑
v=1

(ARL1i
−1)

(1 + (h1

s )
c
)
−vk−i

1− (1−ARL1i
−1)(1 + (h1

s )
c
)
−k−i

×
∫ wv

wv−1

−k0(1 + (
t

s
)
c

)
−k0−1 ctc

sc
dt+

m∑
i=1

[(Z1 + Z2i)
P (Ii)

P (I)
]

(According to Lemmas 3.2 to 3.4. and equation 3, the proof is clear.)

3.2.2 The expected cost of a quality cycle

The expected cost of a quality cycle consists of the following components; 1. The
average cost during on-control time (D0E(T )), 2. The average cost associated with
searching for false alarms (Y E(NFa)), 3. The average cost during out-of-control time
(D1iE(X2|I)), 4. The average sampling cost ((a+ bn)E(NTST |I)), where NTST repre-
sents the number of samples taken until the correct alarm is issued, and 5. The average
cost for location, diagnosis, and repair of the assignable cause (

∑m
i=1(P (Ii)/P (I))D2i).

Therefore, the total average cost in under control time and the average cost of
searching for false alarms are equal to:

D0E(T ) + Y E(NFa) = D0sk0
Γ(k0 − (1/c))Γ(1 + (1/c))

Γ(k0 + 1)

+Y (1− γ1)α
(1 + (h1/s)

c)−k0

1− (1 + (h1/s)c)−k0
, (6)

The average out-of-control cost is equal to

D1iE(X2|I) =

∞∑
v=1

m∑
i=1

D1iwv
1

P (I)
(1− βi)[1− (1 + (

h1

s
)c)−ki ]

×
((1 + (h1

s )
c
)
−k0

)
v

− (βi(1 + (h1

s )
c
)
−k−i

)
v

(1 + (h1

s )
c
)
−ki − βi

− 1

P (I)

m∑
i=1

∞∑
v=1

D1i(1− βi)
(1 + (h1

s )
c
)
−vk−i

1− βi(1 + (h1

s )
c
)
−k−i

×
∫ wv

wv−1

−ki(1 + (
t

s
)
c

)
−ki−1 ctc

sc
dt+

m∑
i=1

(P (Ii)/P (I))D2i.

Lemma 3.6. Let NTST represent the total number of samples. Then,

E(NTST |I) =
m∑
i=1

P (Ii)

P (I)

[
(1 + (h1

s )c)−k0

1− (1 + (h1

s )c)−k0
+

1

1− βi(1 + (h1

s )c)−k−i

]
.

Proof. The proof is given in the Appendix.

According to Lemma 3.6, the average sampling cost is equal

(a+bn)E(NTST |I) = (a+bn)

m∑
i=1

P (Ii)

P (I)

[
(1 + (h1

s )c)−k0

1− (1 + (h1

s )c)−k0
+

1

1− βi(1 + (h1

s )c)−k−i

]
.

(7)



11 F. Shiravani, M. Bameni Moghadam, R. Pourtaheri

Therefore, according to the calculation steps of E(T), the components of E(C) are as
follows:

According to 6 to 7 and relations 4 and 5, the average cost of a quality cycle is
given by

E(C)=D0sk0
Γ(k0 − (1/c))Γ(1 + (1/c))

Γ(k0 + 1)
+

Y

ARL0

(1 + (h1/s)
c
)
−k0

1− (1 + (h1/s)
c
)
−k0

+

∞∑
v=1

m∑
i=1

D1iwv
1

P (I)ARL1i

[1− (1 + (
h1

s
)c)−ki ]

×
((1 + (h1

s )
c
)
−k0

)
v

− ((1−ARL1i
−1)(1 + (h1

s )
c
)
−k−i

)
v

(1 + (h1

s )
c
)
−ki − (1−ARL1i

−1)

− 1

P (I)

m∑
i=1

∞∑
k=1

D1i
1

ARL1i

(1 + (h1

s )
c
)
−vk−i

1− (1−ARL1i
−1)(1 + (h1

s )
c
)
−k−i

×
∫ wv

wv−1

−k0(1 + (
t

s
)
c

)
−k0−1 ctc

sc
dt

+

m∑
i=1

D1i[(γ1Z1 + γ2iZ2i)
P (Ii)

P (I)
] +

m∑
i=1

P(Ii)

P(I)
D2i

+(a+ bn)

m∑
i=1

P (Ii)

P (I)

( (1 + (h1

s )
c
)
−k0

1− (1 + (h1

s )
c
)
−k0

+
1

1− (1−ARL1i
−1)(1 + (h1

s )
c
)
−k−i


+(γ1Z1 + γ2iZ2i)

)
. (8)

Considering that the object is determined the optimal values of the X̄ control chart’s
design parameters, in order to minimize E(A) = E (C) /E (T ) in the condition that the
event I occurs with a probability close to one, the Realistic Economic Design (RED)
can be formulated as follows:

RED Model:
{
minimize E (A) ,

subject to P (I) ≥ p0,

where p0 represents the acceptable lower limit for P (I) in the selection of design pa-
rameters. To evaluate the performance of the control chart, ARL0 and ARL1overall are
used, such that ARL0 = 1/α and ARL1over all =

∑m
i=1

P (Ii)
P (I)

1
1−βi

. In the next section,
the economic design process of X̄ control chart is discussed.

3.3 Numerical analysis results
In this section, the optimal design parameters n, h, and L are determined by minimiz-
ing the realistic cost function. All numerical analyses were performed using R software,
version 4.3.1, along with the latest version of the DEoptim package. The input param-
eters of the model are categorized into cost parameters (Y, D0, D1i, D2i, a, b, γ1, γ2),
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time parameters (Z0, Z1, Z2i), transfer parameters (δi), and Burr-XII distribution pa-
rameters (s, c, ki). To ensure a fair comparison between our model and the model of
Saadatmelli et al. (2018), the input parameters are set according to their specifica-
tions. Additionally, γ1 = γ2 = 0 is applied for consistency. The input parameters of
the model are listed in the Table 1. For all assignable causes, the following values are
assumed to be the same: Y = 2000$, D0 = 210$ , a = 20$, b = 20$, Z0 = 1.25h and
Z1 = 1.25. The parameters ki, Z2i, D1i, and D2i are also a function of δi. For details
on how to determine these parameters, refer to section 5 of Saadatmelli et al. (2018).
In the realistic economic design, it is assumed that p0 takes values of 0.85, 0.90, 0.95,
and 0.99. (We increase the value of p0 to reduce the probability of multiple assignable
causes occurring before issuing a correct alarm).

Table 1: The Set of input parameter values (See Saadatmelli et al. (2018) Table 3)
ki Z2i D∗

2i D1i δi i
HNi Uni NEi HNi Uni NEi HNi Uni NEi
10.086 6.932 11.429 2.909 2 3.293 1454 1000 1647 575 1.0 1
8.627 6.932 8.901 2.488 2 2.565 1244 1000 1283 1684 1.5 2
7.623 6.932 7.661 2.198 2 1.103 1099 1000 1103 2901 1.8 3
6.932 6.932 6.932 2.000 2 2.000 1000 1000 1000 4000 2.0 4
6.241 6.932 6.272 1.802 2 1.804 901 1000 902 5341 2.2 5
5.233 6.932 5.399 1.512 2 1.554 756 1000 777 7776 2.5 6
4.289 6.932 4.735 1.074 2 1.217 537 1000 609 12602 3.0 7
*Prior Distribution: NE; Negative-exponential; Un; Uniform, HN; Half-normal.

Tables 2 to 4 presents the optimal values of the realistic economic design parameters
for X̄ control charts in the presence of 7 independent assignable causes under the Burr-
XII shock model, for varying s and c. In Table 2 s fixed and c changed, in Table 3 c
fixed and s changed, and in Table 4 both c and s changed.

The analysis are conducted under both the RED model and the economic model
proposed by Saadatmelli et al. (2018). Since the probability of event I is not considered
in the calculation of E(A) in the Saadatmelli et al. (2018) model, and to ensure a fair
comparison between the two models, it is assumed that there is no restriction on the
probability of event I in the RED model (i.e., the p0 = 0).
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Figure 3: Impact of detection probability threshold (p0) on expected cost (E(A)) across different
prior distributions.

In Figure 3 the horizontal axis displays values of scale (s) and shape (c) parameters,
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Table 2: Optimum design parameters for multiplicity-cause RED and Saadatmelli et
al. (2018) models (economic design of X̄ when s = 90 fixed and c changed).

c PD* p0 n H L P (I) arl0 arl1 EA
3 HN S.e** 4 11.35 2.49 0.922 78.28 1.29 257.58

0 3 9.14 2.55 0.94 94.24 2 384.2
0.85 3 9.14 2.55 0.94 94.24 2 384.2
0.9 3 9.14 2.55 0.94 94.24 2 384.2
0.95 2 7.5 2.44 0.952 69.11 2.63 401.78
0.99 5 6.2 2.27 0.99 43.28 1.25 611.09

NE S.e 4 11.18 2.47 0.922 74.01 1.3 250.43
0 3 9.04 2.55 0.938 93.14 2.04 387.96

0.85 3 9.04 2.55 0.938 93.14 2.04 387.96
0.9 3 9.04 2.55 0.938 93.14 2.04 387.96
0.95 3 8.72 2.43 0.95 67.11 1.87 390.43
0.99 5 6.11 2.23 0.99 39.72 1.25 623.26

UN S.e 3 10.63 2.56 0.922 95.53 1.37 323.07
0 3 8.67 2.73 0.946 162.31 2 396.8

0.85 3 8.67 2.73 0.946 162.31 2 396.8
0.9 3 8.67 2.73 0.946 162.31 2 396.8
0.95 3 8.21 2.81 0.95 202.28 2.13 399.52
0.99 4 6.04 2.29 0.99 46.57 1.29 590.29

2.8 HN S.e 3 9.01 2.53 0.915 87.67 1.49 261.18
0 3 7.85 2.55 0.938 94.57 2 393.27

0.85 3 7.85 2.55 0.938 94.57 2 393.27
0.9 3 7.85 2.55 0.938 94.57 2 393.27
0.95 3 7.03 2.57 0.952 100.09 2.05 399.63
0.99 5 5.15 2.24 0.99 39.88 1.24 641.04

NE S.e 3 7.68 2.72 0.926 153.18 1.63 267.29
0 3 7.76 2.54 0.936 92.23 2.04 397.39

0.85 3 7.76 2.54 0.936 92.23 2.04 397.39
0.9 3 7.76 2.54 0.936 92.23 2.04 397.39
0.95 3 7.42 2.42 0.95 64.67 1.85 400.69
0.99 5 5.05 2.23 0.99 39.32 1.25 654.47

UN S.e 3 9.16 2.56 0.922 95.53 1.37 332.26
0 3 7.42 2.74 0.945 163.12 2 406.52

0.85 3 7.42 2.74 0.945 163.12 2 406.52
0.9 3 7.42 2.74 0.945 163.12 2 406.52
0.95 3 6.71 2.88 0.95 257.88 2.3 413.96
0.99 4 5.01 2.27 0.99 43.33 1.28 618.68

3.8 HN S.e 5 19.97 2.34 0.905 51.85 1.17 255.62
0 3 14.5 2.56 0.943 96.32 2.01 357.03

0.85 3 14.5 2.56 0.943 96.32 2.01 357.03
0.9 3 14.5 2.56 0.943 96.32 2.01 357.03
0.95 3 13.88 2.56 0.951 96.85 2.03 358.54
0.99 3 9.06 2.52 0.99 86.81 2.01 598.83

NE S.e 5 18.97 2.44 0.911 68.08 1.2 247.15
0 3 14.37 2.56 0.941 95.83 2.07 359.84

0.85 3 14.37 2.56 0.941 95.83 2.07 359.84
0.9 3 14.37 2.56 0.941 95.83 2.07 359.84
0.95 3 14.05 2.48 0.95 77.84 1.95 360.85
0.99 5 10.73 2.26 0.99 42.84 1.26 539.56

UN S.e 3 16.58 2.57 0.923 98.33 1.37 300.72
0 3 13.94 2.73 0.95 160.53 2 367.71

0.85 3 13.94 2.73 0.95 160.53 2 367.71
0.9 3 13.94 2.73 0.95 160.53 2 367.71
0.95 3 13.94 2.73 0.95 160.53 2 367.71
0.99 2 7.72 2.51 0.992 84.3 2.47 751.17

*Prior Distribution: NE: Negative-exponential; Un: Uniform, HN: Half-normal.
** S.e: Saadatmelli et al. (2018)
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Continuation of Table 2.
c PD n h L P (I) arl0 arl1 EA
3.5 HN 4 15.36 2.5 0.92 80.52 1.3 253.45

3 12.48 2.55 0.942 95.42 2.01 365.84
3 12.48 2.55 0.942 95.42 2.01 365.84
3 12.48 2.55 0.942 95.42 2.01 365.84
3 11.94 2.54 0.95 92.21 2 367.33
2 6.56 2.47 0.99 74.21 2.78 719.62

NE 4 15.34 2.48 0.917 76.11 1.31 247.1
3 12.36 2.55 0.94 94.96 2.06 368.94
3 12.36 2.55 0.94 94.96 2.06 368.94
3 12.36 2.55 0.94 94.96 2.06 368.94
3 12.02 2.47 0.95 75.78 1.94 370.27
5 8.95 2.26 0.99 42.26 1.26 565.07

UN 3 14.37 2.57 0.923 98.33 1.37 307.94
3 11.95 2.73 0.949 161.03 2 377.13
3 11.95 2.73 0.949 161.03 2 377.13
3 11.95 2.73 0.949 161.03 2 377.13
3 11.52 2.75 0.953 169.89 2.03 378.32
4 8.86 2.31 0.99 48.83 1.3 537.76

3.2 HN 4 13.1 2.41 0.923 62.68 1.27 255.89
3 10.47 2.55 0.941 94.34 2 376.21
3 10.47 2.55 0.941 94.34 2 376.21
3 10.47 2.55 0.941 94.34 2 376.21
3 9.92 2.55 0.95 92.86 2 378.15
5 7.34 2.26 0.99 42.59 1.25 585.78

NE 3 14.3 2 0.901 21.97 1.27 258.03
3 10.36 2.55 0.939 93.93 2.05 379.67
3 10.36 2.55 0.939 93.93 2.05 379.67
3 10.36 2.55 0.939 93.93 2.05 379.67
3 10.03 2.45 0.95 70.9 1.9 381.56
5 7.2 2.26 0.99 42.47 1.26 597.18

UN 3 12.13 2.57 0.922 98.33 1.37 316.8
3 9.97 2.73 0.947 161.73 2 388.23
3 9.97 2.73 0.947 161.73 2 388.23
3 9.97 2.73 0.947 161.73 2 388.23
3 9.4 2.73 0.956 158.54 2 390.81
2 5.7 2.37 0.99 57.29 2.15 656.49

2.3 HN 4 5.68 2.52 0.93 85.21 1.3 264.01
3 4.83 2.56 0.932 95.84 2 422.22
3 4.83 2.56 0.932 95.84 2 422.22
3 4.83 2.56 0.932 95.84 2 422.22
3 2.73 2.53 0.98 89.71 2.01 587.35
5 2.77 2.22 0.99 38.37 1.23 749.11

NE 4 6.67 2.28 0.911 44.23 1.24 255.61
3 4.79 2.53 0.93 89.35 2.01 427.6
3 4.79 2.53 0.93 89.35 2.01 427.6
3 4.79 2.53 0.93 89.35 2.01 427.6
4 4.82 2.45 0.95 71.21 1.54 435.31
5 2.72 2.2 0.99 35.99 1.24 765.87

UN 3 5.68 2.52 0.921 85.21 1.35 264.01
3 4.51 2.74 0.939 166.14 2 437.59
3 4.51 2.74 0.939 166.14 2 437.59
3 4.51 2.74 0.939 166.14 2 437.59
3 4.51 2.54 0.95 91.91 1.72 437.28
4 2.71 2.22 0.99 38.38 1.26 718.82

*Prior Distribution: NE: Negative-exponential; Un: Uniform, HN: Half-normal.
** S.e: Saadatmelli et al. (2018)

while the vertical axis represents corresponding E(A) values. Trend lines (color-coded
of green, yellow, blue, purple and black) indicate p0 levels (0, 0.85, 0.9, 0.95, 0.99),
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Table 3: Optimum design parameters for multiplicity-cause RED and Saadatmelli et
al. (2018) (economic design of X̄ when c = 3 fixed and s changed).

s PD p0 n h L P (I) arl0 arl1 EA
55 HN S.e 3 7.52 2.41 0.885 62.68 1.43 288.14

0 3 6.13 2.54 0.924 91.08 1.96 416.74
0.85 3 6.13 2.54 0.924 91.08 1.96 416.74
0.9 3 6.13 2.54 0.924 91.08 1.96 416.74
0.95 4 5.98 2.44 0.95 68.86 1.49 427.75
0.99 5 3.84 2.18 0.99 34.59 1.21 782.58

NE S.e 4 7.79 2.5 0.887 80.52 1.31 280.1
0 4 6.34 2.63 0.927 117.97 1.7 425.92

0.85 4 6.34 2.63 0.927 117.97 1.7 425.92
0.9 4 6.34 2.63 0.927 117.97 1.7 425.92
0.95 4 5.87 2.43 0.95 66.55 1.52 434.56
0.99 5 3.76 2.2 0.99 36.37 1.24 798.7

UN S.e 3 7.09 2.54 0.904 90.21 1.36 348.45
0 3 5.89 2.61 0.937 112.33 1.79 431.02

0.85 3 5.89 2.61 0.937 112.33 1.79 431.02
0.9 3 5.89 2.61 0.937 112.33 1.79 431.02
0.95 3 5.67 2.47 0.95 74.83 1.64 434.79
0.99 4 3.76 2.2 0.99 36.25 1.25 750.77

65 HN S.e 4 8.11 2.54 0.922 90.21 1.31 277.38
0 3 7.03 2.79 0.909 192.7 2.44 409.82

0.85 3 7.03 2.79 0.909 192.7 2.44 409.82
0.9 3 7.03 2.79 0.909 192.7 2.44 409.82
0.95 3 5.31 2.76 0.958 174.98 2.46 452.5
0.99 5 4.52 2.21 0.99 37.35 1.23 719.28

NE S.e 3 8.64 2.28 0.897 44.23 1.38 273.05
0 4 7.31 2.54 0.936 91.35 1.61 414.33

0.85 4 7.31 2.54 0.936 91.35 1.61 414.33
0.9 4 7.31 2.54 0.936 91.35 1.61 414.33
0.95 4 6.85 2.47 0.95 75.22 1.55 418.76
0.99 5 4.41 2.23 0.99 39.78 1.25 734.51

UN S.e 3 8.14 2.55 0.91 92.83 1.37 339.94
0 3 6.76 2.61 0.941 113.27 1.8 419.14

0.85 3 6.76 2.61 0.941 113.27 1.8 419.14
0.9 3 6.76 2.61 0.941 113.27 1.8 419.14
0.95 3 6.56 2.53 0.95 90.19 1.71 420.61
0.99 4 4.39 2.26 0.99 42.92 1.28 691.57

70 HN S.e 3 8.88 2.44 0.902 68.08 1.44 272.32
0 3 7.61 2.59 0.925 106.11 2.05 401.33

0.85 3 7.61 2.59 0.925 106.11 2.05 401.33
0.9 3 7.61 2.59 0.925 106.11 2.05 401.33
0.95 3 5.94 2.79 0.952 192.07 2.52 429.74
0.99 3 3.73 2.56 0.99 98.05 2.08 830.49

NE S.e 4 9.91 2.41 0.924 62.68 1.11 265.97
0 3 6.99 2.6 0.936 107.89 2.13 406.79

0.85 3 6.99 2.6 0.936 107.89 2.13 406.79
0.9 3 6.99 2.6 0.936 107.89 2.13 406.79
0.95 4 7.34 2.49 0.95 79.05 1.57 412.18
0.99 5 4.78 2.21 0.99 37.22 1.24 707.39

UN S.e 3 8.65 2.55 0.913 92.83 1.37 336.21
0 3 7.18 2.61 0.943 113.68 1.81 413.86

0.85 3 7.18 2.61 0.943 113.68 1.81 413.86
0.9 3 7.18 2.61 0.943 113.68 1.81 413.86
0.95 3 7.04 2.55 0.95 93.19 1.73 414.68
0.99 4 4.76 2.23 0.99 39.82 1.26 666.79
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Continuation of Table 3.
s PD N h L P (I) arl0 arl1 EA
75 HN 3 9.44 2.29 0.915 45.41 1.37 273.53

3 7.88 2.56 0.934 95.68 2 396.19
3 7.88 2.56 0.934 95.68 2 396.19
3 7.88 2.56 0.934 95.68 2 396.19
2 6.46 2.4 0.95 61.88 2.52 416.31
5 5.21 2.22 0.99 38.32 1.23 669.38

NE 3 9.87 2.14 0.909 30.9 1.32 262.48
3 7.79 2.54 0.932 91.69 2.03 400.48
3 7.79 2.54 0.932 91.69 2.03 400.48
3 7.79 2.54 0.932 91.69 2.03 400.48
4 7.83 2.51 0.95 82.93 1.59 406.26
5 5.08 2.25 0.99 41.7 1.26 683.32

UN 3 9.15 2.55 0.916 92.83 1.37 332.78
3 7.59 2.62 0.945 114.13 1.81 408.96
3 7.59 2.62 0.945 114.13 1.81 408.96
3 7.59 2.62 0.945 114.13 1.81 408.96
3 7.49 2.57 0.95 99.21 1.76 409.36
4 5.08 2.25 0.99 41.37 1.27 644.77

80 HN 5 11.18 2.4 0.917 60.99 1.18 265.47
3 8.3 2.55 0.936 94.97 2 391.93
3 8.3 2.55 0.936 94.97 2 391.93
3 8.3 2.55 0.936 94.97 2 391.93
3 7.46 2.57 0.951 100.94 2.05 398.66
5 5.53 2.25 0.99 41.27 1.24 647.9

NE 4 10.24 2.41 0.919 62.68 1.28 257.4
3 8.22 2.54 0.934 92.57 2.04 396.02
3 8.22 2.54 0.934 92.57 2.04 396.02
3 8.22 2.54 0.934 92.57 2.04 396.02
3 7.75 2.43 0.95 67.25 1.87 400.36
5 5.43 2.24 0.99 40.26 1.25 661.34

UN 3 9.65 2.56 0.918 95.53 1.37 329.6
3 8 2.62 0.947 114.75 1.82 404.38
3 8 2.62 0.947 114.75 1.82 404.38
3 8 2.62 0.947 114.75 1.82 404.38
3 7.93 2.59 0.95 105.51 1.78 404.53
4 5.42 2.25 0.99 41.23 1.27 624.83

95 HN 4 11.47 2.51 0.949 60.99 1.18 255.17
3 9.56 2.55 0.941 93.8 1.99 380.7
3 9.56 2.55 0.941 93.8 1.99 380.7
3 9.56 2.55 0.941 93.8 1.99 380.7
3 9.26 2.48 0.95 77.44 1.9 381.95
5 6.54 2.27 0.99 43.45 1.25 594.88

NE 3 11.93 2.33 0.908 50.48 1.41 248.51
3 9.45 2.55 0.939 93.39 2.05 384.31
3 9.45 2.55 0.939 93.39 2.05 384.31
3 9.45 2.55 0.939 93.39 2.05 384.31
3 9.14 2.45 0.95 71.27 1.9 386.14
5 6.45 2.24 0.99 40.5 1.25 606.69

UN 3 11.12 2.57 0.924 98.33 1.37 321.34
3 9.21 2.62 0.951 115.55 1.83 392.34
3 9.21 2.62 0.951 115.55 1.83 392.34
3 9.21 2.62 0.951 115.55 1.83 392.34
3 9.21 2.62 0.951 115.55 1.83 392.34
4 6.36 2.31 0.99 48.78 1.3 575.31
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Table 4: Optimum design parameters for multiplicity-cause RED and Saadatmelli et
al. (2018) models (economic design of X̄ when c and s changed).

c s PD p0 n h L P (I) arl0 arl1 EA
6 100 HN S.e 3 28.35 2.67 0.937 131.83 1.57 283.49

0 3 27.8 2.57 0.948 99.7 2.04 319.52
0.9 3 27.8 2.57 0.948 99.7 2.04 319.52
0.9 3 27.8 2.57 0.948 99.7 2.04 319.52
1 3 27.73 2.55 0.95 93.54 2 319.56
1 5 23.17 2.3 0.99 47.46 1.26 431.55

NE S.e 4 30.55 2.54 0.935 90.21 1.33 274.57
0 3 27.61 2.57 0.946 99.39 2.09 321.28
0.9 3 27.61 2.57 0.946 99.39 2.09 321.28
0.9 3 27.61 2.57 0.946 99.39 2.09 321.28
1 3 27.42 2.54 0.95 91.48 2.05 321.41
1 5 22.85 2.33 0.99 50.98 1.29 437.41

UN S.e 4 29.43 2.67 0.951 131.83 1.25 283.49
0 3 27.23 2.64 0.957 123 1.87 327.31
0.9 3 27.23 2.64 0.957 123 1.87 327.31
0.9 3 27.23 2.64 0.957 123 1.87 327.31
1 3 27.23 2.64 0.957 123 1.87 327.31
1 4 22.87 2.32 0.99 49.25 1.3 421.59

7 50 HN S.e 4 20.3 2.59 0.923 104.19 1.33 300.8
0 3 19.4 2.57 0.925 98.71 2 334.64
0.9 3 19.4 2.57 0.925 98.71 2 334.64
0.9 3 19.4 2.57 0.925 98.71 2 334.64
1 4 19.23 2.48 0.95 77.52 1.53 340.47
1 5 15.84 2.3 0.99 47.78 1.26 547.82

NE S.e 4 20.34 2.58 0.918 101.21 1.34 300.85
0 3 19.3 2.56 0.923 95.9 2.04 337.31
0.9 3 19.3 2.56 0.923 95.9 2.04 337.31
0.9 3 19.3 2.56 0.923 95.9 2.04 337.31
1 4 19.09 2.46 0.95 72.97 1.55 343.84
1 5 15.77 2.25 0.99 41.8 1.26 555.8

UN S.e 4 20.3 2.65 0.93 124.23 1.25 306.3
0 3 19.08 2.64 0.938 121.1 1.83 343.55
0.9 3 19.08 2.64 0.938 121.1 1.83 343.55
0.9 3 19.08 2.64 0.938 121.1 1.83 343.55
1 3 18.73 2.53 0.95 88.47 1.71 345.33
1 5 15.99 2.34 0.99 52.72 1.2 530.59

4 100 HN S.e 4 18.92 2.63 0.942 117.11 1.34 297.74
0 3 17.35 2.56 0.947 97.11 2.02 345.96
0.9 3 17.35 2.56 0.947 97.11 2.02 345.96
0.9 3 17.35 2.56 0.947 97.11 2.02 345.96
1 3 17.23 2.53 0.95 88.73 1.97 346.09
1 5 13.42 2.28 0.99 45.12 1.25 491.99

NE S.e 4 19.24 2.56 0.938 95.53 1.33 296.17
0 3 17.19 2.56 0.945 96.77 2.08 348.4
0.9 3 17.19 2.56 0.945 96.77 2.08 348.4
0.9 3 17.19 2.56 0.945 96.77 2.08 348.4
1 3 17.03 2.5 0.95 82.64 1.99 348.72
1 5 13.25 2.27 0.99 43.22 1.27 499.96

UN S.e 4 18.52 2.66 0.952 127.97 1.25 308.35
0 3 16.87 2.63 0.956 119.49 1.85 355.43
0.9 3 16.87 2.63 0.956 119.49 1.85 355.43
0.9 3 16.87 2.63 0.956 119.49 1.85 355.43
1 3 16.87 2.63 0.956 119.49 1.85 355.43
1 4 13.1 2.34 0.99 52.45 1.32 478.83
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Continuation of Table 4.
c s PD n h L P (I) arl0 arl1 EA
4.8 50HN 4 13.59 2.57 0.912 98.33 1.32 332.44

3 12.51 2.55 0.926 94.98 1.98 367.61
3 12.51 2.55 0.926 94.98 1.98 367.61
3 12.51 2.55 0.926 94.98 1.98 367.61
4 12.38 2.48 0.95 76.72 1.53 374.58
5 9.37 2.25 0.99 41.92 1.24 632.13

NE 4 13.88 2.55 0.908 92.83 1.33 332.84
3 12.41 2.55 0.924 94.68 2.04 371.18
3 12.41 2.55 0.924 94.68 2.04 371.18
3 12.41 2.55 0.924 94.68 2.04 371.18
4 12.21 2.47 0.95 76.1 1.56 379.08
5 9.27 2.24 0.99 40.27 1.25 643.56

UN 4 13.22 2.64 0.934 120.61 1.25 340.79
3 12.2 2.63 0.939 118.04 1.82 378.76
3 12.2 2.63 0.939 118.04 1.82 378.76
3 12.2 2.63 0.939 118.04 1.82 378.76
3 11.93 2.52 0.95 85.84 1.69 380.69
4 9.25 2.26 0.99 42.25 1.28 609.28

4.3 83.6 HN 4 19.73 2.54 0.932 113.72 1.54 302.74
3 16.9 2.56 0.942 97.16 2.02 348.39
3 16.9 2.56 0.942 97.16 2.02 348.39
3 16.9 2.56 0.942 97.16 2.02 348.39
3 16.66 2.48 0.95 77.21 1.89 349.17
5 13.05 2.29 0.99 46.26 1.26 514.9

NE 3 17.39 2.62 0.937 127.97 1.37 302.79
3 16.76 2.56 0.94 96.76 2.07 350.97
3 16.76 2.56 0.94 96.76 2.07 350.97
3 16.76 2.56 0.94 96.76 2.07 350.97
3 16.37 2.49 0.95 78.51 1.96 352.14
5 12.96 2.24 0.99 40.05 1.25 523.56

UN 4 17.98 2.66 0.948 127.97 1.25 312.16
3 16.47 2.63 0.952 119.56 1.84 358.1
3 16.47 2.63 0.952 119.56 1.84 358.1
3 16.47 2.63 0.952 119.56 1.84 358.1
3 16.47 2.63 0.952 119.56 1.84 358.1
4 12.78 2.34 0.99 52.21 1.31 500.23

7 75 HN 4 30.3 2.55 0.927 104.19 1.33 276.42
3 28.14 2.57 0.938 100.12 2.03 315.88
3 28.14 2.57 0.938 100.12 2.03 315.88
3 28.14 2.57 0.938 100.12 2.03 315.88
3 27.69 2.47 0.95 75.88 1.89 317.12
5 23.76 2.31 0.99 48.48 1.27 452.75

NE 4 30.19 2.59 0.923 104.19 1.35 276.42
3 27.98 2.57 0.937 99.74 2.08 317.73
3 27.98 2.57 0.937 99.74 2.08 317.73
3 27.98 2.57 0.937 99.74 2.08 317.73
3 27.47 2.46 0.95 72.87 1.91 319.36
5 23.62 2.28 0.99 44.36 1.27 458.73

UN 4 29.5 2.67 0.942 131.83 1.25 283.39
3 27.68 2.64 0.949 123.55 1.86 323.48
3 27.68 2.64 0.949 123.55 1.86 323.48
3 27.68 2.64 0.949 123.55 1.86 323.48
3 27.65 2.64 0.95 122 1.85 323.48
4 23.53 2.31 0.99 49.06 1.3 440.79
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Continuation of Table 4.
c s PD p0 n h L P (I) arl0 arl1 EA
7 100 HN S.e 4 39.73 2.55 0.935 92.83 1.31 264.51

0 3 36.64 2.57 0.947 101.17 2.05 303.77
0.9 3 36.64 2.57 0.947 101.17 2.05 303.77
0.9 3 36.64 2.57 0.947 101.17 2.05 303.77
1 3 36.54 2.54 0.95 91.71 1.99 303.85
1 5 31.66 2.32 0.99 49.39 1.27 401.19

NE S.e 3 37.52 2.65 0.93 124.23 1.58 264.62
0 3 36.44 2.57 0.945 100.82 2.1 305.21
0.9 3 36.44 2.57 0.945 100.82 2.1 305.21
0.9 3 36.44 2.57 0.945 100.82 2.1 305.21
1 3 36.21 2.53 0.95 90 2.04 305.38
1 5 31.4 2.31 0.99 48.5 1.29 405.86

UN S.e 4 38.48 2.67 0.949 131.83 1.25 270.89
0 3 36.04 2.65 0.956 124.94 1.87 310.52
0.9 3 36.04 2.65 0.956 124.94 1.87 310.52
0.9 3 36.04 2.65 0.956 124.94 1.87 310.52
1 3 36.04 2.65 0.956 124.94 1.87 310.52
1 4 31.32 2.34 0.99 51.89 1.31 392.55

4 66.8 HN S.e 3 12.61 2.62 0.922 87.67 1.31 329.5
0 3 12.25 2.56 0.935 95.86 2 369.21
0.9 3 12.25 2.56 0.935 95.86 2 369.21
0.9 3 12.25 2.56 0.935 95.86 2 369.21
1 3 11.79 2.44 0.95 68.61 1.83 372.53
1 5 8.98 2.27 0.99 44.13 1.25 596.75

NE S.e 4 14.04 2.53 0.917 87.67 1.32 327.34
0 3 11.93 2.58 0.936 102.17 2.1 372.85
0.9 3 11.93 2.58 0.936 102.17 2.1 372.85
0.9 3 11.93 2.58 0.936 102.17 2.1 372.85
1 4 12.23 2.52 0.95 87.33 1.61 377.19
1 5 8.87 2.25 0.99 41.79 1.26 607.46

UN S.e 4 13.05 2.65 0.943 124.23 1.25 337.89
0 3 11.93 2.63 0.946 117.48 1.83 380.36
0.9 3 11.93 2.63 0.946 117.48 1.83 380.36
0.9 3 11.93 2.63 0.946 117.48 1.83 380.36
1 3 11.83 2.58 0.95 104.03 1.78 380.59
1 4 8.82 2.29 0.99 46.33 1.29 576.58

5.9 60.4 HN S.e 4 20.68 2.49 0.999 78.28 1.29 299.85
0 3 19.17 2.56 0.932 98.13 2.01 338.88
0.9 3 19.17 2.56 0.932 98.13 2.01 338.88
0.9 3 19.17 2.56 0.932 98.13 2.01 338.88
1 3 18.62 2.42 0.95 65.06 1.81 342.34
1 5 15.39 2.3 0.99 47.31 1.26 529.79

NE S.e 4 20.5 2.56 0.918 124.23 1.37 299.7
0 3 19.04 2.56 0.931 97.6 2.06 341.44
0.9 3 19.04 2.56 0.931 97.6 2.06 341.44
0.9 3 19.04 2.56 0.931 97.6 2.06 341.44
1 3 18.48 2.39 0.95 60.93 1.82 345.59
1 5 15.28 2.27 0.99 43.11 1.26 537.73

UN S.e 4 20.19 2.65 0.938 124.23 1.25 306.73
0 3 18.79 2.64 0.944 121.02 1.84 348.06
0.9 3 18.79 2.64 0.944 121.02 1.84 348.06
0.9 3 18.79 2.64 0.944 121.02 1.84 348.06
1 3 18.6 2.59 0.95 104.31 1.78 348.48
1 4 15.27 2.27 0.99 43.88 1.28 513.12
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Continuation of Table 4.
c s PD n h L P (I) arl0 arl1 EA
6.5 87.5 HN 3 30.47 2.65 0.932 124.23 1.56 274.91

3 29.85 2.57 0.944 100.27 2.04 314.31
3 29.85 2.57 0.944 100.27 2.04 314.31
3 29.85 2.57 0.944 100.27 2.04 314.31
3 29.59 2.51 0.95 84.16 1.94 314.69
5 25.22 2.31 0.99 49.02 1.27 433.38

NE 3 30 2.66 0.933 127.97 1.59 275.01
3 29.67 2.57 0.942 99.89 2.09 316.03
3 29.67 2.57 0.942 99.89 2.09 316.03
3 29.67 2.57 0.942 99.89 2.09 316.03
3 29.34 2.5 0.95 80.62 1.97 316.63
5 24.98 2.31 0.99 48.94 1.29 438.93

UN 4 31.4 2.67 0.947 131.83 1.25 280.37
3 29.32 2.64 0.953 123.8 1.86 321.79
3 29.32 2.64 0.953 123.8 1.86 321.79
3 29.32 2.64 0.953 123.8 1.86 321.79
3 29.32 2.64 0.953 123.8 1.86 321.79
5 25.39 2.39 0.99 60.78 1.22 423.41

with the red line representing Saadatmelli et al. (2018) model. Panel (HN Distribution)
shows results for the half-normal distribution, (NE Distribution) for the negative ex-
ponential distribution, and (UN Distribution) for the uniform prior distribution. The
graph demonstrates a consistent positive relationship between p0 and E(A) across all
distributions.
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Figure 4: Effect of shape parameter (c) on expected cost (E(A)) across different prior distributions.

In Figure 4 The horizontal axis represents values of the shape parameter (c), while
the vertical axis displays corresponding expected cost (E(A)) values. Trend lines are
coded by line style: solid line for half-normal distribution, dashed line for negative
exponential distribution, and dotted line for uniform prior distribution. Panel ( p0 = 0)
presents results for p0 = 0, (p0 = 0.95) for p0 = 0.95, and (p0 = 0.99) for p0 = 0.99.
The graph demonstrates an inverse relationship between parameter c and E(A)), where
increasing values of c correspond to decreasing E(A) values across all distributions.

In Figure 5 The horizontal axis represents values of the shape parameter (c), while
the vertical axis displays corresponding expected cost (E(A)) values. Trend lines are
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Figure 5: Effect of scale parameter (c) on expected cost (E(A))) across different prior distributions.

coded by line style: solid line for half-normal distribution, dashed line for negative
exponential distribution, and dotted line for uniform prior distribution. Panel ( p0 = 0)
presents results for p0 = 0, (p0 = 0.95) for p0 = 0.95, and (p0 = 0.99) for p0 = 0.99.
The graph demonstrates an inverse relationship between parameter c and E(A), where
increasing values of s correspond to decreasing E(A) values across all distributions.

Based on the analysis of Tables 2 to 4 and Figure 3 derived from Table 4, it is evident
that the Realistic Economic Design (RED) Model consistently yields higher values of
E(A) (expected cost per unit time) compared to the model proposed by Saadatmelli
et al. (2018) across all three prior distributions (NE, Un, and HN) and varying values
of c and s. For example, under the HN distribution with c = 3 and s = 90, the E(A)
value in Saadatmelli et al. (2018) model is 253.45$, whereas the RED model which
incorporates the occurrence of event I, results in significantly higher E(A) value of
365.84$. This discrepancy underscores a critical limitation in Saadatmelli et al. (2018)
approach: while they assumed the occurrence of event I, they failed to include it in
their E(A) calculations, leading to a substantial underestimation of costs.

Furthermore, the analysis reveals that as p0 (the acceptable lower limit for P (I))
increases from 0.85 to 0.99, the E(A) value rises across all three prior distributions
(NE, HN, and Un). This trend highlights the importance of accurately accounting
for event I in cost calculations, as its exclusion can lead to significant deviations in
economic design outcomes. These findings emphasize the necessity of adopting the RED
Model for more accurate and reliable economic design of control charts, particularly in
scenarios involving multiple assignable causes and varying process conditions.
The analysis of Figures 4 and 5, derived from Tables 2 and 3, reveals important trends
in the behavior of E(A) (expected cost per unit time) and the optimal parameters of
control charts. As c increases while s remains fixed, and as s increases while c remains
fixed, the value of E(A) generally decreases across all three distributions (NE, HN, and
Un). Additionally, for constant values of c and s, as p0 increases from 0.85 to 0.99, the
optimal sample size (n) shows an upward trend, while the sampling interval (h) and
control limit multiplier (L) exhibit a downward trend.
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4 Conclusion
For many years, the research community has dedicated significant effort to designing
effective quality control charts. This paper introduces a Realistic Economic Design
(RED) Model for Shewhart control charts using the Burr-XII shock model to address
scenarios involving multiple independent assignable causes. By extending Lorenzen
and Vance’s framework, the proposed model provides a more accurate and practical
approach to economic design. A numerical example demonstrates the application of
the solution method, revealing that Saadatmelli et al. (2018) model significantly un-
derestimate the average cost per unit time of the quality cycle. The numerical results
demonstrated that when employing the Saadatmelli et al. (2018) economic model for
determining the design parameters of X̄ control charts, the estimated average cost
per unit time of the quality cycle would be underestimated by 33.84% to 173.58%
compared to the actual value. These findings highlight the importance of adopting
the RED Model for more reliable and accurate economic design in industrial applica-
tions. Future research should explore the application of the RED Model to parametric,
non-parametric, and adaptive control charts under the Burr-XII shock model. Fur-
thermore, the incorporation of control variables (covariates) into the regression control
chart method presents a promising direction for future studies, which could further
enhance the model’s flexibility and applicability in various industrial contexts.
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Appendix
4.1 Proof of Theorem 3.1
To outline the proof steps, the following terms are defined

k0 =

m∑
i=1

ki, k−i = k0 − ki,

T−i = (T1, T2, ..., Ti−1, Ti+1, ..., Tm),

{T−i > X} = {T1 > X,T2 > X, ..., Ti−1 > X,Ti+1 > X, ..., Tm > X},
Ii = {Ti ≤ X,T−i > X},

Ii ∩ Ij = {Ti ≤ X,T−i > X} ∩ {Tj ≤ X,T−j > X}
= {Ti ≤ X,T−j > X,Tj ≤ X,T−i > X} = ϕ, i < j.
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Therefore, for i < j , Ii ∩ Ij is null.
Clearly, according to (8), the occurrence of the i-th assignable cause, such that

no other assignable causes occur between its occurrence and the issuance of a correct
alarm (Ii) is equivalent to the event {Ti ≤ X,T−i > X}, therefore, using the law of
total probability

P (Ii)=P (Ti ≤ X,T−i > X) =

∞∑
v=1

P (Ti ≤ X,T−i > X,X = wv)

=

∞∑
v=1

v∑
l=1

P (wl−1 < Ti ≤ wl, T−i > wv, X =wv)

=

∞∑
v=1

v∑
l=1

P (X = wv|wl−1 < Ti ≤ wl, T−i > wv)P (wl−1 < Ti ≤ wl, T−i > wv).

Based on the definition of the variables (Ti ∼ Burr12(s, c, ki) and (1 + (wl/s)
c)−ki =

(1 + (h1/s)
c)−vki) and the underlying assumptions

P (X = wv|wl−1<Ti ≤ wl, T−i > wv) = βv−l
i (1− βi), (9)

P (wl−1 < Ti ≤ wl, T−i > wv)=P (wl−1 < Ti ≤ wl)P (T−i > wv)

= [(1 + (wl−1/s)
c)−ki − (1 + (wl/s)

c)−ki ]

×(1 + (wv/s)
c)−k−i

=[(1 + (h1/s)
c)−ki(l−1) − (1 + (h1/s)

c)−kil]

×(1 + (h1/s)
c)−k−iv. (10)

From (9) and (10) and Geometric series:

P (Ii)=

∞∑
v=1

v∑
l=1

βv−l
i (1− βi)[(1 + (h1/s)

c
)
−ki(l−1)−(1 + (h1/s)

c
)
−kil](1 + (h1/s)

c
)
−k−iv

=

∞∑
v=1

(1− βi)(1 + (h1/s)
c
)
−k−iv[(1 + (h1/s)

c
)
ki − 1]

×βv
i (1 + (h1/s)

c
)
−ki − (1 + (h1/s)

c
)
−ki(v+1)

βi − (1 + (h1/s)
c
)
−ki

=
(1− βi)[(1 + (h1/s)

c
)
ki − 1](1 + (h1/s)

c
)
−ki

βi − (1 + (h1/s)
c
)
−ki

×

[
βi(1 + (h1/s)

c
)
−k−i)

1− βi(1 + (h1/s)
c
)
−k−i)

− (1 + (h1/s)
c
)
−k0

1− (1 + (h1/s)
c
)
−k0

]

=
(1− βi)[1− (1 + (h1/s)

c
)
−ki ](1 + (h1/s)

c
)
−k−i)

(1− βi(1 + (h1/s)
c
)
−k−i)(1− (1 + (h1/s)

c
)
−k0)

.

Clearly I =
⋃m

i=1 Ii and since for each i ̸= j we have Ii ∩ Ij = ∅, it follows that:P (I) =∑m
i=1 P (Ii).
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4.2 Proof of Lemma 3.2

E(X ′|I) =

∞∑
v=1

wvP (X =wv|I) =
∞∑
v=1

wv

m∑
i=1

P (X = wv, Ii)

P (I)

=

∞∑
v=1

m∑
i=1

wv
1

P (I)
P (X = wv, Ti ≤ wv, T⃗−i > wv)︸ ︷︷ ︸

:=D

,

D = P (X = wv, Ti ≤ wv, T⃗−i > wv)

=

v∑
l=1

P (X = wv, wl−1 < Ti ≤ wl, T⃗−i > wv)

=

v∑
l=1

P (X = wv|wl−1 < Ti ≤ wl, T⃗−i > wv)P (wl−1 < Ti ≤ wl, T⃗−i > wv)

= (1− βi)[1− (1 + (
h1

s
)c)−ki ]

(1 + (h1

s )
c
)
−vk0 − (βi(1 + (h1

s )
c
)
−k−i

)
v

(1 + (h1

s )
c
)
−ki − βi

.

4.3 Proof of Lemma 3.3

E(X ′
1|I) =

∫ ∞

0

tfT (t|I)dt =
∞∑
v=1

∫ wv

wv−1

tfT (t|I)dt,

where

fT (t|I)dt ≈ P (t < T ≤ t+ dt, I)

P (I)

=

∞∑
l=1

P (t < T ≤ t+ dt, I,X = wl)

P (I)

=

∞∑
l=v

P (t < T ≤ t+ dt, I,X = wl)

P (I)
.

According to {Ii} ≡ {Ti < X, T⃗−i > X}

P (t < T ≤ t+ dt, I)

P (I)
=

∞∑
l=v

m∑
i=1

P (t < Ti ≤ t+ dt, Ti < wl, T⃗−i > wl, X = wl)

P (I)

=

m∑
i=1

1

P (I)

∞∑
l=v

P (X = wl|t < Ti ≤ t+ dt, T⃗−i > wl)

×P (t < Ti ≤ t+ dt, T⃗−i > wl)

=

m∑
i=1

1

P (I)
(1− βi)P (t < Ti ≤ t+ dt)

×
∞∑
l=v

βi
(l−v)

(
1 + (

h1

s
)
c)−lk−i

.
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While dt → 0

fT (t|I) =

m∑
i=1

1

P (I)
(1− βi)fTi

(t)
(1 + (h1

s )
c
)
−vk−i

1− βi(1 + (h1

s )
c
)
−k−i

=

m∑
i=1

1

P (I)
(1− βi)

[
ki(1 + (

t

s
)
c

)
−ki−1 ctc−1

sc

]
(1 + (h1

s )
c
)
−vk−i

1− βi(1 + (h1

s )
c
)
−k−i

.

So,

E(X
′

1|I) =
1

P (I)

m∑
i=1

∞∑
v=1

(1− βi)
(1 + (h1

s )
c
)
−vk−i

1− βi(1 + (h1

s )
c
)
−k−i

∫ wv

wv−1

ki(1 + (
t

s
)
c

)
−ki−1 ctc

sc
dt.

The integral
∫ wv

wv−1
ki(1+ ( ts )

c)−ki−1 ctc

sc dt is finite. Considering that in the distribution
of Burr-XII, that s, ki, c > 0 and 0 ≤ t < ∞∫ wv

wv−1

ki(1 + (
t

s
)
c

)
−ki−1 ctc

sc
dt ≤

∞∑
v=1

∫ wv

wv−1

ki(1 + (
t

s
)
c

)
−ki−1 ctc−1

sc
dt = E(t) ≤ ∞.

4.4 Proof of Lemma 3.4

E(X4|I) =

m∑
i=1

Z2iP (X4 = Z2i|I) =
m∑
i=1

Z2i
P (X4 = Z2i, I)

P (I)

=

m∑
i=1

∞∑
j=1

Z2i
P (Ti ≤ wj , T⃗−i > wj , X = wj)

P (I)
=

m∑
i=1

Z2i
P (Ii)

P (I)
.

4.5 Proof of Lemma 3.6
∞∑
v=1

v
P (NTST = v, I)

P (I)
=

∞∑
v=1

m∑
i=1

v

P (I)
P (X = wv, Ti < wv, T⃗−i > wv)

=

∞∑
v=1

m∑
i=1

v

P (I)

v∑
l=1

P (X = wv|wl−1 < Ti < wl, T⃗−i > wv)

×P (wl−1 < Ti < wl, T⃗−i > wv)

=

m∑
i=1

(1− βi)[1− (1 + (h1

s )
c
)
−ki

]

P (I)(βi − (1 + (h1

s )
c
)
−ki

)

×
∞∑
v=1

v[βv
i (1 + (

h1

s
)c)−vk−i − (1 + (

h1

s
)c)−vk0 ]

=

m∑
i=1

P (Ii)

P (I)

 (1 + (h1

s )
c
)
−k0

1− (1 + (h1

s )
c
)
−k0

+
1

1− βi(1 + (h1

s )
c
)
−k−i

 .


