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Abstract: In this paper, a hybrid algorithm based on singular spectrum analysis and
principal component analysis is proposed for denoising color images. The main nov-
elty of this approach lies in the simultaneous utilization of singular spectrum analysis’s
capability to separate signal and noise in the time-series domain, along with principal
component analysis’s ability to remove correlations among the red, green, and blue
channels of color images. To validate the effectiveness of the proposed method, peak
signal-to-noise ratio and structural similarity index are employed on reference images
that are contaminated with random noise at different levels. The experimental results
indicate that the proposed algorithm achieves superior performance, particularly at
higher noise levels. Specifically, the results demonstrate higher peak signal-to-noise ra-
tio and structural similarity values when compared with principal component analysis-
based bootstrapping methods and eigenvalue-based denoising approaches.
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1 Introduction
Noise is one of the fundamental challenges in image processing, particularly in medical
and satellite imaging. It can severely degrade image quality and consequently reduce
the accuracy of diagnosis and subsequent analyses. Shakeri et al. (2019) demonstrated
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that multiscale noise in magnetic resonance imaging (MRI), caused by hardware lim-
itations, reduces the detection of small lesions by up to 40%. In satellite images,
atmospheric noise such as cloud cover or dust storms decreases land cover classification
accuracy by approximately 25%. Similarly, in medical images such as ultrasound, ra-
diography, and MRI the presence of noise can obscure abnormalities and hinder reliable
diagnosis. In satellite imaging, noise may lead to misinterpretation of data and inac-
curate geographic analysis, which are critical in urban planning and natural resource
management (Moreno López et al., 2021).

Conventional denoising methods often face limitations in preserving structural de-
tails or maintaining robustness against noise. Yang et al. (2022) reported that tradi-
tional approaches to noise removal tend to reduce image quality under specific condi-
tions. Likewise, according to Zhang et al. (2023), classical methods such as median
or Gaussian filtering may fail when confronted with complex noise structures. Recent
studies have proposed advanced dictionary learning-based methods for image denois-
ing. For instance, an improved K‑singular value decomposition (K‑SVD) algorithm
with atom optimization has been developed to enhance noise removal while preserving
structural details (Chen et al., 2022). In this approach, a sparse representation of im-
age patches is obtained via a refined dictionary, followed by elimination of dictionary
atoms that primarily model noise. Additionally, non-local self-similarity (NSS) priors
are incorporated to maintain textures and edges. This method demonstrated superior
performance over classical techniques such as median filtering, BM3D, and standard
K‑SVD, especially under strong Gaussian noise conditions.

In this study, we focus specifically on additive Gaussian noise in RGB color images.
Existing denoising techniques typically include mean filters, Gaussian filters, median
filters, transform-based approaches, and nonlinear algorithms. However, these methods
often involve trade-offs between noise suppression and the preservation of fine structural
details, thereby motivating the development of more advanced and hybrid denoising
frameworks (Mafi et al., 2019).

In digital imaging, a standard color image is constituted by three distinct matrices,
each corresponding to one of the primary color channels: Red (R), Green (G), and Blue
(B). The dimensions of these matrices are determined by the spatial resolution of the
image, meaning their height and width equal the number of pixels along the image’s
vertical and horizontal axes, respectively (Ghasemi, 2023). Each pixel within a color
image is thus represented by a triplet of intensity values for the respective channels.
Conventionally, each intensity value is encoded as an 8-bit integer, constraining its
range to integers between 0 and 255. Consequently, any color image can be math-
ematically represented as three matrices populated with values in this range. This
three-matrix representation is a foundational, standard, and computationally efficient
model in digital image processing (Ghasemi and Safariyan, 2024).

A significant challenge in processing color images arises from the inherent spectral
correlation among the three-color channels, which introduces considerable computa-
tional complexity in tasks such as color image denoising. Ignoring these inter-channel
dependencies can lead to suboptimal results. Therefore, the scientific gap addressed in
this study is twofold: first, the inadequacy of prior research in explicitly modeling the
dependencies between the color channels; and second, the need to develop a denoising
framework that effectively accounts for these correlations, providing a robust and re-
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liable approach to improve image quality. To bridge this gap, this research proposes
a hybrid singular spectrum analysis–principal component analysis (SSA–PCA) denois-
ing framework enriched with an exponential weighted averaging (EWA) strategy. The
proposed model leverages the multi-scale decomposition capability of SSA alongside
the dimensionality-reduction and correlation-capturing power of PCA, enabling a joint
treatment of structural and spectral information in RGB images. The introduction of
EWA as an adaptive weighting mechanism constitutes a key methodological contribu-
tion, offering optimization-oriented weights that have not been explored in previous
SSA-based denoising frameworks, particularly for color images with inter-channel cor-
relations. By integrating SSA, PCA, and EWA within a unified structure, the proposed
method aims to achieve superior noise suppression while preserving fine textures and
maintaining chromatic consistency across the RGB channels.

The rest of this paper is organized as follows. Section 2 introduces SSA and the
EWA enhancement. Section 3 discusses the application of SSA to color image denoising.
Section 4 describes the evaluation metrics and criteria for the proposed model. Sec-
tion 5 presents theoretical Foundations and step-by-step methodology of the proposed
hybrid SSA-PCA model. Section 6 presents the experimental results of the proposed
algorithm. The discussion and conclusions are presented in Section 7.

2 Singular spectrum analysis
Singular spectrum analysis is a relatively modern and powerful method in the field of
time series analysis. As a non-parametric technique, its unique characteristics, such as
not requiring the assumptions of stationarity or normality of residuals, have attracted
significant attention from researchers in time series analysis and econometrics, leading
to its increasingly widespread application. In the SSA method, a time series is de-
composed into its constituent components, such as trend, seasonal components with
different periodicities, and noise. Following this decomposition and the removal of noise
from the series, the components are reconstructed. Finally, using forecasting methods
developed within the SSA framework, predictions about the future of the time series
are made (Golyandina and Korobeynikov, 2014).

The SSA method consists of four main stages, categorized into two broad sections:
Decomposition and Reconstruction. The decomposition section itself comprises two
steps: (1) Embedding and (2) SVD. The reconstruction section also includes two steps:
(1) Grouping and (2) Diagonal Averaging.

Suppose
XN = {x1, x2, . . . , xN},

is an observed time series of length N . Furthermore, consider a positive integer L,
referred to as the window length, such that 1 < L < N . In the embedding step, the
time series is transformed into K = N − L + 1 lagged vectors (sub-series). The i-th
lagged vector, for i = 1, 2, . . . ,K, is defined as

Xi = (xi, xi+1, . . . , xi+L−1)
T .

Consequently, the trajectory matrix X is constructed as

X = [X1, X2, . . . , XK ] = (xij)
L,K
i,j=1, (1)
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that is,

X =


x1 x2 · · · xK
x2 x3 · · · xK+1
...

... . . . ...
xL xL+1 · · · xN

 .

In the second step of the decomposition, the SVD of the trajectory matrix is com-
puted. Assume that λ1, λ2, . . . , λL, are the eigenvalues of the matrix XXT (also re-
ferred to as the covariance matrix in this context), sorted in descending order of mag-
nitude such that λ1 > λ2 > · · · > λL ≥ 0. Let U1, U2, . . . , UL denote the corresponding
orthonormal eigenvectors (i.e., the principal components). Then, the SVD of the tra-
jectory matrix X can be expressed as

X = X1 + · · ·+Xd =

d∑
i=1

√
λi UiV

T
i , (2)

where d = rank(X) is the rank of the trajectory matrix, and

Vi =
XTUi√

λi

.

The triple (
√
λi, Ui, V

T
i ) is referred to as an eigentriple. Here,

√
λi is the i-th singular

value, and the set {
√
λ1, . . . ,

√
λL}, is termed the singular spectrum.

The objective of the third step, Grouping, is to identify and cluster the eigentriples
corresponding to distinct components of the original time series, such as trend, oscil-
latory (seasonal) patterns, and noise. Let the set of all eigentriples obtained from
the SVD be {(

√
λi, Ui, V

T
i )}di=1. The grouping procedure partitions the index set

{1, 2, . . . , d} into m disjoint subsets I1, I2, . . . , Im such that each subset Ij corresponds
to one meaningful component of the time series. Mathematically, the grouped matrix
for the j-th component is defined as:

XIj =
∑
i∈Ij

√
λi UiV

T
i , j = 1, . . . ,m.

The selection of eigentriples into each group is typically guided by the analysis of sin-
gular values (e.g., scree plot), eigenvectors (principal components), and pairwise cor-
relations of eigenvectors. In practice, components with slowly decaying singular values
often represent the trend, while oscillatory eigenvectors with similar singular values
capture periodic or quasi-periodic signals, and remaining small-magnitude eigentriples
are associated with noise.

The fourth and final step, Diagonal Averaging (also called Hankelization), converts
each grouped matrix XIj ∈ RL×K back into a time series of length N . Denote the re-
constructed time series corresponding to the j-th group as X̃(j)

N = {x̃(j)
1 , x̃

(j)
2 , . . . , x̃

(j)
N }.

The diagonal averaging operation is defined as

x̃
(j)
k =



1
k

k∑
i=1

x
(j)
i,k−i+1, 1 ≤ k < L,

1
L

L∑
i=1

x
(j)
i,k−i+1, L ≤ k ≤ K,

1
N−k+1

L∑
i=k−K+1

x
(j)
i,k−i+1, K < k ≤ N,
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where x
(j)
i,j are the entries of XIj . This averaging along the anti-diagonals ensures

that the reconstructed matrix is Hankel (all elements along each diagonal are equal),
yielding a one-dimensional time series. After applying diagonal averaging to all m
groups, the final reconstructed series is obtained as

X̃N =

m∑
j=1

X̃
(j)
N ,

where the contribution of each component can be analyzed separately or used for
further processing, such as denoising, forecasting, or feature extraction (Golyandina et
al., 2018).

2.1 Exponential weighted averaging for enhanced SSA
In the theory of SSA, the process of Hankelization plays a central role in signal re-
construction. According to the Theorem of Optimal Diagonal Averaging, the unique
Hankel matrix that minimizes the Frobenius norm distance from a given matrix is
obtained by taking the arithmetic mean along the anti-diagonals (Golyandina et al.,
2001). This establishes the arithmetic mean as the mathematically optimal choice for
Hankelization.

Building on this foundation, researchers have sought to improve averaging-based
filters in image processing. One of the earliest attempts was made by Momot et al.
(2005), who introduced Bayesian weighted averaging for two-dimensional image filter-
ing. Originally designed for noise reduction in electrocardiographic signals, this method
was shown to outperform arithmetic mean and median filters in biomedical image de-
noising. More recently, Wang et al. (2023) proposed a novel weighted averaging filter
based on the Atangana-Baleanu fractional integral operator to address salt-and-pepper
noise. Their method, which employs symmetric window mask structures and an iter-
ative scheme for handling high-density noise, demonstrated superior performance in
terms of peak signal-to-noise ratio (PSNR) and structural similarity (SSIM), while
also ensuring computational efficiency and preservation of image details.

Although diagonal averaging is mathematically justified as the optimal procedure
in the sense of minimizing the Frobenius norm distance, its practical limitations, such
as sensitivity to noise and the blurring of fine structural details, highlight the need for
more robust alternatives. Motivated by these shortcomings, this study employs EWA in
place of simple anti-diagonal averaging in the reconstruction stage of SSA. By assigning
larger weights to elements that are spatially or temporally closer to the reconstruction
point and gradually decreasing the weights of more distant elements, EWA effectively
suppresses random noise while preserving the dominant structures of the signal or im-
age. Consequently, the method not only improves noise reduction but also enables
more accurate reconstruction of fine-scale details. Furthermore, the presence of a de-
cay parameter in EWA introduces flexibility, allowing for a tunable balance between
noise suppression and detail preservation, and thereby ensuring adaptability to various
noise levels and structural complexities of the data. This approach is applicable to
each channel of color images (RGB), either independently or considering inter-channel
correlations, making it suitable for SSA–PCA-based denoising frameworks.



Color image denoising using a hybrid algorithm 120

In the reconstruction stage of SSA, instead of using the simple average along the
anti-diagonals of the Hankel matrix, an EWA is applied. Let the reconstructed matrix
be X ∈ RL×K . The reconstructed signal at time position t is defined as

x(t) =

∑
i+j−1=t ωi,j Xi,j∑

i+j−1=t ωi,j
, t = 1, 2, . . . , N. (3)

where the weights are given by an exponential function depending on the distance from
the center

ωi,j = exp(−α|t− c|) , c =
N + 1

2
, α ≈ 0.05. (4)

Here, t = i+j−1 is the time index corresponding to element Xi,j , c is the center of the
reconstructed signal, and α > 0 is the decay parameter that controls the contribution
of elements based on their distance from the center. If α → 0, the exponential weighted
average reduces to the simple diagonal averaging used in classical SSA. For larger α,
elements closer to the center dominate the reconstruction. This approach emphasizes
the central structure of the signal, leading to improved denoising performance while
preserving the main patterns.

3 Color image denoising based on SSA
Rodríguez-Aragon and Zhigljavsky (2010), in their seminal research titled “Singular
Spectrum Analysis for Image Processing,” utilized a two-dimensional extension of SSA,
termed 2D-SSA, for image denoising. In this methodology, local patches are extracted
from the image. Noise is then removed by applying the SVD to these patches, followed
by their reconstruction.

A digital image is fundamentally represented as a matrix of intensity or color values.
In single-channel grayscale images, each matrix element represents a pixel’s brightness
level. In contrast, color images are typically represented by three such matrices, each
corresponding to the Red, Green, and Blue (RGB) color channels (Saeedi-Zarandi,
2021). Crucially, this approach did not account for the inherent correlation between the
three image channels; each matrix (R, G, B) was decomposed and denoised separately.
This omission is significant, as numerous studies have established that substantial
correlation exists between the red, green, and blue color channels (Ghasemi et al.,
2022).

While SSA has gained traction in recent years for its proven ability to effectively
separate noise components from non-linear signals, its application in image processing is
not without limitations. For instance, studies such as Zou et al. (2023) have highlighted
a key limitation of SSA: its tendency to over-smooth fine details and edges, particularly
in ultrasound images. Furthermore, processing the channels independently leads to a
lack of coordinated spectral processing, often resulting in color artifacts and inconsis-
tencies in the final output. This disjointed approach fails to exploit the inter-channel
correlations, potentially introducing distortions and suboptimal denoising performance
in color images.

Li and Wu (2025) proposed a novel hybrid-domain synergistic transformer frame-
work, termed HDST, for hyperspectral image denoising. Unlike conventional ap-
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proaches that focus on either spatial or spectral features, their method simultane-
ously exploits spatial, spectral, and frequency domains to better capture the inherent
correlations in hyperspectral data. The framework integrates a frequency-domain pre-
processing module using fast Fourier transform (FFT) with multi-band convolution to
separate noise components, followed by a cross-domain attention mechanism that adap-
tively fuses spatial textures with frequency priors. Moreover, the hierarchical network
design allows shallow layers to address large-scale noise statistics, while deeper layers
concentrate on restoring fine structural details. Experimental results on both real and
synthetic datasets demonstrated that HDST achieves superior denoising performance
compared to existing techniques, while maintaining computational efficiency.

In many denoising scenarios, the decision to preserve or remove a pixel’s value
inherently involves a degree of uncertainty. Addressing this, Ghasemi and Yousefine-
jad (2025) argued that Fuzzy Logic provides a framework for continuous, non-binary
decision-making. Consequently, a hybrid denoising strategy that synergistically com-
bines the strengths of multiple methods has the potential to significantly improve
performance metrics for image denoising.

Therefore, the proposed model of the present research aims to enhance denoising
performance for color images by integrating SSA with PCA. This hybrid approach is
specifically designed to model the dependencies between color channels and leverage
the multi-dimensional information within the image. In other words, to effectively
address the challenge of reducing inter-channel correlation in the three-color matrices,
the proposed framework of this study should be adopted. In summary, this research
seeks to develop a statistical modeling framework based on SSA and complementary
techniques such as exponentially weighted averaging and the optimization of key pa-
rameters (the window length L and the reconstruction rank r in SSA) to significantly
increase the efficacy of the color image denoising process.

4 Evaluation of the proposed model
In order to objectively evaluate the performance of the proposed model in enhancing
image quality and reducing noise, it is necessary to utilize standard and reliable metrics.
This study employs two widely used and conventional criteria:

Peak Signal-to-Noise Ratio (PSNR): This metric is calculated based on the
Mean Squared Error (MSE) and represents the ratio between the maximum possible
power of the signal and the power of corrupting noise. A higher PSNR value indicates
superior image quality. The PSNR is defined as follows

PSNR = 10 · log10

(
MAX2

MSE

)
, (5)

where MAX is the maximum achievable value in the input image data type (e.g., 255
for 8-bit images), and MSE represents the Mean Squared Error between the original
and denoised images (Moreno López et al., 2021).

Structural Similarity Index (SSIM): This index measures the structural simi-
larity between the denoised image and the original reference image. It is defined within
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the range [−1, 1], where a value closer to 1 indicates a high degree of structural simi-
larity. The SSIM is a perceptual metric that incorporates comparisons of luminance,
contrast, and structure. It is computed as

SSIM =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
, (6)

where
• µx and µy are the local means of the reference and the distorted image patches,
respectively,
• σ2

x and σ2
y represent the variances of the reference and the distorted image patches,

respectively,
• σxy denotes the covariance between the reference and distorted patches,
• C1 and C2 are constants included to avoid division by zero and ensure numerical
stability. In this paper, their values are determined following the approach of Peng et
al. (2020).

These metrics provide a comprehensive assessment of both pixel-level accuracy
(PSNR) and perceptual quality (SSIM), ensuring a robust evaluation of the denois-
ing performance (Horé and Ziou, 2010).

5 Theoretical foundations and methodology of the
SSA–PCA framework

To effectively address the problem of color image denoising in the presence of mixed
noise, this study integrates PCA and SSA within a unified framework. The methodol-
ogy is designed to exploit both local spatial information and spectral correlations across
RGB channels, ensuring that noise components are attenuated without compromising
the fine structural details of the image.

The process begins by constructing local windows around each pixel to capture
neighborhood information and applying PCA for dimensionality reduction, which sep-
arates the dominant structural components from noise-dominated directions. Subse-
quently, SSA is employed on the reconstructed local signals, where the Hankel ma-
trix formulation and low-rank approximation enable the extraction of essential signal
patterns. To further improve reconstruction accuracy, exponential weighted diagonal
averaging is introduced, enhancing the contribution of significant components while
suppressing residual noise. This multi-stage approach provides a balance between
computational efficiency, structural preservation, and denoising performance. The fol-
lowing section first presents the theoretical background for determining the patch size
(∆) and the number of significant principal components in PCA. Subsequently, the
theoretical basis for EWA is discussed. Finally, the step-by-step implementation of the
algorithm in MATLAB is provided.

5.1 Theoretical background
Let I ∈ RM×N×3 be a clean RGB image, and let

Y = I + E ,
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be the observed noisy version, where E consists of Additive Gaussian Noise (AGN or
AWGN). In patch-based image denoising methods, the choice of the local patch size,
denoted by ∆, plays a critical role in the performance of the filter. A small initial
patch size, typically ∆ = 1 corresponding to a 3 × 3 window, is chosen as a starting
point. This size is large enough to compute meaningful local statistics, such as variance,
around the central pixel, while keeping the computational cost low. Starting from this
minimal patch, the algorithm allows for adaptive patch sizing, where ∆ can increase
in smooth or highly noisy regions, and remain small in textured areas to preserve fine
details Monagi and El-Sakka (2017); Buades et al. (2005); Dabov et al. (2007). This
approach is consistent with state-of-the-art patch-based methods, which show that
adaptive patch selection improves denoising performance across various noise levels
Monagi and El-Sakka (2017).

Similarly, the length of the SSA window, L, is chosen adaptively based on the size
of the patch and the local variance. The window must be large enough to capture the
main local signal trend but not so large as to oversmooth fine image structures. In the
proposed algorithm, L is set as a fraction of the total number of pixels in the patch,
allowing the SSA filtering to adjust automatically according to the local content, which
ensures an optimal trade-off between noise suppression and detail preservation.

For the determination of the effective number of principal components r in the PCA
step, the method of Singular Value Hard Thresholding (SVHT) proposed by Donoho
and Gavish Donoho and Gavish (2014) is used. Let X ∈ Rm×n denote a patch matrix
corrupted by additive Gaussian noise with variance σ2. The SVD of X is given by

X = U diag(σ1, σ2, . . . , σp)V
⊤, p = min(m,n),

where σi are the singular values. The number of significant principal components r is
determined via hard thresholding

r =

p∑
i=1

1
(
σi > τ∗

)
, τ∗ = ω(β) ·median(σi), β =

min(m,n)

max(m,n)
,

and 1(·) is the indicator function, and ω(β) is the optimal scaling factor defined as

ω(β) =

2.858, β ≤ 0.01,√
2(β + 1) + 8β

(β+1)+
√

β2+14β+1
, β > 0.01.

The reconstructed patch using the first r principal components is X̂ = (X−µ)Vr V
⊤
r +

µ, where µ = mean(X) and Vr ∈ Rn×r contains the first r right singular vectors. This
approach ensures that only the components related to the main signal are retained,
while components dominated by noise are discarded, providing an adaptive and theo-
retically justified selection of PCA components. It is demonstrated that EWA is a prin-
cipled generalization of classical diagonal averaging, derived as the unique minimizer
of a weighted Frobenius projection onto the Hankel manifold and formally presented
through a Bayesian heteroscedastic noise model. Classical SSA reconstructs the signal
using uniform diagonal averaging, which solves minH∈H ∥X−H∥F . To generalize this,
define the weighted Frobenius norm

∥A∥2W =
∑
i,j

ωi,jA
2
i,j , ωi,j > 0.
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The unique Hankel matrix minimizing minH∈H ∥X − H∥2W , is obtained via weighted
anti-diagonal averaging h⋆

t =
∑

i+j−1=t ωi,jXi,j∑
i+j−1=t ωi,j

, t = 1, . . . , L + K − 1. Choosing expo-
nential weights

ωi,j = exp(−α|(i+ j − 1)− c|), c =
L+K

2
, α > 0,

yields the EWA formulation.
For α → 0, classical SSA is recovered, noise-dominated contributions. with Bayesian

approach; If Xi,j = h(t) + εi,j , εi,j ∼ N (0, σ2
i,j), and noise variance increases with dis-

tance from the center, σ2
i,j ∝ eα|t−c|, the MAP estimator of h(t) is exactly the EWA

formula. Thus, EWA has both optimization-based and Bayesian optimality interpre-
tations.

Implications for SSA Reconstruction. By integrating exponential weighting into
the Hankelization step, the proposed method:
• reduces the influence of distant and potentially noisy elements,
• preserves fine-scale structures that tend to be blurred by uniform averaging,
• enhances the robustness of SSA to high noise levels,
• provides a tunable balance between noise suppression and detail preservation via the
decay parameter α.
Consequently, the reconstruction process becomes more adaptive to the underlying
signal characteristics and achieves superior denoising performance while maintaining
computational efficiency.

5.2 Step-by-step methodology
The following steps summarize the complete procedure employed in this study:
1. Image Loading: The original image and its noisy counterpart were loaded, where
the noise level was artificially introduced at 10%, 20%, and 30%.
2. Initial Control Parameters: The initial local window size ∆0, the SSA window-
length ratio Lpercent, and the noise-detection threshold αThr were initialized. Unlike
fixed-size frameworks, the proposed method dynamically adjusts ∆ during processing
based on local statistics.
3. Adaptive Local Window Selection: For each pixel (excluding boundary mar-
gins), an initial (1+2∆0)× (1+2∆0) patch was extracted. The variance of this initial
patch was computed, and the patch size was adaptively updated using

∆ = max

(
1, round

(
∆0

[
1 +

median(x)

Var(x)

]))
,

where x denotes the vectorized pixel intensities of the initial patch. Smooth regions
thus receive larger patches (stronger denoising), while textured regions receive smaller
patches (better detail preservation).
4. Noise Detection Prior to Processing: Before performing PCA or SSA, the
variance of the adaptively sized patch was compared with a data-dependent threshold:

Var(x) > αThr ·median(x).
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Only patches satisfying this criterion undergo PCA–SSA processing; otherwise, the
center pixel is left unchanged. This substantially reduces unnecessary computations in
smooth, low-noise areas.
5. Local PCA with Automatic Component Selection:
(a) The patch pixels from all RGB channels were rearranged into a matrix and mean-
centered.
(b) SVD was applied.
(c) The optimal number of principal components r was determined automatically using
the Donoho–Gavish universal threshold:

r = #{σi > τ },

where σi are singular values and τ = ω(β) ·median(σi) is the optimal hard threshold.
(d) The patch was reconstructed using the first r principal components.

This adaptive selection of r replaces fixed-component heuristics used in conventional
PCA denoising.
6. SSA: For each channel of the PCA-reconstructed patch, a 1D SSA model was
applied. The embedding dimension was chosen as

L = max(2, round(Lpercent ·N)) ,

where N is the patch vector length. A Hankel trajectory matrix was constructed and
its SVD was computed.
7. Diagonal EWA: The reconstructed Hankel matrix was transformed back into a
time series (image vector) by diagonal averaging, with exponential weighting applied
to enhance signal extraction.
8. Central Pixel Update: From the reconstructed SSA signal, the value correspond-
ing to the center of the adaptive patch was extracted and assigned to the corresponding
pixel of the filtered image.
9. Iterative Full-Image Reconstruction: Steps 3-8 were repeated for all pixels
until the entire denoised image was constructed.
10. Quantitative Evaluation: The denoised image was quantitatively evaluated us-
ing PSNR and SSIM to assess the performance of the adaptive PCA–SSA framework.

6 Experimental results of the proposed algorithm
The experimental evaluation conducted on the benchmark images Lenna and Flower,
which were degraded using AGN at noise levels of 10%, 20%, and 30%, demonstrates
the effectiveness of the proposed SSA-PCA algorithm. Additive Gaussian noise is
modeled as In(x, y) = I(x, y)+n(x, y), n(x, y) ∼ N (µ, σ2), where µ is the mean of the
noise (typically zero) and σ is the standard deviation (i.e., the noise intensity). The
noise samples are independent and identically distributed across all pixels, meaning
that the original image remains unchanged while a random perturbation is added to
each pixel. For illustration, consider an 8-bit image with pixel values in the range
0 ≤ I(x, y) ≤ 255. A noise level of 10% of the dynamic range corresponds to ap-
proximately σ ≈ 25, indicating that each pixel is corrupted by adding a random value
drawn from the specified Gaussian distribution. It is important to emphasize that the
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Figure 1: Experimental images “Lenna”, “Flower” and “Horse” under different noise conditions.
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original clean images and their Gaussian-degraded versions used in our experiments are
exactly aligned with those employed in the studies of Ghasemi and Safariyan (2024)
and Latorre-Carmona et al. (2020). This ensures that the observed performance im-
provements are not due to differences in random noise realization, but rather result
from a genuinely superior denoising capability on the same image conditions. By com-
bining local dimensionality reduction through PCA with adaptive reconstruction using
SSA, the method achieves noticeable improvements in visual quality compared with
conventional denoising approaches.

The quantitative results are presented in Table 1 (PSNR values) and Table ?? (SSIM
values). As expected, both indices decrease as the noise level increases, reflecting the
typical behavior of denoising algorithms under more challenging conditions. Never-
theless, the proposed model consistently outperforms the PCA-Bootstrap method of
Ghasemi and Safariyan (2024) and the EIG method of Latorre-Carmona et al. (2020).
For instance, at 30% noise in the Lenna image, SSA-PCA achieves 25.70 dB PSNR and
0.9451 SSIM, which are significantly higher than those obtained by the other methods.
For the Flower image, the improvements are also evident, although the margins are
slightly smaller due to its richer textural content. The same consistent behavior is
observed in the Horse image, where the proposed model maintains a clear advantage
across all noise levels. Notably, at 30% noise, SSA-PCA achieves 25.26 dB PSNR
and 0.7409 SSIM, while the competing methods experience a substantial performance
drop. This demonstrates the robustness of the proposed method in preserving struc-
tural information even in images with more complex textures and higher-frequency
details.

Table 1: Comparison of denoising performance (PSNR in dB) for “Lenna”, “Flower”
and “Horse” images.

Image Noise Level SSA-PCA PCA-Bootstrap EIG
PSNR in dB Lenna 10% 30.54 28.91 29.23

20% 28.33 26.85 27.14
30% 25.70 24.12 24.58

Flower 10% 28.45 27.32 27.65
20% 26.49 25.18 25.47
30% 24.86 23.41 23.79

Horse 10% 32.20 32.18 32.15
20% 27.33 25.11 24.63
30% 25.26 20.71 20.22

SSIM Lenna 10% 0.9812 0.9654 0.9721
20% 0.9672 0.9487 0.9539
30% 0.9451 0.9226 0.9315

Flower 10% 0.9492 0.9328 0.9384
20% 0.9012 0.8841 0.8927
30% 0.8427 0.8215 0.8296

Horse 10% 0.9317 0.9338 0.9321
20% 0.8290 0.7400 0.7365
30% 0.7409 0.5528 0.5437

The overall performance trends are illustrated in Figure 2, where PSNR and SSIM
values are plotted against noise levels. The results highlight the steady decline of both
metrics as noise increases, while consistently confirming the superior performance of
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SSA-PCA at each level. Figure 1 provides visual comparisons of the original, noisy,
and denoised versions of the Lenna, Flower and Horse images under different noise
levels (10%, 20%, and 30%). These visual results confirm that SSA-PCA preserves
structural information and image clarity even in high-noise scenarios. Finally, Figure 3
compares the proposed method with PCA-Bootstrap and EIG for the Lenna, Flower
and Horse image, demonstrating the superior performance of SSA-PCA, particularly
at higher noise levels (20% and 30%).

In summary, the proposed hybrid SSA-PCA model delivers robust denoising perfor-
mance across all tested conditions. Its advantages are most pronounced in high-noise
environments, highlighting its potential for practical applications in real-world image
processing tasks.

Figure 2: Variation of (a) PSNR and (b) SSIM values with different noise levels for the Lenna,
Flower and Horse images using the proposed SSA-PCA method.

Figure 3: Comparison of PSNR and SSIM indices for the proposed SSA-PCA model, PCA-Bootstrap,
and EIG algorithms on the test image Lenna ,Flower and Horse.
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7 Conclusion
The problem of noise removal in digital images is of fundamental importance due to its
direct impact on visual quality and the performance of subsequent tasks such as im-
age processing, pattern recognition, segmentation, and compression. Nevertheless, the
inherent limitations of single-model approaches necessitate the development of hybrid
frameworks grounded in solid statistical and mathematical principles. In this regard,
the proposed SSA-PCA model was designed to exploit the complementary strengths of
two methods. PCA, with its ability to separate the main signal from noise components,
and SSA, with its capability to extract trends and hidden patterns in reconstructed
data, together provide a statistically stable framework for image denoising. This syn-
ergy results in superior preservation of structural details and a substantial reduction
in noise levels.

From a quantitative perspective, experimental evaluations on benchmark images
such as Lenna and Flower demonstrated that the proposed model achieved significantly
higher PSNR and SSIM values compared to PCA-Bootstrap and EIG-based algorithms.
Based on the obtained results, it can be concluded that the proposed hybrid model is
effective in noise reduction, while also improving PSNR and SSIM, enabling more ac-
curate reconstruction of image structures, and outperforming the existing methods.
These findings highlight the necessity of employing hybrid approaches based on sta-
tistical and mathematical analyses for image denoising and open new avenues for the
development of more advanced algorithms in this field. It is worth noting that the
present study specifically addresses additive Gaussian noise (AGN). Consequently, the
performance of the proposed SSA-PCA method under other types of noise, or at ex-
tremely high noise levels (e.g., above 50%), has not been evaluated. As suggested,
future work will consider extending the evaluation to different noise models, includ-
ing real sensor-dependent noise, and exploring potential enhancements to broaden the
applicability of the method in practical image processing tasks.
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