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Abstract: This research explores a time series model with an autoregressive struc-
ture applied to clinical data. The motivation for selecting this topic is to develop a
probabilistic model for nonlinear time series with interventions in clinical datasets.
By distinguishing between the phases before and after the intervention and analyzing
the changes during the intervention, the analysis yields a precisely estimated effect
of the intervention. The iterative scheme expectation/conditional maximisationeither
algorithm is proposed for parameter estimation, and the observed information matrix
is derived analytically. A key focus of data analysis is evaluating the robustness of
the model’s estimates and understanding how minor local disturbances influence the
model. The local impact of the model is thoroughly analyzed across three disturbance
scenarios. To assess the performance of the proposed methods, simulated datasets
are presented, incorporating expectation/conditional maximisationeither estimates to
demonstrate the robustness of estimates in the presence of influential outliers. Finally,
the proposed method is successfully applied to model new COVID-19 time series cases
in the Czech Republic. Appropriate criteria confirm the applicability of the proposed
process, alongside the impact of diagnostic analysis.
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1 Introduction

In some real-world studies, an unexpected event causes significant changes in a process,
providing an opportunity to examine its nature and dynamics.

Intervention models provide an analyzing framework to specify how a certain strat-
egy affects the trend of a response variable and are typically examined within quasi-
experimental trials. The overarching approach in intervention studies focuses on two
categories of data, pre-intervention and post-intervention, leading to statistical infer-
ences in this context. To model time series data with interrupted behavior due to
an intervening factor, the interrupted time series (ITS) analysis method is employed.
The validity of ITS methods depends on assumptions regarding the timing of the in-
tervention and the process’s response to the intervention (intervention effect). The
ITS analysis has attracted broader acceptance among researchers in clinical trials and
epidemiology Pooyannik and Khodadadi (2025).

Statistical methods for evaluating the impact of an intervention are increasingly
used in clinical economic, and business studies include, difference-in-differences (DID)
models, interventional autoregressive (AR) integrated moving average (ARIMA) mod-
els, and segmented regression (SR) of the ITS. These three approaches can be used
to evaluate the impact of an intervention when data are collected longitudinally and
contain pre- and post-intervention factors. Despite some similarities, each model has
unique features that may be used to address different types of research questions. Each
model also includes strengths and limitations.

The SR analysis of time series, or regression discontinuity, was first introduced
by Quandt (1985) and later by Thistlethwaite and Campbell (1960). Since then, the
SR analysis of time series has been used in various ways with different parameters in
clinical, economic, and educational research.

In April 2005, the government of Ghana established a cost exemption policy and
subsequently considered a free maternal healthcare policy. Emmanuel et al. (2014)
evaluated the impact of these policies on assisted deliveries from January 2000 to
December 2011, using the intervention analysis provided by Box and Tiao (1975).
The estimated intervention model showed that removing financial barriers for assisted
deliveries significantly increased the number of pregnant women. The free maternal
care program significantly increased the monthly number of pregnant women seeking
assisted deliveries.

Flammer (2015) studied the reduction of import tariffs as a source of change in a
competitive environment by considering control variables in the DID regression model,
comparing affected with unaffected sectors over time.

The ARIMA model with interventions can be an effective method for policymakers
to make forecasts and evaluate policy interventions or the impact of any significant
event affecting donation rates (see Gerlach (2018)). According to Hudson et al. (2019)
and Schaffer et al. (2021), the ARIMA model with interventions is highly flexible and
easily accounts for seasonal trends, autocorrelation, underlying trends, and various
types of intervention effects.

ITS analysis is generally applied in a wide range of fields. For example, it is used in
epidemiology (Gasparrini et al., 2009; James Lopez, 2017), econometrics Shadish et al.
(2002), and for evaluating the impact of changes in public health policies Kontopantelis
et al. (2015). A review of ITS analysis in drug utilization research was provided by
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Jandoc et al. (2015). Bernal et al. (2017) examined and designed the ITS model based
on the SR and studied specific characteristics of intervention time series. For example,
they considered factors such as over-dispersion of time series data, autocorrelation,
seasonal trends, and time-varying confounding factors.

Freni-Sterrantino et al. (2019) used a Bayesian hierarchical model in ITS analysis to
investigate the impact of the opening of municipal waste incinerators on infant mortal-
ity. They conducted a spatial ITS analysis to examine annual risks of infant mortality
and sex ratio (female relative to male) within 10 kilometers of eight incinerators in
England and Wales during the period from 1996 to 2016. Morales et al. (2020) used
seasonal ITS regression analysis to estimate the impact of regulatory changes by the
European Union for diclofenac in 2013 among individuals with cardiovascular disease
in Denmark, the Netherlands, England, and Scotland.

In medical analysis and clinical studies, the presence of underlying diseases can lead
to significantly biased estimates of the effect of an intervention. Ignoring the impact
of these comorbidities may result in incorrect conclusions. A potential solution to this
issue is the use of controlled time series. Accordingly, Bottomleyet al. (2019) examined
the ITS analysis based on control and intervention series in the presence of confounding
factors, ensuring that both series exhibit a common trend. They demonstrated that
the intervention effect can be estimated by subtracting the control series from the
intervention series and analyzing the difference using linear regression or log-linear
regression.

Turner et al. (2021) simulated continuous data to compare the performance of
a range of statistical methods under various scenarios using the ITS model. Their
analysis included different levels and slopes, varying lengths of time series, and lag-
1 autocorrelation. They also assessed the performance of the Durbin-Watson test
for detecting autocorrelation in the models. The study employed various statistical
estimation methods, including ordinary least squares, generalized least squares, Newey-
West standard errors, ARIMA, and restricted maximum likelihood.

Ferreira and Arellano-Valle (2018) proposed a linear regression model with errors
from the scale mixture of skew-normal (SN) distributions and estimated the parameters
using the EM algorithm. They also addressed diagnostic regression issues such as local
influence and generalized influential data.

In response to the global COVID-19 pandemic, various counter-strategies have been
implemented by different governments to address the crisis. While most developed
countries rely on support for healthcare and social systems, developing nations face
greater challenges due to lower macroeconomic indicators. Poppe (2020) conducted
a country comparison for Colombia, Costa Rica, Peru, Ecuador, Mexico, and Chile.
Using multiple ITS analysis with control units, he examined the impact of mandatory
public quarantine in Colombia, Peru, and Ecuador, as well as the effect of mask man-
dates in public settings in Colombia and Chile. The results indicated that the poverty
census rate had no significant impact on the national poverty line or urban population
mortality rates due to COVID-19. Bordes et al. (2020) investigated the trends in kid-
ney transplantation from both deceased and living donors using density mapping and
linear regression through the ITS analysis. They found that kidney transplantation
has been significantly impacted in recent months due to the COVID-19 pandemic. Ad-
ditionally, Suarez-Pierre et al. (2021) analyzed adult organ transplantation data from
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1990 to 2019 using the ARIMA model to predict expected transplant rates and waitlist
registrations for 2020. Their results indicated a significant correlation between the pan-
demic and shortage of kidney transplants, as well as waitlist registrations during the
COVID-19 period. The findings suggest that the pandemic led to notable disruptions
in kidney transplant activities, highlighting the urgent need for strategies to mitigate
these effects and ensure that patients awaiting transplantation receive timely care.

Malladi and Lu. (2023) studied the number of living donor transplants performed
in the United States, revealing a significant effect of the pandemic on donation rates,
with a decrease of 22.6% from 2019 to 2020. They analyzed data on donor transplants
obtained from the United Network for Organ Sharing (UNOS) from January 2002 to
August 2021, using the ITS model with March 2020 identified as the intervention event.
Additionally, a kidney allocation policy implemented in March 2021 was introduced as
a second intervention event for kidney donor transplants. The findings underscore the
profound disruptions caused by the pandemic on living organ donation, highlighting
the need for ongoing monitoring and adaptation of transplant policies to mitigate these
impacts and ensure that patients in need of transplants receive timely care.

Analysis of the ITS is a valuable study design for evaluating the effectiveness of
population-level health interventions implemented at a clearly defined point in time. In
this research, we aim to introduce a novel modeling approach in the context of the I'TS
and the SR models, with a specific focus on examining the autocorrelation structure in
these models. Among the practical models used to account for autocorrelation effects
in modeling, ARIMA models are notable, which we will incorporate into our proposed
framework. Another innovative aspect of this study is the exploration of different
parameter estimation methods, as well as the estimation of the change point in the
time series behavior. Additionally, we will apply our model to real-world data, with a
particular emphasis on clinical observations.

2 ITS process based on AR(1) structure with time-
varying and autocorrelated SN innovations

In the framework of the ITS analysis, the SR approach is applied to a time series with a
linear trend and independently distributed residuals. However, in real-world phenom-
ena, data trends can be highly variable and may be ambiguous or difficult to identify.
Due to the challenges associated with modeling autocorrelation structures, SR may not
be able to adequately model certain time series. The ITS-ARIMA model serves as an
alternative to ITS-SR. Unlike SR, this model regresses recorded outcomes at previous
time points and is designed to account for autocorrelation when evaluating the impact
of interventions. The ITS-ARIMA model consists of an intervention function and an
ARIMA model, which is constructed based on observations prior to the intervention.
This approach allows for a more robust analysis of the effects of interventions over
time, accommodating the complexities often found in real data sets.

We will examine the asymmetric SN distribution, the ITS-AR process, and transfer
functions, and then introduce a new ITS-AR model based on the innovations of the
SN distribution and various characteristics of the target process.
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2.1 Asymmetric skew-normal distribution

Definition 2.1. A random variable Z follows the SN distribution with location param-
eter u, scale parameter o2, and skewness parameter \, denoted as Z ~ SN(u,c?,\),
where the probability density function (PDF) of this distribution is given as follows

f() = 2oL yp(n 20,

g

such that ¢(.) and ® represent the PDF and the cumulative distribution function (CDF)
of the standard normal distribution, respectively.

The mean and variance of the SN distribution are expressed as follows

2 A
E(Z) = ptoy/c——r,
(2) R ey v
2\2 )

Var(Z) = ﬁuf;Hij

The stochastic representation of the SN distribution, which will be used for the data
generation process, can be based on the convolution of normal and half-normal ran-
dom variables. Consider the independent random variables Vy ~ N(0,02) and V; ~
N(0,0?); the SN random variable is constructed as follows

A 1
Z=p+ ——Vol + —=W.
: \/1+>\2‘ o Vita

Considering |Vp| = W, the conditional distribution of Z given that W = w is repre-
sented as

A o2
ZIW =w~N 1
W= N (0t o2 75 ). )

where W ~ TN (0,02)Iy(w), with TN denoting the truncated normal distribution and
I4(.) representing the indicator function.

Statement 1. If Z ~ SN(u,02, \), then the conditional distribution is given by

ANz —p) o2
VI+AZ 142

WMzszN( )%mq

2.2 Process ITS-AR

Examining trends (trend lines) in the variables of interest and calculating deviations
from what was predicted in the absence of intervention are the main components of
the ITS-ARIMA design. We focus on a specific version of the ITS-ARIMA model in
which the autoregressive order is set to one and the moving average order is set to zero,
where, p = 1 and ¢ = 0 represent the orders of the AR and moving average processes,
respectively. The proposed model is abbreviated as ITS-AR(1).

The first-order AR process with an intervention component, known as ITS-AR(1),
is defined as follows

Yt:ay;&fl'FZf(Rt)"‘Etv a € (-1,1),
t
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where f(R;) = pI;(7) is the intervention function at time ¢, called as step change
function.

3 The new asymmetric ITS-AR(1) process with time-
varying innovations from the SN distribution

In this section, we introduce a new process that addresses all these issues and can be
applied for further statistical testing.

Suppose €14 ~ SN(u1,A1,0%) and 24 ~ SN (p2, A2,03), where {e1,} and {ea,}
are independent of each other. Therefore, we have

O[}/;gfl‘i‘et, t§77
Y, = aYi 1 + BL(7) + e = t=21,
¢ i1+ BI(7) ¢ {ozYt_l—l—ﬁ—&—et, t>T, -

where « is the AR coefficient, 5 is the intervention effect parameter, 7 is the time
at which the intervention occurred, and autocorrelated innovations are considered as
follows

et =0ei_1+er1ediy +eaidoy,

in which I ; = 1 — Ii(7) and Iy, = I;(7). The asymmetric dependent ITS-AR(1)
process is referred as ITS-AR-SN(1), where the parameter vector is represented by

Q= (o, B,0,01,02, 1, 12, A1, Az).
Based on the transformation technique defined as Y; — 6Y;_;, the ITS-AR-SN(1)
process can be formulated as follows

Yi=(a+0)Y,_1 —abYi_ o+ B(Iay —0Io 1) +e1]1 + 2410y (2)

With the transformed equation (2), autocorrelation in e; and e;—; is eliminated. We
constrain the parameters such that |a|, 6] < 1, to ensure the stationarity of the ITS-
AR-SN(1) process.

Here, we will derive the conditional PDF of the ITS-AR-SN(1) process. Based
on the fact that Iy, 1 =1 ([;+ = 1) leads to Iy = 1 ([14—1 = 1), we consider
P(Y} < ]‘21 <Y1 <it1+d, io <Y 9 <iy +d2), dy,ds > 0 where dq,ds — 0.

PY, <ylYici=wy—1,Yia =y—2) =L 1 Plers < yr — (0 + 0)yr—1 + by, —2)
+1Pleay <y — (a4 0)y—1 + aby—o — B(1 — 6))
+Io L1 -1 P(eay <y — (a4 O)y—1 + abyi—2 — B)
= IiFe (ye — (a+0)yi—1 + ably,_2)
+lo -1 Fe, (yr — (a0 + O)ye—1 + ablyr—o — B(1 - 0))
ol 1 Fey(ye — (4 0)ys—1 + aby; 2 — B),

where F.,(.), i = 1,2 is the CDF of the SN distribution. Therefore, the conditional
PDF is given as follows

TWelye—1,96—2) = Tiof(ye — (@ +0)yi—1 + aby,_2)
o1 f(ye — (a+0)yi—1 + aby; o — (1 —0)3)
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oDy 1 f(ye — (0 + 0)yi—1 + aly—2 — f5), (3)

where f(.) is the CDF of SN distribution. The third statement occurs only for ¢ = 7.
Statement 2. The conditional expectations and variance of the ITS-AR-SN(1) process
are obtained as follows

E(Y|Yi—1,Yi—2) = (@ + 0)Yim1 — a0V o + B(1 — 0%) + penlie + preploy,  (4)

where

0, t=71
0" = ’ ’; —EEZ i \/> , 1=1,2
{o, b7 =Mt \/1+)\2
and
Var(V;|Y;_1,Yi_2) = 1402 | + L5402 5, (5)
in such a way that

2 2 2)? .
0'671' = Var(gi) =0; 1-— m 5 1= 172

4 Expectation/conditional maximisationeither algo-
rithm ITS-AR-SN (1) process

We implement the expectation/conditional maximisationeither (ECME) algorithm pro-
posed by Meng and Rubin (1993) to estimate the parameters of the suggested model.
The hierarchical form of the SN distribution presented in (1) and (3) for t =1,...,n
is represented as

by o3 .
6j,t|Wt=w~N(,uj+ w,1+)\2), j=12
4/1+>\§ j

Wj)t ~ TN(O O' )IQ(W )
2
Zsj,tjj,t = Y;g — (0[ + a)th,l + CVQY;;,Q — B(]. — 9*)

i
Suppose Y = (Y1,...,Y,), and W = ((Wl’l,WQ’l)l, ol (Wl’n,WQ’n)l) , also let the

complete data set as C = (Y',W’)’, where Y is the observed part and W is the
missing part (from a TN distribution), as previously defined. Therefore, the likelihood
function based on the complete data is as follow

n 2
L | O) :HZ <(yt (4 0)ys—1 + aby_o — B(I2y — Ol24—1) — 1

>\/1H2> \/IHQ ”)IO(W +)

Uj

,/1+A2 W
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At

1
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. A2
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By removing constants, the corresponding conditional log-likelihood function is

1 + A2 A 2
((QC) o IZ(yt (@ +0)yt—1 + by — 1 — \/717)\2 1t)
1+ 23 & Ao 2
~ 502 tT(yt (@+0)ys—1+aby; o — (1 -0 )5—M2—\/T7W2,t)
—9 41
+T 5 (log(1 4+ )\f) — 2log(o%)) + n%(log(l + )\g) — 210g(0§))
1 T—1 1 n
= W2 o W2
20% ; Lt 20% ; 2:¢

In the (k + 1)-th iteration of the ECME algorithm, the E-Step requires the calculation
of Q(NF)) = Equ (£(R/C)|Y). Thus, in the E-step of the algorithm, the conditional
expectation of the process is given by

o 7—1

1—|—/\
Q(QIOW)=———1 Z ye — (4 0)ys—1 + aby; 2 — n)?

\/1+>\2
o2 Zy—@+9)yt 1+ by — p1)E1 (1)
1 t=2

1+)\ %
QZ% (a+0)yi1+aby, o — (1—60")8 — p)®

202 t=r1

\/1+/\2 .
Z Oé+0yt1+019yt 2—(1—9)ﬁ /,LQ)EQl()

1+/\2T . 1+/\
- ZE1,2(t) 2 ZEz 2 (log(l + A1) — 2log(a1))

207 P
n—717+1
+————(log(1 + \3) — 2log(03)), (6)

where Ej1(t) = E(W;4|Y) and Ej»(t) = E(W2]Y), j = 1,2. These represent the
first and second moments of the conditional distribution of the hidden variables W ;
which follow a TN distribution in the interval (0, 00). The mean and variance of W,
are represented respectively as
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>\,
= —Z—(p — (a+0)y—1 + by

VAR

—B(I2t — O0l24—1) — pj), Jj=1,2
2 o’
UW,j = Var(Wj,t) = 1 +j>\2 .
J

The expressions E](kl) (t) and E](];) (t) are the updated expected values in each itera-

tion of the ECME algorithm with respect to Q). Based on the latest estimates
(@®), g k) k) k) 5200 52(k) SR) S0y 4t iteration k, we optimize the afore-

mentioned ) function in the CM steps of the algorithm as follows

) 1+/\2(k) 2 2 14320 A
G+ — ZZ A2(k) (o1 — 0P y,_5)> [ ZTUZ)(%*_G(M%ﬂ)
t=2 j=1 t=2j=1 O
5 (F)
R NON . A
(= 092 = (- - BB
1+ 320

Based on the estimates (d(k"’l),ﬁ(k), é(k),ﬂgk), ,&;k), 6f(k)7&§(k), ng), Xék)), the estima-
tor for the parameter [ is represented as follows

n N ~ 5 (k)
3 (e = @HFD 4 00y g+ a0y, 5 — a2 B (1))

A 2,1
B(kJrl) _ t=1 /1+)\§(k)

—(k
(n—7+1)(1- 6+ ))
Based on the estimates (@511, 3(+1) 4(k) A(k),ﬂgk% 52(k) &g(k),j\gk),j\ék)), the esti-
mator for the parameter 6 is represented as follows

X 14+ 220 14+ A28
G+ — (1 St — a0y )2 L2
t=2 09

t=r+1 0y
- " ) R
X Z(yt 1= &5y, o) (e — aP Ty -l — == Ei(t)
t=2 1+ )\1( )
1+ 32
S e —at Ty )
)
. . A
x [y — Gkt )yt =B - (k) 2 (k)(t)
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3 (k)
(k +1) ﬁ A(k) /\ E(k)(t)

/71 N )\Q(k) 2,1

Based on the estimates (d(k“),ﬁ(k*l), é<’““),ﬂ§k)7ﬂ§’“),&f““), 65(’“), }gk), 5\&1«))7 the es-
timators for the parameters p; and ps are represented as follows

x|y —a

(k1 1
- L

[\)

T —

7—1 3 (k)
A A A
Y — (@(kﬂ) +9(k:+1))yt L +&(k+1)0(k+1)yt ) 1 E(k)

- -2~ /"0
— /1+)\2(k

X

(]

(t)

~

~(k+1) 1 - A (k+1) | plk+1) ~ (k+1) A(k+1)
Ha = E (yt — (& +0 YYi—1+ & 0 Yt—2
n—71+1 P
3 (k)
(k+1), » A k
—(1 =T B 22 Eé,f(t)).

V1+ A%

Based on the estimates (a1 g+1) gk+1) ﬂgkﬂ)’ ﬂé’”l)’ &f(k), &S(k), ng), Xék)), the
estimators for the parameters o1 and oy are represented as follows

22(k)

5f(k+1) _ & {(yt _ (d(k+1) + é(k+1))yt_1 + @(k+1)é(k+1)yt_2 _ ﬂgk+1))2
2(r—2)
NGW, 12(k)
e (t)} B Al 14 X7
1,2 T—2
T—1
» (yt _ (@D 4 Uy gD U ﬂgk-&-l)) Eﬁ) (t),
t=2
~2(k+1) 1 + Xg(k) i (A(k-',-l) + é(k+1)) 4 A(k-‘rl)é(k-i-l)
= O EEE—— — (& — (6% _
Oq 2n—7+1) 2 Yt Yt—1 Yt—2

2 12(k) n
A D Ay (k) )1 AS ®) 1
—(1-¢ )B ) TL—T-|-1 E E2,2

n—71+1

S\(k) 14 5\2(]6) n . A
) Y (yt — (@5 40 )y, g @ TDY Dy,

t=1

~ (k+1), 5 ~(k k
Y ! *”)E;f(t).

For the ECME algorithm, the CML ECM step is modified as follows:
CML Step: The updates for ngﬂ) and ngﬂ) are obtained by optimizing the
log-likelihood functions as follows:

r—1 . (k+1) - (k+1)
LD 2 (e —in €14 — iy
Al = argrr}\zixZIOg (A(k)d)( D) ><I>(/\1 NG )) ,
t=2 g1 oy 0y
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n (k+1) (k+1)

~ 2 e —

)\gk'"rl) — argmax E log A(k)¢<)\2 (/]:)2>@<>\22t(/:)2> B
g 02 P g2

in which &4 =y, — (&%) 4 9+ )y, ) 4 ak+DHEDy, » and g5, =y, — (6F+D +
O )y 4 @D, (1 - geFH >)l3(k+1) G,

The maximization step in CML requires a one-dimensional search, which can be
easily solved using the ’optim’ function available in the R software package. As Liu and
Rubin (1994) noted, the ECME algorithm exhibits a faster convergence rate compared
to the ECM algorithm. The ECME steps are iteratively repeated until a convergence
criterion is met.

5 The local impact of the ITS-AR-SN(1) process

According to Cook (1986), the likelihood displacement (LD) is used to assess the im-
pact of the perturbation & € R?, where £ = (&1,...,&;)’, and ¢ represents a suitable
number of dimensions. The vectors & = (1,...,1) and & = (0,...,0) correspond to
the perturbation and non-perturbation sets of size ¢ x 1, respectively. The LD index
is defined as LD(§) = 2(£ (6(Q) — £(Q¢€)), such that large Values of LD(§) indicate that
the ML estimate 2 and the estimate Q\f are significantly different, where £(2 ) and
£(]€) represent the log-likelihood functions of the specified and disturbed models, re-
spectively. According to Garay et al. (2014), for evaluating the impact of disturbances,
the log-likelihood function can be replaced with the @ function defined in (6) in the
ECME estimation.
It is assumed that the specified model Q(£2|¢) is twice continuously differentiable in
the neighborhood of (€, &), and we consider the normal curvature C;(Q) = 2|I'El| =
2/ (A'QA)I| at & = &, where

Q) 9l

oTL8) 9Q(YS) Q_GQQ(QK)
9EDE" - oo -

F= 2009

such that [ is a ¢ X 1 unit vector, and Q is a 9 x 9 observed information matrix from
the specified model. The matrix A is a 9 x ¢ disturbance matrix from the disturbed
model, evaluated at & = ¢ and Q = . We check the local behavior of LD(€) and
C;(2) in the direction of a unit vector [, where || [ ||= 1.

The local influence analysis is conducted through the maximization of Ci.x =
max =1 Cj, where the largest absolute eigenvalue Apax and the corresponding eigen-
vector [yax are derived from the matrix F' = A/ QA The t-th observation may have the
greatest impact if the absolute value of its corresponding element in ;. is the largest.
This method examines the overall local influence C; = Cj, (2), where I; is a unit vector
of size ¢ x 1 that is zero everywhere except at position ¢, where it equals one. We con-

sider the stable normal curvature B;(Q2) = %, where 0 < B;(Q2) < 1, making

it suitable for various comparisons. If M (0); = B, exceeds the criterion % +c*SM(0),
where SM(0) is the sample standard error of M (0);, for k = 1,...,q and ¢* is a specific
constant, then the t-th observation is considered significantly influential. Having a
reference value for Ci,. and for the elements of .« aids in evaluating the extent of
influence, as discussed by Liu et al. (2015), and Liu et al. (2016).
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6 Real data analysis

We are examining the weekly new COVID-19 cases reported in the Czech Republic from
March 8, 2020, to December 17, 2023, totaling n = 198 cases as reported by the World
Health Organization. The first confirmed COVID-19 infections in the Czech Republic
were reported on March 1, 2020. Since then, the number of new cases has gradually
increased, peaking in February 2022 with over 286,000 confirmed cases. Between 2020
and 2023, the Czech Republic reported approximately 4.73 million confirmed cases.

The vaccination policy in the Czech Republic was implemented on December 27,
2020, with the first booster doses administered on May 26, 2021. The sample trajectory
of COVID-19 cases is presented in Figure 1, illustrating two distinct patterns before
and after n = 101, which corresponds to February 6, 2022. As shown in Figure 1,
new cases exhibited a significant downward trend approximately two months after the
commencement of vaccinations in February 2022. By February 2022, a total of 17.3
million vaccine doses had been administered, with 6.94 million individuals receiving
complete vaccination and 3.95 million receiving booster doses. It can be concluded
that the administration of the COVID-19 vaccine booster dose has led to a reduction
in new cases and contributed to controlling the COVID-19 pandemic.
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Figure 1: Sample path of COVID-19 dataset cases.

The partial autocorrelation function (PACF) of the COVID-19 data series is illus-
trated in Figure 2, suggesting a first-order AR model for the data. The fluctuations
in the actual dataset are quite substantial. Therefore, we examine the logarithmic
transformation of new COVID-19 cases, and some statistical measures of the trans-
formed dataset are summarized in Table 1. Consequently, the COVID-19 data exhibit
left skewness (asymmetry) and are platykurtic or flat-tailed (with thin tails). The
trajectory of the transformed sample data is displayed in Figure 2.

Table 1: Statistical measurements of the modified COVID-19 dataset.
Kurtosis Skewness Standard Deviation Mean
2.33 -0.24 413 8.61

Figure 3 displays the sample path plot of the transformed data set.
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Figure 2: PACF diagram of the transformed dataset.
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Figure 3: Sample path of the transformed dataset.

6.1 Analysis of residuals

We conducted a residual analysis to assess the adequacy of the model, which indicates
the consistency between the data and the fitted model. Considering the standard-

ized Pearson residuals defined as r(t) = 3;E((l;t Rf’l’?”)), where E(Y;|Y;—1,Y;—2) and
ar(Y¢|Ye—1,Yt—2

Var(Y;|Y;—1,Y;_2) are presented in (4) and (5).

The analysis of Pearson residuals is presented in Figure 4, indicating an approxi-
mately constant variance over time. The histogram reveals that the prediction errors
are nearly normally distributed, with a mean of —0.030 (close to 0) and a variance
of 0.9784 (close to 1). Based on the autocorrelation function (ACF) plot in Figure
4, no observable patterns or significant autocorrelation were detected in the residuals,
supporting the assumption of normal distribution. The p-value for the Ljung-Box test
was 0.582, suggesting a white noise series from the Pearson residuals. The cumula-
tive periodogram in Figure 4 clearly shows that the residuals are randomly distributed
without any specific trend. These results indicate a good fit for the proposed model.
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Figure 4: The sample ACF, histogram, and cumulative periodogram of Pearson residuals of the
ITS-AR-SN(1) process.

6.2 Local impact analysis based on real datasets

We conducted a local impact study based on the M(.) index for the COVID-19 dataset.
In a preliminary analysis, we used ¢* = 3 in the reference calculation. Figure 5 displays
the M (.) index plots for three disturbance scenarios. As shown in Figure 5, observations
31, 98, and 99 appear to have the highest influence on the ECME estimates under the
ITS-AR-SN(1) process for each disturbance scenario. To illustrate the impact of these
three observations on the parameters, we re-estimated the models by excluding these
potentially influential observations to obtain the ECME parameter estimates.

The robustness of the model can be evaluated by considering the influence of an
outlier observation (far from the center) on the ECME parameter estimates. Specifi-
cally, we can assess how the ECME estimates of the unknown parameters are affected
by small disturbances. To further illustrate that observed values in the samples may
contain anomalies, we computed the parameter estimates for the ITS-AR-SN(1) pro-
cess for the actual data both before and after removing observations 31, 98, and 99,
as shown in Table 2. After excluding the anomalous data, the statistical measures of
mean, standard deviation, skewness, and kurtosis changed to 8.58, 3.91, —0.25, and
2.41, respectively. The ECME estimates for the process in question are robust against
anomalies, as all parameters do not change significantly with or without the anoma-
lies. Therefore, it appears that they have little to no impact under the ITS-AR-SN(1)
model.

6.3 Forecasting result

The forecasting of the COVID-19 data set is provided based on the conditional mean,
where parameters are substituted by their corresponding ECME estimates. The K-fold
cross-validation analysis is one of the most popular methods for evaluating models in
regression and classification. However, time series forecasting is frequently substituted
by an out-of-sample (OS) evaluation due to the intrinsic serial correlation and non-
stationarity of the data.
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Figure 5: The Index chart of (a) item weight disorder, (b) data, and (c) scale disorders.

Table 2: ECME estimation with or without impact points in the COVID-19 dataset.

Complete data & =0.271,8 = 0.418,0 = 0.901, i; = 0.522,
fia = 0.924, 61 = 0.399, 65 = 0.336, \; = 0.864, Ao = 0.223

Remove 31-th data & =0.272,3 = 0.433,0 = 0.901, i, = 0.513,
fio = 0.924, 61 = 0.393,65 = 0.336, \; = 0.822, A, = 0.219

Remove 98-th data a= 0.274,3 = 0.444,é = 0.903, fi; = 0.538,
fia = 0.933,61 = 0.405, 65 = 0.338, \; = 0.834, Ao = 0.213

Remove 99-th data & =0.271,3 = 0.433,0 = 0.901, i, = 0.513,
fio = 0.924, 61 = 0.392, 65 = 0.338, \; = 0.855, \» = 0.285

Without all the outliers & =0.271,8=0.433,0 = 0.901, i; = 0.513,

fia = 0.924, 61 = 0.393, 65 = 0.339, \; = 0.883, Ao = 0.255

A portion from the end of the series is excluded for evaluation in order to assess
time series issues. Therefore, splitting a dataset into two sets, known as training and
test subsamples, is the elementary step in OS evaluation.

The OS analysis is provided to compare the forecasting performances of the I'TS-
AR-SN(1) model. We consider the full sample sizes of real data series and split the
data series into two subsamples, the training subsample with n — 20 from the first
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data to the 178-th, and the test subsample with 20 last observations. The parameters
of the suggested model are calculated using the training sample, and the accuracy of
the forecasting is then assessed by obtaining the test observation forecasts using the
conditional mean forecasting technique. The ECME estimates of the parameters and
the goodness of fit measures values in-sample mean square error (MSE) (IS-MSE) and
OS-MSE are given as follows

a&=0271, [=0418, 6=0901, g =0522, fio=0.924,
61 =0.399, &5 =0.336, A\ =0.864, Ay =0.223,

The goodness of fit measures values in-sample mean square error (MSE) (IS-MSE) and
OS-MSE are computed as IS — MSE = 0.28, OS — MSE = 0.34. Based on the MSE
values, we can conclude the ITS-AR-SN(1) model has an adequate fit for COVID-19
data.

The mean absolute percentage error (MAPE) is a measure of prediction accuracy
of a forecasting method. Due to evaluating the prediction methodology, the forecasts
of test subsample with n = 179,...,198 of the considered data series are reported in 3,
for which we know the actual values. Based on 3, the MAPE values of the COVID-19
data series of forecasting results of the ITS-AR-SN(1) model is obtained as 3.8%, which
confirms the accuracy of the prediction results. 0.1cm 6.5pt

Table 3: The forecasting of the COVID-19 data set based on the ITS-AR-SN(1) model.
n [79 180 I8T 182 183 184 185 186 187 188
Actual values  4.81 5.12 5.68 5.9
Forecasting values 5.01 5.58 5.83 6.41 6.63 6.77 7.46 8.10 8.22 8.12
n [89 190 191 192 193 194 195 196 197 198
Actual values  8.02 8.17 8.3 . .
Forecasting values 8.51 8.44 8.6
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7 Summary and conclusions

The ITS analysis based on AR structures is frequently employed to assess interven-
tion experiments. The asymmetric SN distribution, characterized by distinct features
for process innovations, is appropriate as the innovation parameters can vary with
each regime. It is reasonable to expect that, as the regime changes, the distribution
parameters will also adjust accordingly in our new process. The current study aims
to address these challenges by developing a new ITS-AR(1) process that incorporates
regime-dependent innovations, asymmetric SN innovations, and treats the interven-
tion variable as an exogenous variable based on a transition function. The proposed
ITS-AR-SN(1) process is estimated using the ECME framework, and a comprehensive
extraction of disturbance models is presented based on local impact analysis. In the
simulation framework, unknown parameters are estimated using the ECME technique
based on the ITS-AR-SN(1) process, which is robust against outliers. The theoretical
findings are validated with real data. The local impact index related to the COVID-19
data notably identified observations 31, 98, and 99 as influential points in the distur-
bance designs. It can be inferred that the number of new cases decreased following the
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start of COVID-19 booster dose administration, with the effectiveness of the booster
becoming apparent approximately six weeks after the policy was implemented.
Future research can be expanded in various areas. For instance, one topic that re-
quires further investigation is the exploration of the advantages of Bayesian approaches
and their application in modeling high-dimensional data, which could provide valuable
insights for regression modeling.
Some suggestions for future studies include the following:
e Calculating the E-Bayesian estimators of the distribution parameters for the ITS-
AR-SN(1) process under various loss functions and informative prior distributions.
e Robust ITS analysis based on symmetric and asymmetric distributions in various
sciences.
e Exploring other statistical models using the ITS-AR-SN(1) distribution family.
e Modeling censored data using the family of asymmetric ITS-AR-SN(1) distributions.
e Developing a discrete version of the ITS-AR-SN(1) distribution using various dis-
cretization methods and evaluating the effectiveness of the new discrete distribution in
modeling discrete observations.
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