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Abstract: From Covid-19 mortality rate to image tampering, Benford’s law is used
to detect fraudulent activities. The underlying assumption for using the law is that a
“regular” dataset follows the significant digit phenomenon. In this paper, we address
the scenario where a shrewd fraudster manipulates a list of numbers in such a way
that while providing the desired statistics, it still complies with Benford’s law. We
develop a framework that offers several degrees of freedom to such a fraudster, such as
the minimum, maximum, mean, and size of the manipulated dataset. The conclusion
further corroborates the idea that Benford’s law -if at all- should be used with utmost
discretion as a means for fraud detection.
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1 Introduction

Ever since Benford’s law was suggested as a test of naturalnessBenford (1938), re-
searchers have explored many areas to apply the law. Examples include-but is by
no means limited to-checking national Covid-19 mortality rate Sambridge and Jack-
son (2020), digital image tampering Parnaket al. (2022), social welfare fraudda Silva
Azevedo et al. (2021), tax Nigrini (1996), and financial statements fraud Zack (2013).
Benford’s law has also been used to investigate Natural Hazard dataset homogeneity
Joannes-Boyau et al. (2015) or inflation data at governmental level Miranda-Zanettia

*Corresponding author: j.kazemitabar@nit.ac.ir



Double-crossing Benford’s law 50

et al. (2019). Many articles, books and other resources related to Benford’s law, in-
cluding theoretical and applied, could be seen in “Benford Online Bibliography” Berger
et al. (2009).

Deviation of a list of numbers from Benford’s law is usually considered as a red
flag. The interested reader is referred to Miller (2015) and Nigrini (2020) for a detailed
explanation of Benford test application and different methods of harnessing the Benford
test to find anomaly in data. It has been suggested, however, that perfect adherence to
this law could also imply manipulation as we expect small levels of deviation from the
law in regular lists of numbers Kalinin and Mebane (2017). A question is then raised
as whether it is possible to systematically manipulate a list such that it still complies
with the law. In this paper we address this question, but let us first review some of
the efforts in scientifically explaining Benford compliant distributions.

The rest of this paper is organized as follows. Section 2 reviews Benford compliant
distributions. Section 3 covers construction of fake data. In Section 4, we discuss the
results of two examples. Finally, Section 5 concludes the paper.

2 Benford-compliant distributions

Hill’s 1995 paper Hill (1995) provides a statistical explanation of Benford’s law. The
author shows that “if probability distributions are selected at random, and random
samples are then taken from each of these distributions in any way so that the overall
process is scaled(or base) neutral” then Benford’s law holds. He then asks “An inter-
esting open problem is to determine which common distributions (or mixtures thereof)
satisfy Benford’s law”. Several researchers pursued this question and found conditions
for a Benford compliant distribution Balanzario and Sanchez-Ortiz (2010); Balanzario
(2015); Leemis et al. (2000); Berger and Hill (2015). They also proposed example distri-
butions that satisfy conditions mentioned above. However, the proposed distributions
do not provide the necessary degrees of freedom for a fraudster to build synthetic
* Benford compliant samples with desired statistics. Similar effort was presented in
Haracci and Haracci (n.d.) where a synthetic Benford dataset is generated using a soft-
ware. However, to the best of our knowledge, there has been no report of systematic
methods producing customized Benford compliant datasets. Based on a recent report
Kazemitabar (2023), in this paper, we provide two families of Benford-complaint distri-
butions with tunable parameters providing us with several degrees of freedom such as
minimum, maximum, mean and size, to generate such synthetic datasets. It should be
noted however, that we are by no means encouraging fraudsters to use these algorithms.
Our goal is solely to show that it can be performed and that the auditors should be
careful not to rely too much on these tests. The existence of such distributions shows
that Benford’s law should be carefully used as a means of fraud detection.

In Leemis et al. (2000), a few Benford compliant distributions were proposed that
are the building blocks of the distributions to be introduced in this paper.
e Example 1: Let Y ~ U(0,2). Then, X = 10Y is a Benford compliant distribution
defined in (10°,102). The result can be generalized for Y ~ U(a, b) for integer a and b.

*The term synthetic Benford set was first used by the celebrated author Mark Nigrini Nigrini (2020).
He provides a method based on the uniform mantissa concept to build synthetic Benford compliant
samples, where the user can designate the maximum and minimum of the generated numbers.



o1 J. Kazemitabar

e Example 2: Let Y ~ Triangular(0,1,2). In other words,

)y, 0<y<l,
fY(y)_{2_y’ 1<y<2.

then, X = 10" is a Benford compliant distribution defined in (10°, 10%). The result can
be generalized to symmetric Triangular distributions of Y such as Triangular(a,b, c)
where a, b, and ¢ are all integers and b = (a + ¢)/2.

In both of the above examples, even though the maximum and minimum of the
distribution -in its general form- is tunable, the average is not. To amend this short-
coming we use the a lemma that was independently proven by a number of authors
Kazemitabar and Kazemitabar (2020)Balanzario and Sénchez-Ortiz (2010)Balanzario
(2015).

Lemma 2.1. If ZZ;’{OO fy(z+k) =1 then, X = 10Y is a Benford compliant distri-
bution.

Using this lemma, we build upon these examples to introduce our tunable distri-
butions. Concretely, we design the distributions such that the shifted versions of the
density function add up to 1.

Distribution design procedure: To come up with the following two distributions,
a few things were taken into consideration. First and foremost, in order to be able
to tune the mean of the distribution, one needed to introduce an extra parameter.
This parameter which is represented by “a” in both of these distributions, ranges from
slightly more than zero to infinity. The role of this parameter is to shift the mean.
One knows that the mean of any distribution is limited between the minimum and
maximum value that distribution takes. In our proposed distribution, we were able to
shift the mean towards these two extremes using very small and very large values for
“a”. To be precise, for very small values of “a”, we were able to fill in the lion share
of the distribution near the minimum causing the mean to be close to it. Similarly, by
choosing large values for “a” we will shift the major part of the area under curve of the
density function towards the maximum value. The two proposed distributions are dif-
ferent in the amount of “shift” towards maximum and minimum. The first distribution
is able to get closer to both the minimum and the maximum. The advantage of the
second distribution, can be described as being “less obvious” as a synthetic dataset,
due to its non-uniform shape in the intervals.

e First Proposed Distribution

If
SR, mMSy<m+1,

3
Z‘ZKat’ m+1<y<m+2,
fyl(y): =t

S, m+K-1<y<m+K,

t=1

then, X; = 10" is a Benford compliant distribution with the following statistics:

min(X) = 10™
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max(X) = 10mTF
_ K
mean(X) = Ja 10’".1 (10a) , (1)
Ln(10) S 2f a1 100

where mean(X;) ranges between 3.9 x 10™ and 3.9 x 10™+5~1 for very small and very
large values of a respectively.
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Figure 1: An example Y; distribution with m = 0, k = 5 and (a) a = 0.5 (b) a = 2. X; = 10"
follows Benford’s law.

e Second Proposed Distribution

If
#(Z/—m), m<ly<m+1,
t=
Ztéat Zt:alai(y_m_l)’ m+1§y<m—|—2,
thf(y m —2), m+2<y<m-+3,
Fray) = { s e — s (Y —m = 3), m+3<y<m+d,
txf(y m — 2K +2), m+2K —2<y <m+2K —1,
=k
fK,,*Zt:Ka,(y—meKJrl) m+ 2K — 1<y < m + 2K,
= t=1

then, X, = 102 is a Benford compliant distribution with the following statistics:

min(X5) = 10™,
max(X,) = 10mT2K
99 — 81/Ln(10 — (100a)%
mean(Xsy) = / n( ) m.a.&,
Ln(10). =5 o' 1~ 100a

where mean(X5) ranges between 2.7 x 10™*! and 2.7 x 10m™+2K~1 for very small and
very large values of a respectively.

One might wonder if the maximum and minimum points in the above mentioned
distributions have to be powers of 10. To answer this, we should recall that compliance
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Figure 2: An example Yz distribution with m = 0, k = 5 and (a) a = 0.5 (b) a = 2. X2 = 10¥2
follows Benford’s law.

with Benford’s law is scale-invariant. As such the generated numbers can be multiplied
with a constant number. Nevertheless, both the above proposed distributions require
that the max and min are apart by an integer power of 10, that is 7% = 10% in the
first distribution and % = 102X in the second.

3 Constructing fake data

In this section, we show how a fraudster can generate a Benford compliant dataset. We
provide two examples. The first example is about journal entries of a company trying
to look profitable and the second example is on fake mortality rates. Of course, in order
to fake a journal entry, the fraudster needs to generate two separate datasets; one for
income and the other for expenses. For each dataset We can tune the maximum and
minimum as well as the number of items and the total sum. This is directly achieved by
plugging the right value for m, K and a in the distributions introduced in the previous
section. Moreover, we note that total sum of numbers in the dataset is equal to the
size of that dataset multiplied by its average. Since, we have control over size and
average, as a result we have control over total sum. We use inverse transform sampling
Luc (1986) to generate random samples. The goal that the inverse transform sampling
technique achieves can be summarized is as follows:

e Let Y be a random variable with cumulative distribution function Fy .

e We want to generate samples of Y according to the given distribution.

To do so, the inverse transform sampling technique first, generates uniform samples
in the interval [0,1]. Next, it finds the inverse of the given CDF, i.e. F;l(u) Finally,
the technique calculates Y/ (u) = Fy '(u). The resulting random variable Y'(U) will
have the desired distribution represented by the given CDF, i.e. Fy. That is simply
because Pr(Fy ! (u) <y) = Pr(U < Fy(y)) = Fy(y).
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3.1 Example 1

Suppose a hypothetical company’s income and expenses each total 5700000 $ and
2310000 $ respectively. Also, let us assume there are 1320 income entries in the jour-
nal ranging from 1000$ to 100000$ and 760 expense related entries in the range of 100$
to 100000%. Using (1), we find m, K and a to be 3, 2, and 0.01177886831 respectively
for income related entries. Moreover, for expense related entries, we find the afore-
mentioned parameters to be 2, 3, and 0.25927727232382797. While for the scenario at
hand we were able to analytically solve for a, in general, however, numerical methods
may be necessary specially when K is a large number. Figure 3 shows the histograms
of income and expense entries. We then generate X = 10Y to populate the journal
entries for revenue and expense separately. The total sum for revenue samples add up
to 5556356 which is 97% accurate compared to the requested revenue of 57000008. As
for the expense dataset, the sum of fake journal entries is 2192381 which shows 5%
deviation from the desired expense total of 2310000$.

@ ()

Figure 3: Histogram of the synthetic (fake) data generated based on the proposed Y distribution.
The actual journal entries will be populated by taking 10 to the power of these numbers. (a) Expense
related Y samples with m = 2 and K = 3 (b) Income related Y samples with m = 3 and K = 2.

3.2 Example 2

Suppose a fraudster is generating covid-related mortality rate. To cover up for large
number of victims, the health ministry decides to generate (fake) lower numbers (One
cannot emphasize enough that this example is a completely hypothetical scenario).
The number list includes death rate from mid March 2020 for 110 consecutive days.
The ministry is ordered by authorities to limit the daily mortality rate between 13 to
1005 with an average of 56. To cook the books, the ministry will use the first proposed
distribution with m =1 and K = 2 to satisfy the max and min requirements. From
the last line in (1) one can calculate @ = 0.0505085 to make sure the daily average
mortality rate stays around the desired value. Using these parameters, we applied the
inverse transform sampling technique on 110 samples of uniformly distributed numbers
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to obtain the mortality list. Since the mortality rates need to be integer values, we
then took the integer part of 10¥ to generate the final list. We got an average of 61,
minimum of 10, and a maximum of 997 which were close fits from the corresponding
desired values.

4 Discussion

We tested the generated journal entries across 3 popular Benford tests namely chi-
square, mantissa-arc and mean absolute deviation (MAD). These three tools are among
the toughest tests that auditors apply for Benford tests. Often times, even untampered
sets with large samples fail to meet the requirements of these tests Nigrini (2020). Yet,
the generated fake dataset in our example, was able to pass. The results of all three
tests are shown in Tables 1-2. To perform Benford tests, we used R package titled
Benford.analysis. This package makes it very easy to perform chi-square, mantissa-
arc and MAD tests on the data. The practice of generating fake Benford compliant
datasets can easily be performed so long as the average is not too close to either end, i.e.
minimum or maximum of the desired set. Concretely, the first proposed distribution,
X1, ranges between 3.9 times the minimum value, i.e. 10™, and 0.39 of the maximum
value, i.e. 10™+¥ In practical scenarios, it rarely happens that the dataset is skewed
to the level that the average exceeds the aforementioned limits. As such, building fake
data to deceive the auditor is usually achievable and thus the auditor shall not solely
rely on Benford test.

Table 1: Benford test results confirm compliance of fake data for Example 1.

Chi-squared test p-value [ Mantissa arc test p-value[ MAD
Revenue 0.9 0.93 Close conformity
Expense 0.54 0.28 Acceptable conformity

Table 2: Benford test results confirm compliance of fake data for Example 2.

Chi-squared test p-value [Mantissa arc test p-value[ Average Z-score
Mortality 0.57 0.83 1.18

5 Conclusion

Benford’s law is used for detecting fraudulent reports in many fields. The underlying
assumption for using the law is that a “regular” dataset follows the significant digit
phenomenon. In this paper, we addressed the scenario where a shrewd fraudster ma-
nipulates a list of numbers in such a way that while providing the desired statistics still
complies with Benford’s law. We developed a framework that offers several degrees of
freedom to such a fraudster such as minimum, maximum, mean and size of the manip-
ulated dataset. The conclusion further corroborates the idea that Benford’s law -if at
all- should be used with utmost discretion as a means for fraud detection.
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