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Abstract: Mixed discrete distributions are primarily used for modeling over-dispersed
count data. The construction of mixed models, such as the mixed Poisson model,
is based on the assumption that the distribution parameter of interest is a random
variable that follows a specified distribution. In this framework, the marginal distribu-
tion of a discrete random variable forms a mixed distribution. This paper introduces
a novel discrete distribution derived from the geometric distribution, assuming that
the model’s parameter follows the log-Lindley distribution. This approach is moti-
vated by situations where the parameter of the geometric distribution is not constant
across populations, as is often the case in insurance data, where the probability of a
claim varies between different portfolios. This distribution is particularly well-suited
for modeling over-dispersed discrete data. The statistical properties of the proposed
distribution are examined, and the parameters of the resulting model are estimated.
To evaluate the accuracy of the estimates, a simulation study is conducted, and the
model’s performance is demonstrated using real data.
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1 Introduction
Constructing mixed discrete distributions is a useful method for modeling over-dispersed
count data. In this regard, several mixed models, such as the Poisson-gamma model
known as the negative binomial distribution (Boucher et al., 2007; Denuit et al.,
2007; Greene, 2008; Ismail and Zamani, 2013; Klugman et al., 2012) have been pro-
posed and applied in modeling economics, medical, insurance and traffic data. The
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Poisson-inverse Gaussian (Tremblay, 1992; Willmot, 1987), Poisson-generalized Lindley
(Wongrin and Bodhisuwan, 2017), Poisson-log normal (Izsák, 2008) negative binomial-
Lindley (Zamani and Ismail, 2010), beta-binomial (Navarro and Perfors, 2005) and
beta-geometric (Weinberg and Gladen, 1986) are the other mixed models that have
been proposed and applied in various study fields.

The log-Lindley distribution with probability density function (pdf)

g(x; δ, γ) =
δ2

1 + δγ
(γ − log x)xδ−1, 0 < x < 1, δ > 0, γ ∈ R, (1)

introduced by Gómez-Déniz et al. (2014). The log-Lindley distribution which is re-
ferred to as log-L(δ, γ) was conducted using the transformation Y = − logX on the
generalized Lindley distribution proposed by Zakerzadeh and Dolati (2009) considering
one of the parameters equal to one. The r-th moment and inverse moment of log-L(δ, γ)
is given by,

E(Xr|δ, γ) = δ2

1 + δγ

1 + γ(δ + r)

(δ + r)
2 , r = . . . ,−2,−1, 1, 2, . . . .

This paper introduces a two-parameter geometric log-Lindley (GLL) distribution by
mixing the zero-based geometric distribution and the log-Lindley distribution. We
indicate that the proposed model is shown to be effective for modeling diverse types
of count data. Various properties of the GLL distribution are derived and discussed.
The paper is organized as follows.

Section 2 introduces the two-parameter geometric log-Lindley distribution and ex-
amines its basic properties including: the behavior of the probability mass function,
the expressions for the moments, the survival and hazard rate functions of the random
variable, a recursive formula for calculating probabilities of the model, and the zero-
truncated and zero-inflated versions of the GLL model. Section 3 discusses the various
methods of parameter estimation. In Section 4, the algorithm for simulating random
data from the GLL distribution is presented. In this section, a simulation study is
performed to investigate the bias, root mean square error, and the coverage probabil-
ity of the simulated estimates. An application of the GLL distribution, by fitting this
distribution to two insurance datasets and comparing it with alternatives, is given in
Section 5.

2 Definition and properties
2.1 Geometric log-Lindley distribution
This section details the construction of the GLL distribution. Suppose the conditional
random variable Y |p, follow a geometric distribution (denoted G(p)) with probability
mass function (pmf)

P (Y = y|p) = p(1− p)y, y ∈ N0, p ∈ (0, 1), (2)

and further assume that p is a random variable following a log-Lindley p ∼ log L(δ, γ)
distribution with pdf given in (1). Therefore, the marginal pmf of the random vari-
able Y which we refer to as the geometric log-Lindley distribution, Y ∼ GLL(δ, γ) is
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therefore given by

P (y) =

∫ 1

0

P (y|p)g(p)dp

=
δ2

1 + δγ

∫ 1

0

(γ − log p)pδ(1− p)
y
dp

=
δ2

1 + δγ

{
γ

∫ 1

0

pδ(1− p)
y
dp− ∂

∂δ

∫ 1

0

pδ(1− p)
y
dp

}
=

δ2

1 + δγ

[
γB(δ+1, y + 1)− ∂

∂δ
B(δ+1, y + 1)

]
, y ∈ N0 (3)

where δ > 0, γ ∈ R and 1 + δγ > 0. Moreover, B(r, k) = Γ(r)Γ(k)
Γ(r+k) and Γ(k) =∫∞

0
tk−1e−tdt. After simplification, the resulting pmf is

∂

∂δ
B(δ+1, y + 1) = B(δ+1, y + 1) {ψ(δ + 1)− ψ(δ + y + 2)} ,

where ψ(.) is digamma function defined as ψ(k) = ∂
∂k log Γ(k) = Γ′(k)

Γ(k) . Therefore, the
pmf in (3) can be expressed as,

P (y; δ, γ) =
δ2

1 + δγ
B(δ+1, y + 1) {γ + ψ(δ + y + 2)− ψ(δ + 1)} , y ∈ N0, (4)

where δ > 0, γ ∈ R and 1 + δγ > 0.

Proposition 2.1. The expression (4) is a proper pmf.

Proof. Here, we have to show that
∞∑
y=0

P (y; δ, γ) = 1.

∞∑
y=0

P (y; δ, γ) =

∞∑
y=0

δ2

1 + δγ

{
γ

∫ 1

0

pδ(1− p)
y
dp− ∂

∂δ

∫ 1

0

pδ(1− p)
y
dp

}

=
δ2

1 + δγ

{
γ

∫ 1

0

pδ
∞∑
y=0

(1− p)
y
dp− ∂

∂δ

∫ 1

0

pδ
∞∑
y=0

(1− p)
y
dp

}

=
δ2

1 + δγ

{
γ

∫ 1

0

pδ−1dp− ∂

∂δ

∫ 1

0

pδ−1dp

}
=

δ2

1 + δγ

{
γ

δ
+

1

δ2

}
= 1.

Proposition 2.2. Let Y ∼ GLL(δ, γ). Then, the r-th factorial moment of the random
variable Y is given by

E(Y (r)) = r!
δ2

1 + δγ

1 + γ(δ − r)

(δ − r)
2 , r = 1, 2, 3, . . . . (5)
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Proof. Considering the r-th factorial moment of the geometric distribution, the r-th
factorial moment of GLL distribution is given by

E(Y (r)) = E(E(Y (r)|p)) = E(
r!

P r
)

= r!
δ2

1 + δγ

∫ 1

0

(γ − log p)pδ−r−1dp

= r!
δ2

1 + δγ

{
γ

∫ 1

0

pδ−r−1dp− ∂

∂δ

∫ 1

0

pδ−r−1dp

}
= r!

δ2

1 + δγ

1 + γ(δ − r)

(δ − r)
2 .

The mean and the second factorial moment of the random variable Y are given by
using r = 1, 2 in (5) respectively as

E(Y ) =
δ2

1 + δγ

1 + γ(δ − 1)

(δ − 1)
2 ,

E(Y (Y − 1)) = 2
δ2

1 + δγ

1 + γ(δ − 2)

(δ − 2)
2 .

Using these expressions, the variance of the model is given by

V ar(Y ) =
δ2

1 + δγ

{
2 + 2γ(δ − 2)

(δ − 2)
2 +

(1 + γ(δ − 1))(γδ − γδ2 − 2δ + 1)

(1 + δγ)(δ − 1)
4

}
.

Proposition 2.3. Let Y ∼ GLL(δ, γ). Then, the cumulative distribution function of
the random variable Y is given by

F (y; δ, γ) = 1− δ2

1 + δγ
B(δ, y + 2) {γ + ψ(δ + y + 2)− ψ(δ)} , y ∈ N0.

Proof. The cumulative distribution function (cdf) F (y) = P (Y ≤ y) of the random
variable Y , considering the method used in (3) is given by

F (y; δ, γ) =

∫ 1

0

P (Y ≤ y|p)g(p)dp

= 1−
∫ 1

0

(1− p)
y+1

g(p)dp

= 1− δ2

1 + δγ

∫ 1

0

(γ − log p)pδ−1(1− p)
y+1

dp

= 1− δ2

1 + δγ
B(δ, y + 2) {γ + ψ(δ + y + 2)− ψ(δ)} , y ∈ N0.
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Proposition 2.4. Let Y ∼ GLL(δ, γ). Then, the survival function of the random
variable Y is given by

S(y; δ, γ) =
δ2

1 + δγ
B(δ, y + 1) {γ + ψ(δ + y + 1)− ψ(δ)} , y ∈ N0. (6)

Proof. The survival function S(y) = P (Y > y) of the random variable Y is given by

S(y; δ, γ) =

∫ 1

0

P (Y > y|p)g(p)dp

=

∫ 1

0

(1− p)
y
g(p)dp

=
δ2

1 + δγ

∫ 1

0

(γ − log p)pδ−1(1− p)
y
dp

=
δ2

1 + δγ
B(δ, y + 1) {γ + ψ(δ + y + 1)− ψ(δ)} , y ∈ N0.

The survival function (6) indicate that for fixed δ and γ, the survival function
decreases as y increases meaning the probability of observing large values reduce over
time.

Proposition 2.5. Let Y ∼ GLL(δ, γ). Then, the hazard function of the randm variable
Y is given by

h(y; δ, γ) =
δ

δ + y + 1

γ + ψ(δ + y + 2)− ψ(δ + 1)

γ + ψ(δ + y + 1)− ψ(δ)
, y ∈ N0. (7)

Proof. The hazard function h(y) = P (y)
S(y) of the random variable Y is given by dividing

(4) and (6) which resulted in

h(y; δ, γ) =
P (y; δ, γ)

S(y; δ, γ)
=

B(δ + 1, y + 1) {γ + ψ(δ + y + 2)− ψ(δ + 1)}
B(δ, y + 1) {γ + ψ(δ + y + 1)− ψ(δ)}

, y ∈ N0.

After some algebraically computations, (7) will be obtained.

The cumulative hazard function of the GLL(δ, γ) is given by

H(y; δ, γ) = − logS(y; δ, γ) = −2 log δ − log(1 + δγ)

− log B(δ, y + 2)− log {γ + ψ(δ + y + 2)− ψ(δ)} , y ∈ N0.

Proposition 2.6. Let Y ∼ GLL(δ, γ). Then, the recursive formula for calculation
probabilities of the GLL model satisfies

P (j) =
j

δ + j + 1

{
δ2

1 + δγ

B(δ + 1, j)

δ + j + 1
+ P (j − 1)

}
, j = 1, 2, 3, . . . . (8)
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Proof. The pmf of GLL for (Y = j) can be rewritten as

P (j) =
δ2

1 + δγ
B(δ + 1, j + 1) {γ + ψ(δ + j + 2)− ψ(δ)}

=
δ2

1 + δγ

j

δ + j + 1
B(δ + 1, j)

{
γ +

1

δ + j + 1
+ ψ(δ + j + 1)− ψ(δ)

}
=

j

δ + j + 1

{
δ2

1 + δγ

B(δ + 1, j)

δ + j + 1
+ P (j − 1)

}
, j = 1, 2, 3, . . . ,

with starting value P (0) = δ2

(1+δ)2
1+γ+δγ
1+δγ .

2.2 Zero-inflated and zero-truncated GLL distribution
In certain contexts, count data exhibit an excessive number of zero outcomes compared
to what is expected in the Poisson model. For example , the proportion of zero claims
in motor insurance data may contain a large number of zeros due to the small number
of accidents among drivers and to the lack of reports for minor claims (Yip and Yau,
2005). Both zero-inflated and zero-truncated models are useful for modeling count
data. Zero-inflated models, such as the zero-inflated Poisson and zero-inflated negative
binomial (Ridout et al., 2001) zero-inflated generalized Poisson (Zamani and Ismail,
2014; Famoye and Singh, 2006), have been widely applied to analyze zero-inflated count
data. Zero-truncated count data, conversely, are characterized by the complete absence
of zero outcomes in the dataset. This type of data typically arises when zeros are not
possible or observable for a given count variable.

Zero-inflated GLL
The zero-inflated version of a probability function P (y; θ) is defined by

P (y; θ) =
[
ω + (1− ω)P (0; θ)

]
I{y=0} +

[
(1− ω)P (y; θ)

]
I{y>0}

Considering ψ(δ + 2) − ψ(δ + 1) = 1
δ+1 , the pmf of zero-inflated GLL (ZIGLL) which

we denote by P (0)(y; δ, γ) is given by

P (0)(y; δ, γ) =

{
ω + (1− ω) δ2

1+δγ
1

δ+1

{
γ + 1

δ+1

}
, y = 0,

(1− ω)P (y; δ, γ) , y = 1, 2, 3, . . .

where 0 ≤ ω < 1 and P (y; δ, γ) is the pmf of GLL given in (4). The P (0)(y; δ, γ) reduces
to P (y; δ, γ) when ω = 0.

Zero-truncated GLL
The zero-truncated GLL (ZTGLL) distribution can be obtained by replacing the zero-
based geometric with the traditional geometric distribution in (3). Following the same
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the methodology applien in (3), the pmf of ZTGLL, denoted by P (1)(y; δ, γ) is given
by

P (1)(y; δ, γ) =
δ2

1 + δγ
B(δ+1, y) {γ + ψ(δ + y + 1)− ψ(δ + 1)} , y = 1, 2, 3, . . . .
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Figure 1: Probability plot of the GLL distribution for several selected values of parameters.

Figure 1 illustrates the behavior of the probability mass function of the GLL dis-
tribution for several selected values of (δ, γ). As can be concluded from the pmf of the
GLL model and the behavior of the probability function indicated in Figure 1, Increas-
ing δ concentrates more probability mass at Y = 0, resulting in stronger zero-inflation.
In plots with large δ values, the bar at Y = 0, is much higher and the probability mass
function decays rapidly for Y ≥ 1. Conversely, small δ values shift mass away from zero
and produce a heavier right tail. Thus, δ controls the decay rate of the distribution,
with smaller δ corresponding to a greater probability of larger counts.

On the other hand, increasing γ shifts probability from zero toward nonzero counts
and lengthens the tail; larger γ values yield relatively higher probabilities for larger Y ,
producing a heavier tail. A negative γ reduces tail weight and skewness, concentrating
more probability near zero-though the effect of γ interacts with δ. Intuitively, γ mod-
ulates tail behavior and skewness: positive γ increases the chance of extreme counts,
while negative γ reduces it.
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There is also an observable interaction between δ and γ. For a fixed γ, varying
δ reallocates mass between zero and the tail as described: a large δ combined with a
negative or small γ produces a sharply peaked distribution at zero, whereas a small δ
with a positive γ yields a heavy-tailed distribution.

As with real-world data, for example insurance claim counts, δ can be interpreted
as a measure of risk intensity where a smaller δ suggests a higher chance of observing
large number of claims. Regarding γ, it can be interpreted a measure of variability in
risk, specifically, positive values of γ indicate that the data have a longer tail, meaning
there is a higher probability of extreme events. For general count data, δ can be
considered a measure of the decay rate, such that a small δ corresponds to slower
decay, making large observations are more likely. Conversely, γ can be interpreted as
a measure of skewness or tail behavior, with positive and negative values indicating
longer and shorter tails, respectively. In summary, a small δ and positive γ indicate
that the data are over-dispersed with a longer tail while a large δ and a negative γ lead
to a less over-dispersed distribution with a shorter tail.

3 Model estimation
In this section, we discuss different methods of GLL parameters estimation.

3.1 Method of moments
Given the sample y1, . . . , yn of size n from the GLL distribution the moment estimates
δ̃ and γ̃ of δ and γ considering (5) are given through the solution of equations{

δ2

1+δγ
1+γ(δ−1)

(δ−1)2
= x̄,

2 δ2

1+δγ
1+γ(δ−2)

(δ−2)2
= x̄2 + x̄,

solving both equations for γ leads toγ = x̄(δ−1)2−δ2

δ2(δ−1)−x̄(δ−1)2
,

γ = (x̄+x̄2)(δ−2)2−2δ2

2δ2(δ−2)−(x̄+x̄2)(δ−2)2
.

(9)

Now, to estimate δ, we can set the equations equal to one another. Given the complex-
ity of the resulting expression, the resulting equation is typically solved numerically.
Therefore, a numerical solution of (9) yields δ̃; substituting this value into one of the
equations in (9) gives γ̃.

3.2 Maximum likelihood estimation
In this part we consider the maximum likelihood estimators of GLL parameters. Sup-
pose y1, . . . , yn is a random sample of size n from the GLL distribution with pmf given
in (4). The likelihood function can be expressed as

ℓ(δ, γ) = 2n log δ − n log(1 + δγ) +

n∑
i=1

log Γ(yi + 1) + n log Γ(δ + 1)
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−
n∑

i=1

log Γ(δ + yi + 2)−
n∑

i=1

log {γ + ψ(δ + 1)− ψ(δ + yi + 2)} .

Therefore, the normal equations are given by

∂

∂δ
ℓ(δ, γ) =

2n

δ
− nγ

1 + δγ
+ nψ(δ + 1)−

n∑
i=1

ψ(δ + yi + 2)

−
n∑

i=1

ψ′(δ + 1)− ψ′(δ + yi + 2)

γ + ψ(δ + 1)− ψ(δ + yi + 2)
= 0,

∂

∂γ
ℓ(δ, γ) =

nδ

1 + δγ
−

n∑
i=1

1

γ + ψ(δ + 1)− ψ(δ + yi + 2)
= 0.

These non-linear equations have no closed form solutions and must be solved numeri-
cally using methods such as the Newton-Raphson method or an EM-algorithm, using
the method-of-moments estimates of δ and γ as initial values for iteration. In this
study we used the optim() function in R extended by R Core Team (2014) for op-
timization purpose. The optim function provides various optimization algorithms,
such as Nelder-Mead, BFGS, CG (conjugate gradient), and L-BFGS-B. Among these,
the BFGS algorithm works well for smooth functions, and L-BFGS-B performs better
when there are constraints on the parameters. Here we used the L-BFGS-B algorithm
to optimize the loglikelihood function because of its suitability for smooth functions
and the presence of constraints on the parameters. Moreover, the method-of-moments
estimates were used as the starting values in the optim() function.

Furthermore, the log-likelihood function is non-linear, involves complex terms, and
is non-convex in the parameters δ and γ, implying it may have multiple local maxima.
Therefore, to address potential convergence issues, several methods can be employed.
The first approach is to add a penalty term to the log-likelihood function to discourage
extreme parameter values. Adding such a penalty term leads to a penalized likelihood
function, which can be defined as

ℓp(δ, γ) = ℓ(δ, γ)− λ(δ2 + γ2),

where λ is the regularization parameter. The second approach is to transfer the con-
strained parameters into an unconstrained space. For example, we can set δ = eα

where α ∈ R, which ensures that δ > 0. As another method, we may use the profile
likelihood function for optimization purpose.

In this study, the method of moments (MOM) estimates (δ̃, γ̃) were used as the
starting values for the numerical optimization. This choice is supported by two key
considerations. First, MOM estimates provide consistent, data driven starting points
that are typically in the neighborhood of the true parameters, thereby promoting sta-
ble convergence. Second, and most critically, the simulation study in Section 4 where
this exact procedure (MOM initials followed by MLE optimization) demonstrates its
practical reliability. The consistent reduction in bias and RMSE, along with the con-
vergence of coverage probabilities to their nominal levels as the sample size increases
(see Tables 1 and 2), provides strong empirical evidence that the MLE procedure ini-
tialized with MOM estimates is numerically stable and produces valid inferences for
the GLL distribution.
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3.3 Asymptotic normality of maximum likelihood estimators
The maximum likelihood estimator is asymptotically consistent and normally dis-
tributed as the sample size increases. For Θ̂ = (δ̂, γ̂)T, which is the maximum likelihood
estimator of Θ = (δ, γ)T, as n tends to ∞, the sampling distribution of (δ̂, γ̂) is asymp-
totically multivariate normal, that is, Θ̂ ∼ N2(Θ, I

−1(Θ) where I(Θ) is the Fisher
information matrix computed as

I(Θ) =
[
Iδδ Iδ γ
Iγ δ Iβγ

]
= E[− ∂

∂Θ
UΘ(δ, γ)],

and UΘ(δ, γ) is the score vector that is given by

UΘ(δ, γ) =
( ∂

∂δ
ℓ(δ, γ),

∂

∂γ
ℓ(δ, γ)

)
.

Since, I(Θ) has no closed form for GLL distribution, we used the estimated observed
Fisher information matrix,

I(Θ̂) = − ∂

∂Θ
UΘ(δ, γ)|Θ=Θ̂,

is used to estimate I(Θ). The observed information matrix of Θ̂ is given in the ap-
pendix. Therefore, the asymptotic 100(1− η)% confidence interval for θj is given by

θj : θ̂j ± zη/2se(θ̂j), j = 1, 2.

4 Simulation study
In this section, we conduct a Monte Carlo simulation to study the finite sampe behavior
of maximum likelihood estimates based on the finite sample sizes for the parameters of
the GLL distribution. For sample generation from the GLL distribution, we used the
pmf of GLL (4) and the weighted random sampling techniques Motwani (1995). The
simulation study is carried out N=10,000 times for each triple (δ, γ) and n=50, 100,
200, 300, 500, γ = 0.05, −0.1, 0.1, 0.3 and δ=1.5, 3.5. For evaluation purposes, we used
the average bias (Bias), root mean square error (RMSE), and coverage probability
(CP ) criteria, which are defined as

Bias(θ̂) =
1

N

N∑
i=1

(θ̂i − θ),

RMSE(θ̂) =

√√√√ 1

N

N∑
i=1

(θ̂i − θ)
2
,

CPθ(n) =
1

N

N∑
i=1

I
{
θ̂i − 1.96 ŝθ̂i < θ < θ̂i + 1.96 ŝθ̂i

}
.

Table 1 shows that the average bias for maximum likelihood estimators of δ̂, γ̂, can
be either positive or negative. The average bias decreases as the sample size n in-
creases. The table also presents the root mean square error (RMSE) of the estimators,
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which similarly decreases with larger sample sizes. Moreover, the table reports the
coverage probability at the 90% and 95% confidence levels. The results indicate that
the coverage probability approaches the intended confidence level as the sample size n
increases. This is may be due to the overestimation of the standard error in small sam-
ples or to deviation from normality in the parameters’ distribution for small samples.
Additionally, for small samples, the parameter estimates may frequently approach the
boundary region (δ > 0, 1 + δγ > 0), resulting in skewed distributions and wider con-
fidence intervals. The simulation results presented in Figure 2 and Tables 1 and 2 can
be summarized as follows:
a) The highest bias and RMSE for the parameter estimates occur for δ = 3.5 and
γ = 0.3 at n = 50, while the lowest values occur for δ = 3.5 and γ = −0.1 at n = 500.
b) Both the bias and RMSE of the parameter estimates decrease as the sample size
increases.
c) The coverage probabilities converge toward the nominal level 95 % as n increases.

Table 1: Estimated bias, RMSE, and coverage probability for γ and δ = 1.5.
γ Bias RMSE CP 90% CP 95%

n δ γ δ γ δ γ δ γ
50 1.360 -0.207 1.340 0.390 0.914 0.976 0.955 0.965
100 0.968 -0.192 0.788 0.376 0.906 0.975 0.953 0.980

0.05 200 0.515 -0.176 0.224 0.152 0.903 0.940 0.951 0.955
300 0.249 -0.063 0.201 0.124 0.904 0.937 0.947 0.954
500 0.143 -0.056 0.176 0.100 0.897 0.934 0.949 0.961
50 1.385 -0.207 1.481 0.227 0.929 0.991 0.956 0.958
100 0.950 0.156 1.303 0.207 0.908 0.977 0.951 0.984

0.1 200 0.748 -0.053 0.830 0.191 0.905 0.944 0.949 0.959
300 0.270 -0.051 0.205 0.147 0.903 0.935 0.953 0.956
500 0.147 0.049 0.171 0.107 0.901 0.922 0.951 0.952
50 1.229 -0.211 1.478 0.338 0.920 0.984 0.957 0.987
100 0.887 -0.144 0.850 0.335 0.910 0.966 0.952 0.968

0.3 200 0.772 -0.143 0.297 0.330 0.907 0.965 0.952 0.966
300 0.316 -0.127 0.226 0.345 0.903 0.965 0.952 0.979
500 0.155 -0.126 0.196 0.203 0.897 0.93 0.951 0.954
50 1.175 0.115 1.352 0.480 0.912 0.963 0.953 0.999
100 0.615 -0.109 0.756 0.132 0.903 0.945 0.952 0.973

-0.1 200 0.238 -0.121 0.299 0.078 0.901 0.934 0.951 0.963
300 0.140 -0.029 0.181 0.063 0.901 0.925 0.951 0.957
500 0.136 -0.021 0.162 0.052 0.901 0.919 0.950 0.955

5 Application to real data
5.1 Automobile insurance data
The data in Table 3 were used to study the performance of the GLL distribution
compared to alternative models. The data, collected by Tröbliger, consists of 23,589
automobile insurance records that report the number of accidents per driver over a
one-year period (Klugman et al., 2012). We also fitted to the Poisson and negative
binomial distributions as alternatives to the GLL model. The negative binomial distri-
bution considered here, introduced by Greene (2008), is obtained by mixing a Poisson
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Table 2: Estimated bias, RMSE, and coverage probability for γ and δ = 3.5.
γ Bias RMSE CP 90% CP 95%

n δ γ δ γ δ γ δ γ
50 1.337 0.012 2.518 0.287 0.947 0.979 0.961 0.970
100 0.976 -0.012 0.288 0.193 0.906 0.975 0.954 0.976

0.05 200 0.824 -0.046 0.224 0.152 0.903 0.940 0.951 0.955
300 0.743 -0.003 0.201 0.124 0.904 0.937 0.947 0.954
500 0.686 -0.002 0.825 0.087 0.903 0.925 0.949 0.954
50 1.525 -0.213 2.860 0.313 0.948 0.937 0.963 0.980
100 1.002 -0.156 1.303 0.297 0.928 0.977 0.957 0.968

0.1 200 0.927 -0.098 0.988 0.191 0.905 0.944 0.952 0.963
300 0.873 -0.086 0.903 0.147 0.903 0.935 0.953 0.961
500 0.712 -0.078 0.866 0.119 0.901 0.922 0.949 0.958
50 2.300 -0.160 4.547 0.402 0.955 0.926 0.967 0.964
100 0.694 0.002 1.063 0.045 0.921 0.948 0.955 0.960

0.3 200 0.628 -0.004 0.817 0.024 0.913 0.936 0.954 0.957
300 0.578 0.003 0.728 0.210 0.910 0.929 0.954 0.953
500 0.496 -0.003 0.677 0.014 0.903 0.925 0.951 0.953
50 0.857 0.018 1.534 0.096 0.933 0.955 0.956 0.965
100 0.149 0.037 0.796 0.198 0.903 0.945 0.952 0.973

-0.1 200 0.070 0.012 0.537 0.051 0.901 0.934 0.954 0.960
300 0.042 0.007 0.425 0.035 0.907 0.940 0.952 0.953
500 0.024 0.004 0.323 0.025 0.905 0.925 0.952 0.959
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Figure 2: Top: estimated bias, RMSE and CP of δ̂. Bottom: estimated bias, RMSE and CP of γ̂
for Table 2: δ = 3.5, 1: γ = 0.05 , 2: γ = 0.1 , 3: γ = 0.3 and 4: γ = −0.1 values.

distribution with a gamma distribution and has the probability mass function (pmf)

P (y; r, β) =

(
y + r − 1

y

)( 1

1 + β

)r( β

1 + β

)y
, y = 0, 1, 2, . . . , r > 0, β > 0.
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Based on the chi-square p-value and the log likelihood, the negative binomial and the
GLL distributions represent a significant improvement over the Poisson distribution.
However, a direct comparison between the negative binomial and the GLL distribu-
tions indicates that the GLL model provides a beeter fit than the negative binomial
distribution.

Table 3: Fitted Poisson, negative binomial and GLL to automobile insurance data.
No. of accidents Frequency Poisson Negative binomial GLL
0 20592 20420.9 20596.8 20592.9
1 2651 2945.1 2631 2648.8
2 297 212.4 318.4 299.6
3 41 10.2 37.8 40.3
4 7 0.4 4.4 6.4
5 0 0 0.5 1.3
6+ 1 0 0.1 0.7
parameters λ=0.144 β=0.129 δ=27.280

r=1.117 γ=-0.023
Chi-squares 196.45 3.66 0.039
p-values <0.01 0.3 0.99
-Log-likelihood 10297.84 10223.43 10221.42
AIC 20597.68 20450.86 20446.84
BIC 20605.75 20467.00 20462.98

5.2 Accident profile data
The data in Table 4 represent 9,461 automobile insurance policies (Klugman et al.,
2012; Tremblay, 1992), for which the number of accidents per policy was recorded.
The Poisson, negative binomial, and GLL models were fitted to the data, and the
results are presented in Table 4. The results indicate that only the GLL distribution
provides an adequate fit at the 95% confidence level.

Table 4: Fitted Poisson, negative binomial and GLL to accident profile data.
No. of accidents Frequency Poisson Negative binomial GLL
0 7840 7638.4 7850.4 7840.9
1 1317 1634.5 1286.2 1311.2
2 239 174.9 255.7 238.1
3 42 12.5 53.8 51.9
4 14 0.6 11.6 13.2
5 4 0.1 2.7 3.8
6 4 0 0.5 1.2
7+ 1 0 0.1 0.7
parameters λ=0.214 β=0.305 δ=14.67

r=0.701 γ=-0.030
Chi-squares 294.4 8.85 4.32
p-values <0.01 0.03 0.23
-Log-likelihood 5490.78 5348.04 5343.14
AIC 10983.56 10700.08 10690.28
BIC 10990.71 10714.39 10704.59
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Figure 3: Residual plot comparing observed frequencies and fitted values from Poisson, NB and
GLL, Top: Automobile Insurance Data. Bottom: Accident Profile Data.

Figure 3 presents the residual plots, constructed as the difference between observed
and predicted frequencies. These plots were used to assess model fit. For both datasets,
the residuals of the GLL model were clustered tightly around zero, indicating a close
match to the observed data. In contrast, the negative binomial (NB) model residuals
showed moderate deviation, while the Poisson residuals exhibited substantial and sys-
tematic departure from the zero line, confirming its inadequacy for these over-dispersed
counts.

6 Conclusion
In this paper, we introduce the geometric log-Lindley distribution, a mixed distribution
obtained by combining the geometric and log-Lindley distributions. The GLL random
variable is defined on N0 and has a closed-form pmf, making it an appropriate choice
for modeling over-dispersed count data. We present the statistical properties of the
proposed model, including the probability mass function, survival and hazard rate
functions, moments, and a recursive formula for computing probabilities. Additionally,
the zero-inflated and zero-truncated versions of the GLL distribution are discussed,
extending its applicability to a wider range of scenarios.

The model parameters are estimated using the method of MOM and MLE. A sim-
ulation study was conducted to evaluate the performance of the estimators based on
several criteria, including average bias, RMSE, and coverage probability. The results
demonstrate that the MLEs are consistent and that the coverage probability approaches
the intended level as the sample size increases. However, for small sample sizes, the
coverage probability was higher than the nominal level, which may be attributed to
the overestimation of standard errors and to finite-sample and boundary effects. These
findings highlight the importance of using large sample sizes for reliable inference with
the GLL model.

The performance of the GLL distribution was evaluated using two real insurance
datasets. The results indicate that the GLL model provides a better fit than tradi-
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tional models such as the Poisson and negative binomial distributions, as evidenced
by higher log-likelihood values and lower chi-square statistics. This suggests that the
GLL distribution is a suitable tool for modeling over-dispersed count data in insurance
and other fields.

Beyond insurance, the GLL mode can be applied for many count data where ob-
servations contain excess zeros and heavy tails. In biomedical research, examples in-
clude recurrent event data such as hospital readmissions, infection episodes, the num-
ber of doctor visits, and rare adverse events or in traffic and transportation, counts
from sensors or crash data often show similar features. Methodologically, straightfor-
ward extensions include GLL regression by including covariates through linking δ or γ,
zero-inflated or hurdle versions to explicitly separate structural zeros, multivariate or
hierarchical GLL models for clustered/repeated measures, and spatio-temporal GLL
processes for dependent count data. These extensions would expand the model’s appli-
cability and allow direct modeling of covariate effects, random effects, and dependence.
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Appendix. The observed information matrix
The observed information matrix is given by replacing δ , γ with the δ̂ and γ̂ in the
following expressions.

∂2

∂δ2
ℓ(δ, γ)=

−2n

δ2
+

nγ2

(1 + δγ)2
+ nψ′(δ + 1)−

n∑
i=1

ψ′(δ + yi + 2)−
n∑

i=1

A′B −A2

B2
,

∂2

∂γ2
ℓ(δ, γ)=

−nδ2

(1 + δγ)2
+

n∑
i=1

1

B2
,

∂2

∂δ∂γ
ℓ(δ, γ)=

n

(1 + δγ)2
−

n∑
i=1

A

B2
,

where A = ψ′(δ + 1)− ψ′(δ + yi + 2) and B = γ + ψ(δ + 1)− ψ(δ + yi + 2).


