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Abstract: The mixture of experts framework is widely utilized in statistics and ma-
chine learning to address data heterogeneity in tasks such as regression, classification,
and clustering. In clustering continuous data, the mixture of experts typically em-
ploys experts that follow a Gaussian distribution. However, outliers can adversely
affect clustering outcomes. To address this issue, various methods have been proposed
in the literature. In this paper, we introduce a novel approach that models the ex-
perts using the symmetric α-stable distribution. This flexible distribution effectively
accommodates different types of outliers (especially extreme outliers) and skewness,
while also encompassing Gaussian experts as a special case when α = 2. The maxi-
mum likelihood estimates of the model parameters (excluding α) are obtained using
an expectation-maximization approach, while α is estimated using Monte Carlo inte-
gration and interpolation. The effectiveness of this approach is demonstrated through
analyses of both real and simulated data.
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1 Introduction
The mixture of experts (MoE) model, introduced by Jacobs et al. (1991), has garnered
significant attention in both statistics and machine learning. This model is charac-
terized by a fully conditional mixture framework, where both the mixing proportions-
known as gating functions-and the component densities-referred to as experts-are con-
ditioned on specific input covariates. The MoE has been extensively studied in both
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its simple and hierarchical forms, as discussed in Jordan and Jacobs (1994) and de-
tailed in Section 5.12 of McLachlan and Peel (2000). Applications of MoE span various
domains, including regression, model-based clustering, and discriminant analysis. A
comprehensive review of MoE models can be found in the work of Yuksel et al. (2012).

In the context of continuous data, specifically within non-linear regression and
model-based clustering, MoE typically employs normal experts, known as the normal
mixture of experts (NMoE). However, it is well-documented that the normal distribu-
tion is sensitive to outliers, rendering NMoE unsuitable for datasets that exhibit noise.
Additionally, when dealing with datasets containing groups of observations character-
ized by heavy tails, the use of normal experts may be inappropriate and can adversely
affect the overall fit of the MoE model.

There are two categories of atypical observations: mild and gross (Ritter, 2014).
Mild outliers are points that deviate from the distribution within a cluster, but they
would fit well if the distribution inside the cluster as a whole had heavy(er) tails or
some (more) skewness. Gross (extreme) outliers, on the other hand, are points that
are far from any of the elements (Farcomeni and Punzo, 2020). Chamroukhi (2016)
used the t-distribution for modeling mild outlier data in the mixture of experts model.
His model, which we denote as TMoE, performs better than the NMoE model in the
presence of outlier data.

In this paper, we propose an enhanced and robust MoE model that addresses these
limitations by incorporating symmetric α-stable (SαS) distributions as experts. The
adoption of SαSs allows for better handling of heavy-tailed and atypical (particularly
gross) data, thereby improving the model’s robustness and applicability in real-world
scenarios. Our approach aims to extend the capabilities of traditional MoE frameworks
while maintaining interpretability and computational efficiency.

The rest of the paper is organized as follows. The α-stable distribution is introduced
in Section 2. The symmetric α-stable mixture of experts (SαSMoE) and an EM-type
algorithm to obtain maximum likelihood estimates of the model parameters are outlined
in Section 3. Some simulation studies, described in Section 4, are designed to compare
the SαSMoE to some existing methods, and they demonstrate the effectiveness of the
proposed model. In Section 5, some applications to real data are illustrated. The paper
concludes with the discussion in Section 6.

2 The α-stable distribution
Stable (or α-stable) distributions are a diverse family of probability distributions known
for their ability to exhibit skewness and heavy tails. This class of distributions possesses
many interesting mathematical properties. Initially introduced by Paul Lévy (Lévy,
1925) in his study of sums of independent and identically distributed random variables,
these distributions received little practical attention until Benoît Mandelbrot employed
them in (Mandelbrot, 1961). In that work, he also proposed a simple algorithm for es-
timating their parameters. Mandelbrot labeled these distributions as “stable Paretian
distributions,” with a particular emphasis on those exhibiting maximal skewness in the
positive direction, specifically for 1 < α < 2, which he referred to as “Pareto-Lévy dis-
tributions.” He considered these distributions to provide more accurate representations
of stock and commodity prices than normal distributions (Mandelbrot, 1963b).
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The univariate α-stable distribution is characterized by four parameters: the index
of stability (shape) α ∈ (0, 2], skewness η ∈ [−1, 1], scale γ > 0, and location µ ∈ R.
The notation Y ∼ S(α, η, γ, µ) is commonly used to denote that the random variable
Y follows a stable distribution with the aforementioned parameters, and we denote the
density function of Y by S(y;α, η, γ, µ).

Stable distributions lack closed-form density functions, necessitating numerical meth-
ods and characteristic functions for property analysis. Various parameterizations exist
for stable distributions; however, they converge when using the SαS distribution. We
employ one such parameterization, where the characteristic function of a stable random
variable S(α, η, γ, µ) is defined as follows

ϕ(w) =

{
exp(−|wγ|α[1− isign(w)η tan(πα2 )] + iµw) α ̸= 1

exp(−|wγ|[1 + i 2π sign(w)η log(|w|)] + iµw) α = 1,
(1)

where sign(·) is the sign function, and i =
√
−1. Although, in general, there is no

analytical form for the probability density function (PDF) of the α-stable distribution,
the PDF of the α-stable distribution is obtained by taking the inverse Fourier transform
of the characteristic function, which can be calculated by evaluating the following
integral (Salas-Gonzalez et al., 2009):

S(y;α, η, γ, µ) =
1

2π

∫ +∞

−∞
ϕ(w) exp(iwy)dw.

As important special cases, positive stable distributions have η = 1 and α < 1, while
symmetric α-stable distributions centered around µ have η = 0. As an example, a box
and density function plots of a random variable S(1.25, 0, 1, 0) is shown in Figure 1,
which indicates outlying and heavy-tailed data in this distribution. For more infor-
mation on stable distributions, one can refer to Nolan (2009) and Samorodnitsky and
Taqqu (1994).

The SαS distribution generalizes the normal distribution, with tail weight adjusted
by the parameter α. This makes SαS suitable for modeling normal data and accom-
modating various outlier types, which are crucial in robust statistics. The α-stable
distribution is applied in finance for asset returns and volatility modeling, as well as
in signal processing and image analysis for non-Gaussian noise. However, it poses an-
alytical challenges and often requires numerical methods for estimation and inference.

The SαS distribution is the most significant subclass of α-stable distributions. From
(1), it can be observed that the Gaussian distribution with mean µ and variance γ2
is represented as S(2, 0, γ√

2
, µ). The SαS distributions are obtained by multiplying

a Gaussian distribution by the square root of a positive α-stable distribution. This
relationship can be formally defined as follows.
Definition 2.1. (Scale mixtures of normals of SαS) Suppose U is a zero-mean
Gaussian random variable with variance σ2, and let P ∼ S

(
α
2 , 1,

(
cos

(
πα
4

)) 2
α , 0

)
be a positive stable random variable, independent of U . Then, the random variable
Y = µ+

√
PU follows the distribution S(α, 0, σ√

2
, µ), where µ is a constant.

The variance of the α-stable distribution diverges to infinity when α < 2 (Nolan,
2009). This property allows models based on the α-stable distribution to exhibit in-
creased robustness in the presence of gross outliers in the data. Moreover, the SαS
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Figure 1: Density plot and box plot of S(1.25,0,1,0).

distribution satisfies the generalized central limit theorem, which states that the only
possible non-trivial limit of normalized sums of independent identically distributed
random variables is stable. Specifically, a normalized sum of independent and identi-
cally distributed random variables converges in distribution to an α-stable distribution
(with SαS being a special case of this family). This feature is particularly important in
various applications, such as financial modeling (Kring et al., 2009; Zarei et al., 2019).

According to Definition 2.1, the SαS distribution possesses the scale mixtures of
normals (SMiN) property. SMiN indicates a symmetric stable distribution in a condi-
tionally Gaussian form. This characteristic enables the direct application of standard
procedures based on the Gaussian distribution in statistical inference involving models
that include SαS terms. The desirable properties of the SαS distribution, as stated,
are our motivation for using this distribution in the mixture of experts model.

3 Symmetric α-stable mixture of experts
MoE is basically an extension of finite mixture regression models (Goldfeld, and Quandt,
1973). These models have been widely utilized across various fields, including business,
marketing, and social sciences, to investigate the relationships among data from nu-
merous unidentified latent homogeneous groups. For additional details and references
on this topic, please consult Yao et al. (2014) and Bai et al. (2012).

Assume that Z is a latent class variable. Given Z = g, the relationship between the
response y and the (p+1)-dimensional predictor x (where x comprises both predictors
and the constant 1) is modeled as follows

y = µ(x;βg) + ϵg, g = 1, . . . , G,

where G represents the number of components in mixture models, and ϵg ∼ N(0, σ2
g),
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which indicates a normal distribution with mean 0 and variance σ2
g . Additionally,

βg = (βg0, βg1, . . . , βgp)
T . Let P (Z = g) = πg for g = 1, . . . , G, and assume that Z is

independent of x. Then, the conditional density of Y given x, without observing Z, is
expressed as

f(y | x,θ) =
G∑

g=1

πgϕ
(
y;µ(x;βg), σ

2
g

)
,

where ϕ(·) is the density function of the Gaussian distribution with mean µ(x;βg) and
variance σ2

g , and θ =
(
π1,β1, σ

2
1 , . . . , πG,βG, σ

2
G

)T .
In the MoE framework, the mixing proportions are modeled as a function of certain

covariates r (or formally, a concomitant variable). These are typically modeled using
a logistic or softmax function, which may be the same as x (Chamroukhi, 2016).

Motivated by the considerations in Section 2, we aim to accommodate data with
atypical observations by considering the expert distributions as S(α, η = 0, γ, µ). The
proposed G-component SαSMoE is defined as follows

f(y | r,x;Ψ) =

G∑
g=1

π(r; δg)S (y;αg, ηg = 0, γg, µ(x;βg)) , (2)

where Ψ =
(
δT1 , . . . , δ

T
G−1,Ψ

T
1 , . . . ,Ψ

T
G

)T , and Ψg =
(
αg, γg,β

T
g

)T is the parameter
vector for the gth expert component, which follows an symmetric α-stable distribution.
The location parameter is defined as µ(x,βg) = xTβg = βT

g x, where βg ∈ Rp.
Similar to the approach outlined in Chamroukhi (2016), we assume that the mixing

proportions are given by

π(r; δg) = P(Z = g | r; δg) =
exp

(
δTg r

)∑G
ℓ=1 exp

(
δTℓ r

) , (3)

where r ∈ Rq is a covariate vector, δg is the q-dimensional coefficient vector associ-
ated with r, and δ =

(
δT1 , . . . , δ

T
G−1

)T is the parameter vector of the gating network.
Notably, δG is set to the zero vector to ensure that

∑G
g=1 πg(r; δg) = 1. Thus, the

SαSMoE model constitutes a fully conditional mixture model where both the mix-
ing proportions (the gating functions) and the component densities (the experts) are
conditional on predictors (respectively denoted here by r and x).

3.1 Parameter estimation in SαSMoE
To estimate the SαSMoE parameters, we extend the methodology explained by Zarei
and Mohammdpour (2020) into a new EM algorithm based on different sampling
schemes. The core idea behind the expectation-maximization (EM) algorithm is to find
a latent (hidden) variable whose probability density function depends on the parameter
of interest (in this case, α) such that maximizing the latent variable’s distribution is
more tractable than maximizing the main variable’s distribution (Roche, 2011). To hit
this end, let yi, i = 1, . . . , n be a sample from population Y , where n is the sample
size.
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According to Definition 2.1, we can express the distribution of SαS conditionally as
a Gaussian distribution. Consequently, statistical inference based on Gaussian distri-
bution is applicable. However, in this case we have to deal with the positive α-stable
distribution. As previously mentioned, there is no closed-form expression for this dis-
tribution. Therefore, we treat this random variable as a latent random variable.

Let y1, . . . , yn, p1, . . . , pn and z1, . . . , zn be the complete data corresponding to (2)
where yi and pi, i = 1, . . . , n, are observed and missing data, respectively. Furthermore,
z1, . . . , zn are the G-dimensional component labels in which zig = 1 if ith observation
comes from gth component (zig = 0 , otherwise). According to Definition 2.1, Yi for
i = 1, . . . , n is related to a positive stable random variable and a Gaussian random
variable as

Yi
d
=µ(xi,β) +

√
PiUi,

where Pi is a positive α-stable random variable with the tail index α (α < 1), Ui is
a zero-mean Gaussian random variable with variance σ2 and µ(xi,β) is the location
parameter for Yi and d

= denotes equality in distribution. Thus, we have

Yi | Pi = pi, Zig = 1 ∼ N
(
µ(xi,βg), piσ

2
g

)
, (4)

Pi | Zig = 1 ∼ S

(
αg

2
, 1,

(
cos

(παg

4

)) 2
αg
, 0

)
, (5)

for g = 1, . . . , G and i = 1, . . . , n. Because of the conditional structure of the complete
data distributions (4) and (5), the complete data log-likelihood function is

logLc(Ψ) = log

n∏
i=1

f(yi, pi, zi;Ψ) =

n∑
i=1

G∑
g=1

zig

[
log(P(Zi = g | ri; δg))

+ log(fPi|Zig
(pi | Zig = 1)) + log(fYi|Pi,Zig

(yi | pi, Zig = 1,xi))

]
.

Thus, from (4) and (5), the complete-data log-likelihood of ψ is given by

lc(ψ) = C +

G∑
g=1

n∑
i=1

zig log (π(ri; δg)) +

G∑
g=1

n∑
i=1

zig log (fP (pi | αg))

−1

2

G∑
g=1

n∑
i=1

zig log
(
σ2
g

)
− 1

2

G∑
g=1

n∑
i=1

zig (yi − µ(xi,βg))
2
(piσ

2
g)

−1,

where C is a constant and free from αg, σ
2
g ,βg and δg, and for g = 1, . . . , G, σ2

g = 2γ2g .
Furthermore, fP (.) is the probability density function of positive α-stable random
variable P .

3.2 E-step
The E-step in the (t+ 1)th iteration requires calculating

Q
(
ψ | ψ(t)

)
=Eψ(t) (lc(ψ) | y1,x1, r1, . . . , yn,xn, rn)
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=C +

G∑
g=1

n∑
i=1

e
(t)
zig log (π(ri; δg))

+

G∑
g=1

n∑
i=1

e
(t)
zigEψ(t) (log (fP (pi | αg)) | yi,xi, ri)

−1

2

G∑
g=1

n∑
i=1

e
(t)
zig log(σ

2
g)−

1

2

G∑
g=1

n∑
i=1

e
(t)
zige

(t)
pig (yi − µ(xi,βg))

2
σ−2
g . (6)

To this end and since xi and ri for i = 1, . . . , n are not random vectors, we should cal-
culate e(t)zig = Eψ(t) (Zig | yi) and e

(t)
pig = Eψ(t)

(
P−1
i | yi

)
for g = 1, . . . , G, i = 1, . . . , n

and ψ(t) =
(
π(ri; δg)

(t), α
(t)
g , σ2(t)

g , µ
(t)
g

)
. It is easily shown that

e
(t)
zig =

π(ri; δ
(t)
g )S(yi;α

(t)
g , 0, γ

(t)
g , µ(xi,β

(t)
g ))∑G

l=1 π(ri; δ
(t)
g )S(yi;α

(t)
g , 0, γ

(t)
g , µ(xi,β

(t)
g ))

.

Since there is no closed-form for stable densities, we calculated e(t)zig and e(t)pig numerically
using functions in the STABLE package in R software available at http://www.robust
analysis.com and Monte Carlo integration (for computing e(t)pig see Appendix).

3.3 M-step
In the M-step, we maximize the expected complete-data log-likelihood obtained from
the E-step to update our parameter estimates. Each M-step of our algorithm, on the
same iteration, has three parts.

3.3.1 First part: Updating gating weights

 In the first part, we focus on updating the gating weights. Since there is no analytical
solution for updating the gating network parameters, the update for the component
weight parameters is obtained via a numerical optimization step. Similar to Cham-
roukhi (2016), this optimization is performed using the Iteratively Reweighted Least
Squares (IRLS) algorithm. We aim to update the parameter vector δg, which appears
in the following objective function

Q(δg;Ψ
(t)) =

G∑
g=1

n∑
i=1

e
(t)
zig log (π(ri; δg)) .

Alternatively, based on equation (3), the objective function can also be expressed as

Q(δg;Ψ
(t)) =

n∑
i=1

G∑
g=1

e
(t)
zig

[
rTi δg − log

{
G∑

ℓ=1

exp
(
rTi δℓ

)}]
.

The IRLS algorithm is employed to maximize Q(δg;Ψ
(t)) with respect to the vector

δg for each component g = 1, . . . , G−1 where δG = 0. The IRLS algorithm is a Newton–
Raphson method that iteratively updates the estimate of δg. Starting with an initial
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vector δ(0)g , the update at the (t+ 1)-th iteration is given by

δ(t+1)
g = δ(t)g −

[
∂2Q(δg;Ψ

(t))

∂δg∂δTg

∣∣∣
δg=δ

(t)
g

]−1
∂Q(δg;Ψ

(t))

∂δg

∣∣∣
δg=δ

(t)
g

,

where ∂2Q(δg ;Ψ
(t))

∂δg∂δTg
and ∂Q(δg ;Ψ

(t))
∂δg

are the Hessian matrix and the gradient vector of
Q(δg;Ψ

(t)) with respect to δg, respectively. The gradient vector of Q(δg;Ψ
(t)) is given

by
∂Q(δg;Ψ

(t))

∂δg
=

n∑
i=1

e
(t)
zig

[
ri −

exp(rTi δg)∑G
ℓ=1 exp(r

T
i δℓ)

ri

]
.

Furthermore, the Hessian matrix of Q(δg;Ψ
(t)) is given by

∂2Q(δg;Ψ
(t))

∂δg∂δTg
= −

n∑
i=1

e
(t)
zig

 exp(rTi δg)∑G
ℓ=1 exp(r

T
i δℓ)

rir
T
i − (exp(rTi δg))

2rir
T
i(∑G

ℓ=1 exp(r
T
i δℓ)

)2

 .
3.3.2 Second part: Estimation of βg and σ2

g

In the second part, with taking the derivative of Q
(
ψ | ψ(t)

)
with respect to βg and

σ2
g , these parameters are updated for gth component in (t+ 1)th iteration as follows

β(t+1)
g =

∑n
i=1 e

(t)
zige

(t)
pigyixi∑n

i=1 e
(t)
zige

(t)
pigxixT

i

,

σ2(t+1)
g =

∑n
i=1 e

(t)
zige

(t)
pig(yi − β

(t+1)T
g xi)

2∑n
i=1 e

(t)
zig

.

3.3.3 Third part: Estimation of αg

To estimate αg for g = 1, · · · , G, we consider (6) and aim to maximize the function

ℓαg
(θ) =

n∑
i=1

e
(t)
zigEψ(t) (log (fP (pi | αg)) | yi,xi, ri) , (7)

with respect to αg. Since αg is a parameter of a random variable with positive stable
distributions that has no analytical form of PDF, the stochastic EM (SEM; Celeux and
Diebolt (1985); Roche (2011); Zarei and Mohammdpour (2020)) algorithm is typically
used for updating αg, for g = 1, . . . , G. In SEM, the auxiliary function ℓαg (θ) is approx-
imated by the conditional distribution of the unobserved variable, given the observed
variables (Roche, 2011). A random sample is then generated from this conditional
distribution, and the parameter value that maximizes the marginal density function of
the unobserved variable serves as an estimate for the parameter of interest. However,
direct sampling from the conditional distribution is not feasible, and rejection sampling
is often employed. Consequently, this method can be computationally expensive and
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time-consuming. To address these challenges, we propose a simple and efficient method
based on interpolation.

Similar to the calculations performed for the approximation of epig (see Appendix),
we have

E (log (f(pi;αg)) |yi,xi, ri) ≈

∑B
b=1 log(f(p

mc
bi ;αg))p

mc
bi

(−1
2 ) exp

{
−(yi−µ(xi,βg))

2

2pmc
bi σ2

g

}
∑B

b=1 p
mc
bi

(−1
2 ) exp

{
−(yi−µ(xi,βg))2

2pmc
bi σ2

g

} .

Therefore, (7) can be approximated as

ℓαg
(θ) ≈

n∑
i=1

e
(t)
zig

∑B
b=1 log(f(p

mc
bi ;αg))p

mc
bi

(−1
2 ) exp

{
−(yi−µ(xi,βg))

2

2pmc
bi σ2

g

}
∑B

b=1 p
mc
bi

(−1
2 ) exp

{
−(yi−µ(xi,βg))2

2pmc
bi σ2

g

}
 .

The proposed method operates as follows: In the t-th iteration, we first generate a sam-
ple of size B from the positive α-stable distribution for each i, denoted as pmc

1i , · · · , pmc
Bi .

Then, we initialize αg to a value, for example, 0.5. By substituting the updated values
of the other unknown parameters, we calculate the value of the approximated log-
likelihood for αg = 0.5. Next, we incrementally increase the value of αg (e.g., by 0.01)
and recalculate the sum. The value of αg that yields the largest value of the sum is
taken as the estimated value for αg. In other words, after generating the Monte Carlo
samples, we employ a trial-and-error approximation method to estimate αg, where
smaller step sizes yield more precise results. It is worth noting that generating random
numbers from the positive alpha-stable distribution, calculating the values of the den-
sity function at specific points, and performing other computations related to α-stable
distributions can be efficiently done in the R software using the STABLE package.

4 Model evaluation of SαSMoE

In this section, to evaluate the performance of the proposed robust model represented
by SαSMoE and to compare with NMoE and TMoE models, we do some simulations.

4.1 Determining the number of mixture components
In practice, since true label values are unknown, well-known indicators such as the
Bayesian information criterion (BIC) (Schwarz, 1978) can be used to select the appro-
priate model and the number of components, which is defined as

BIC = 2 log(L(θ̂))−m log(n),

where θ̂ is the maximum likelihood estimate of θ, log(L(θ̂)) is the logarithm of the
maximum value of the observed likelihood function, and m is the total number of free
parameters in the model. In the proposed model, m = q(G−1)+G+G+pG, where the
first term is related to the mixture weights δg, and the second term to the parameters
of Y |x, i.e., αg, γg and βg, for g = 1, . . . , G.
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4.2 Stopping rule and initialization
Since the data may contain outliers, we use the results from the k-median clustering
(Jain and Dubes, 1988) method with k = G to determine initial values. This means
that after partitioning the data into G groups based on k-median, we estimate the
values of αg, γg, and βg for g = 1, . . . , G using the STABLE package, which will be
used as initial values. In addition, we use results obtained from clustering with NMoE
for estimating initial values of δg.

As a general rule, the algorithm stops when the relative change in the log-likelihood
of the observed data, i.e.,

logL(ψ(t+1))− logL(ψ(t))

| logL(ψ(t))|
,

reaches a specified threshold (for example, ϵ = 10−4). We refer to this stage as the
burning time. It should be noted that since the values of αg are estimated through a
stochastic EM algorithm, the algorithm may not converge uniformly and may exhibit
slight oscillatory behavior. Therefore for a more robust estimation of the parameters,
the algorithm was executed for an additional ten runs post-convergence. We then
computed the mean value across these runs to serve as the final parameter estimate.

4.3 Identifiability of the SαSMoE model
The identifiability of mixture models is a known challenge. Our model, similar to many
other mixture distributions, isn’t inherently identifiable due to the permutational in-
variance of its components. This means we can reorder the component labels without
altering the likelihood function. Jiang and Tanner (1999) established that ordered,
initialized, and irreducible MoEs are identifiable. Therefore, to address the identifi-
ability and the label switching problem, we impose identifiability constraints on our
model’s parameters. In our simulations, we tackled this by forcing the stability indices
to be in ascending order. During each iteration, we assigned the parameter estimates
with the smallest stability index to the first cluster, the second-smallest to the second
cluster, and so on. In practice, if the estimated α values are nearly equal, the algorithm
can be rerun. Following the strategy of Salas-Gonzalez et al. (2009), we then impose
an increasing order on the location parameters to ensure proper identifiability of the
components.

4.4 Simulation 1
Our generating setting is an extension of Experiment 1 in Chamroukhi (2016) and
similar to Simulation 1 in Zarei (2024). Each simulated sample consisted of n obser-
vations with increasing values of the sample size n: 200 and 400. The simulated data
are generated from a two component mixture of linear experts, that is G = 2 and
p = q = 1. The covariate variables (xi, ri) are simulated such that xi = ri = (1, xi)

T

where xi is simulated uniformly over the interval (−1, 1). For each generated sample,
we fit SαSMoE. The estimated values are averaged over 100 trials.

The true value of parameters, average of estimated values   for parameters across
simulation iterations (as estimated value for parameter), and for each model are given
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in Table 1. We also consider the empirical coverage probability (ECP) of the 95%
confidence intervals for the estimated parameters. The ECP is defined as the proportion
of simulated confidence intervals that contain the true parameter value. Furthermore,
the empirical mean squared error (EMSE) is calculated. For a parameter such as τ ,
with jth estimate τ̂ (j) across M simulations, for j = 1, . . . ,M , EMSE is defined as

EMSE =
1

M

M∑
j=1

(τ − τ̂ (j))2,

where M is the number of simulation runs performed.

Table 1: Parameter estimates (EMSE) and the ECP index for sample sizes n = 200
and n = 400.

Component Parameter True Estimated ECP Estimated ECP
value value value

n = 200 n = 400
Component 1 δ10 0 −1.622 (0.1232) 0.928 1.052 (0.0581) 0.951

δ11 8 11.893 (10.8958) 0.931 9.912 (8.1406) 0.948
β10 −0.05 −0.201 (0.0681) 0.926 −0.134 (0.0335) 0.949
β11 2 2.274 (0.0751) 0.930 2.103 (0.0392) 0.952
α1 1.4 1.272 (0.0008) 0.929 1.288 (0.0004) 0.950
γ1 0.250 0.279 (0.0615) 0.925 0.273 (0.0296) 0.947

Component 2 β20 0.05 0.549 (0.0253) 0.927 0.185 (0.0125) 0.953
β21 −2 −1.515 (0.0328) 0.932 −1.801 (0.0161) 0.949
α2 1.85 1.412 (0.0023) 0.928 1.537 (0.0011) 0.951
γ2 0.707 0.582 (0.0640) 0.930 0.613 (0.0317) 0.948

The analysis of Table 1 reveals that the estimation method performs well, with
the accuracy and precision of the estimates generally improving as the sample size
increases.

The estimated values are reasonably close to the true parameter values across most
components. For example, for Component 1, the true value of β11 is 2, and the esti-
mated values are 2.284 for n = 200 and 2.143 for n = 400. Similarly, for Component
2, the true value of β21 is −2, and the estimated values are −1.515 and −1.801 for
n = 200 and n = 400, respectively. The estimation of parameters such as δ10 and δ11
also shows good agreement, with the estimated values for n = 400 being closer to the
true values than for n = 200.

A key observation is the relationship between sample size and the quality of the es-
timates. As expected in statistical simulations, the EMSE values consistently decrease
when the sample size increases from n = 200 to n = 400. For instance, the EMSE
for δ10 decreases from 0.1232 to 0.0581. This trend is evident across all parameters,
underscoring the improved precision of the model as more data are included.

The ECP values, which indicate the proportion of times the true parameter value
falls within the confidence interval of the estimate, are consistently high, all above
0.925. This suggests that the confidence intervals generated by the estimation method
are reliable and provide good coverage. Notably, the ECP values also show a slight
increase from n = 200 to n = 400, moving closer to the nominal 0.95 level, which is a
desirable outcome indicating the robustness of the method. As previously mentioned,
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the δG parameters in the last component (here componentG = 2) are zero and therefore
are not estimated and are not included in Table 1.

To evaluate the performance of the MoE models (i.e., NMoE, TMoE, and SαSMoE)
in terms of clustering, we calculated the adjusted Rand index (ARI; Hubert and Arabie,
1985) for each simulation as a performance metric. We note that the expected value
of ARI is 0, and that a value of 1 indicates perfect classification. The average ARIs
for NMoE, TMoE, and SαSMoE were 0.417, 0.591, and 0.749 for n = 200, and 0.548,
0.653, and 0.825 for n = 400, respectively. These findings demonstrate that when the
data components follow SαS distributions, the SαSMoE model performs noticeably
better in clustering the data compared to NMoE and TMoE. Moreover, the ARI values
for all three models increase with the larger sample size, suggesting better clustering
performance with more data points. The superior clustering performance of SαSMoE
likely stems from its ability to better capture the underlying data structure when the
true distributions are SαS, leading to more accurate estimation of component-specific
parameters and thus better separation of the clusters. It should be noted that all
calculations pertaining to the NMoE and TMoE models have been conducted using
the meteorits R package Chamroukhi et al. (2019).

4.5 Simulation 2
In this subsection, we compare three methods-NMoE, TMoE, and SαSMoE-and present
a simulation study to demonstrate the effectiveness of the proposed method.

Similar to Yao et al. (2014) and Zarei (2024), we consider independently and iden-
tically distributed samples {(x1i, yi), i = 1, . . . , n} generated from the model:

Y =

{
4 +X1 + ϵ1 if Z = 1

−3−X1 + ϵ2 if Z = 2,

where Z is a component indicator for Y , with X1 ∼ N(0, 1), and ϵ1 and ϵ2 are model
errors. Furthermore, for the second component, δ2 = (0, 7)T . We consider the following
three cases for the error density of ϵ1 and ϵ2 with a sample size of n = 300:

Case I: ϵ1 ∼ N(0, 1) and ϵ2 ∼ N(0, 1) (standard normal distribution).
Case II: ϵ1 ∼ t3 and ϵ2 ∼ t3 (t-distribution with 3 degrees of freedom).
Case III: ϵ1 ∼ S(1.4, 0, 0.7, 0) and ϵ2 ∼ S(1.7, 0, 1.23, 0) (SαS distribution).
Case I represents a standard scenario with normally distributed errors. Case II

introduces heavy-tailed errors, often leading to mild outliers due to the heavy tails of
the t-distribution. Case III considers extreme outliers due to the heavy tails of the SαS
distribution. In fact, in case III, since α < 2, the variance of the distribution is infinite,
and there will be gross outliers in the generated data.

For each model and in each iteration of the simulation, we calculate the ARI value.
The averaged ARI values across the cases are as follows:
• Case I: SαSMoE: 0.851, NMoE: 0.842, TMoE: 0.841,
• Case II: SαSMoE: 0.753, NMoE: 0.595, TMoE: 0.764,
• Case III: SαSMoE: 0.740, NMoE: 0.515, TMoE: 0.613.
As expected, the presence of outliers, particularly in Case III, degrades the performance
of all models. However, the SαSMoE model demonstrates robustness to outliers, es-
pecially in Case III, where it significantly outperforms the other models. Since the
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normal distribution is a special case of the stable distribution, and by adjusting the
α parameter of the stable distribution, it can effectively model both mild and gross
outlier errors (in the data), the SαSMoE model exhibits good accuracy and competes
favorably with the other models across all considered cases.

5 Real data analysis
The dataset analyzed pertains to the tone perception data originally presented by
Cohen (1984). These data have been analyzed by Song et al. (2014) and Chamroukhi
(2016). In the context of regression, Song et al. (2014) proposed a mixture of Laplace
regressions. This model was later extended by Nguyen and McLachlan (2016) to a
mixture of experts, which they named the Laplace mixture of linear experts (hereafter
LMoE).

In the tone perception experiment, a pure fundamental tone was played for a trained
musician, who then adjusted an electronically generated tone with overtones added at
a specific stretching ratio (denoted as “stretch ratio” = 2). This ratio aligns with the
harmonic structures typically found in traditional pitched instruments. The musician’s
task was to tune an adjustable tone to match the octave above the fundamental fre-
quency, resulting in “tuned” measurements that reflect the ratio of the adjusted tone
to the fundamental. The dataset comprises n = 150 pairs. Similar to Chamroukhi
(2016) predictor xi = ri (for i = 1, . . . , 150) is the actual tone ratio and the response
yi is the perceived tone ratio.

The BIC values   for G = 2 and G = 3 are 208.954 and 192.824, respectively, which
indicates that the optimal number of components for our mixture of experts model
is 2. These results are consistent with the methodologies employed by Nguyen and
McLachlan (2016) and Chamroukhi (2016).

The estimated values for the stability indices, α1 and α2, are 1.377 and 1.097,
respectively. The estimated common parameters for the MoE models applied to the
tone perception dataset are summarized in Table 3.

Based on Table 3, the estimated parameter values across the different MoE models
(NMoE, LMoE, TMoE, and SαSMoE) appear to be quite similar for several parame-
ters, particularly β̂10 and β̂21. However, there are notable differences in the estimated
scale parameters (σ̂1 and in particular σ̂2) and parameters (δ̂10 and δ̂11), suggesting
that the choice of model has a significant impact on the estimation of these specific
characteristics. The LMoE model, lacks estimates for the scale parameters, as indi-
cated by the dashes. For more comparison, see Figure 2 which shows the data scatter
plot with the estimated regression lines produced by the different MoE models.

To compare the parameter estimates obtained from different methods, we employed
the bootstrap approach. Specifically, we generated 100 bootstrap samples by sampling
with replacement from the original dataset. For each bootstrap sample, parameter
estimates were computed using each method, and the standard deviation of these es-
timates across the 100 replications was calculated as a measure of precision. These
bootstrap standard errors are reported in parentheses in Table 3. Based on the boot-
strap standard errors, the SαSMoE method yields the most precise estimates overall.
TMoE performs well in several cases but is generally outperformed by SαSMoE, while
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NMoE and LMoE show higher variability. Bootstrap is a scientifically sound and
widely accepted method for estimating standard errors in such settings.

Table 2: The values of the BIC index in clustering tone perception dataset with different
mixture of experts methods. Bold number highlight the best performance.

NMoE LMoE TMoE SαSMoE
BIC 122.805 146.132 202.827 208.954

Table 3: Estimated common parameters for the MoE models applied to the tone per-
ception dataset (bootstrap-based standard errors in parentheses).

Parameter NMoE LMoE TMoE SαSMoE
β̂10 1.913 (0.652) 1.935 (0.487) 1.927 (0.115) 1.906 (0.112)
β̂11 0.043 (0.197) 0.025 (0.168) 0.037 (0.105) 0.049 (0.205)
β̂20 -0.029 (0.956) 0.004 (0.833) 0.002 (1.213) 0.012 (1.178)
β̂21 0.995 (0.992) 0.997 (0.987) 0.999 (1.0310) 0.996 (0.074)
σ̂1 0.0471 (0.128) - 0.0430 (0.178) 0.0673 (0.169)
σ̂2 0.1373 (0.186) - 0.0025 (0.079) 0.0005 (0.007)
δ̂10 -2.682 (2.191) -0.421 (1.433) -0.219 (1.086) -2.717 (0.981)
δ̂11 0.793 (1.089) 0.091 (0.923) 0.026 (0.543) 0.805 (0.556)

Figure 2: Scatter plot with fitted regression lines of NMoE, LMoE, TMoE, and SαSMoE, which
approximately are same.
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6 Discussion and conclusions
In this study, we have expanded the normal mixture of experts framework to incor-
porate the SαS mixture of experts model, which effectively addresses the presence of
both mild and extreme outliers in the error terms. In this innovative model, the max-
imum likelihood estimates for the parameters (excluding αg, g = 1, . . . , G) are derived
using a standard EM algorithm. The parameter αg is estimated through Monte Carlo
integral and interpolation. This methodology effectively mitigates the computational
challenges associated with the EM algorithm in the context of SαSMoE.

The proposed model offers greater flexibility compared to existing alternatives; it
encompasses NMoE models when αg = 2 and permits heavier tails in the response
variable distributions as αg deviates from 2 for g = 1, . . . , G.

Both simulation studies and analyses of real dataset have validated the efficacy of
our proposed method. The SαlphaSMoE framework is particularly adept at clustering
data characterized by normal distributions as well as those containing outliers or noise,
rendering it a more realistic option than traditional NMoE models. Nonetheless, the
parameter αg, which influences the tail behavior of each mixture component, requires
numerical methods for estimation, introducing a computational burden in terms of
processing time for our algorithm. For example, the proposed SαSMoE algorithm
requires more time than the classical TMoE due to Monte Carlo integration, α-stable
sampling, and grid search. For the analysis of tone data, the average runtime was
about 44.64 seconds compared to 0.55 seconds for TMoE, yet the method remains
practical for moderate-scale applications. The additional cost reflects the robustness
of the procedure in handling heavy-tailed and non-Gaussian noise structures.

Future research directions may involve developing algorithms that accommodate
asymmetric outlier data and investigating novel estimation techniques for αg. For this
purpose, Bayesian methods can be employed.
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Appendix
Suppose Y ∼ S(α, 0, γ, µ(x,β)). Therefore, Y d

=µ(x,β) +
√
PU , where U is a uni-

variate zero-mean normal random variable with variance σ2 = 2γ2 and P ∼ S(α2 , 1,

(cos(πα4 ))
2
α , 0) is a positive stable random variable, where P and U are independent.

To compute E1 = E
(
P−1|y;α, 0, γ, µ(x,β)

)
, we ought to calculate

f(p|y) = f(y, p)

f(y)
=

fP (p|α)f(y|p)∫∞
0
fP (p|α)f(y|p)dp

.

Since Y |P = p ∼ N(µ(x,β), pσ2), we have

E1 =

∫∞
0
p−1/2−1fP (p|α) exp{−(y−µ(x,β))2

2pσ2 }dp∫∞
0
p−1fP (p|α) exp{−(y−µ(x,β))2)

2pσ2 }dp
,
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or

E1 =
EP

(
P−1/2−1 exp{−(y−µ(x,β))2

2Pσ2 }
)

EP

(
P−1 exp{−(y−µ(x,β))2)

2Pσ2 }
) ,

where EP refer to expectation value with respect to random variable P . For ap-
proximating E1, we use a Monte Carlo integration (Kong et al., 2003) method by
generating B samples form the probability density function of P and computing the el-
ements of under integral. According to Monte Carlo integration technique EP (g(P )) =∑B

b=1 g(pb)/B, as B → ∞. If pmc
1 , . . . , pmc

B be a random sample from fP (p|α), then the
approximate value of E1 is∑B

b=1 p
mc(−1/2−1)
b exp{−(y−µ(x,β))2)

2pmc
b σ2 }∑B

b=1 p
mc(−1/2)
b exp{−(y−µ(x,β))2)

2pmc
b σ2 }

.

We take B = 3000 and update e(t)pig, in the iteration t for i = 1, . . . , n and g = 1, . . . , G.


