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Abstract: A recently proposed asymmetric loss function, termed the exponential
squared error loss function, has been applied to estimation problems. However, predic-
tion methodologies based on this loss function remain unexplored in the literature. In
this paper, we focus on Bayesian two-sample prediction for the exponential distribu-
tion under this new loss function. We consider situations where the informative sample
size may be either fixed or random. Since the Bayesian predictors do not have closed
forms, we employ a Monte Carlo method to approximate them. A simulation study
is conducted to evaluate the performance of the predictors. The simulation results
indicate that predictors with fixed sample sizes can outperform those with truncated
Poisson and truncated geometrically distributed sample sizes. A real data example is
also presented for illustration. The paper concludes with a discussion.

Keywords: Bayesian point predictor; Exponential squared error loss function; Monte
Carlo method; Random sample size; Simulation.
Mathematics Subject Classification (2010): 62F15, 65C05.

1 Introduction

The exponential distribution is widely recognized as one of the most fundamental
lifetime distributions in reliability theory. Let X follow an exponential distribution
with parameter 6. Then, the probability density function (pdf) of X is given by

f(z;0) =0 exp(—0x), x>0,0>0, (1)
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and the cumulative distribution function of X is given by
F(x;0) =1—exp(—0z), x>0,0>0,

and we may write X ~ Exp(f). Numerous studies have established their method-
ologies using the one-parameter exponential distribution as the base distribution, see
for example, Asgharzadeh and Valiollahi (2012), Ahmadi et al. (2016), Kumar et al.
(2020), and Fallah and Asgharzadeh (2021).

Prediction of future order statistics has been extensively studied using both classical
and Bayesian approaches. For instance, Lawless (1971), and Lawless (1977) presented
techniques for predicting unobserved order statistics from the exponential distribution
based on the observed order statistics. Kaminsky and Nelson (1975) worked on the best
linear unbiased predictors of order statistics in location and scale families. Lingappaiah
(1978) applied the Bayesian framework to the prediction problem for the exponential
population. Lingappaiah (1979) focused on the prediction of future order statistics in
exponential and gamma distributions using the Bayesian methodology. MirMostafaee
and Ahmadi (2011) discussed the point prediction of future statistics from the exponen-
tial distribution based on observed record values. Asgharzadeh and Valiollahi (2012)
considered the prediction of times to failure of censored units in hybrid censored samples
from an exponential distribution. The above-mentioned investigations have assumed
that the sample sizes are fixed. However, many research scenarios cannot guarantee
fixed sample sizes due to participant dropout, measurement errors, or other factors,
see also Srivastava (1973). Numerous studies have adopted the framework where the
sample size is treated as a discrete random variable. Early theoretical developments
regarding the distributions of order statistics under this framework were established by
Raghunandanan and Patil (1972), Buhrman (1973), Consul (1984), Gupta and Gupta
(1984) and Rohatgi (1987). Many authors investigated the prediction problem when
the sample size is random. For example, Lingappaiah (1990) studied the Bayesian
prediction of the order statistics coming from an exponential distribution when an out-
lier is present in the sample drawn and the sample size is a random variable. Ashour
and El-Wekeel (1993) investigated Bayesian prediction of a future order statistic in
the generalized Burr distribution under a random future sample size. Nigm and Abd
Al-Wahab (1996) developed Bayesian prediction bounds for the Burr distribution with
a discrete random sample size. Soliman (2000) examined the one-sample prediction
problem under a random sample size, when the underlying model is the Pareto distri-
bution. AL-Hussaini and Al-Awadhi (2010) obtained Bayesian two-sample predictors
for generalized order statistics, considering both fixed and random future sample sizes.
Basiri and Ahmadi (2015) worked on the prediction of future generalized order statis-
tics when the future sample size is taken as a random variable. Ahmadi et al. (2016)
optimized sample sizes using a cost function in two-sample Bayesian prediction, taking
into account both fixed and random information sample sizes. Shafay et al. (2017)
explored the Bayesian prediction of order statistics given k-record values from a Pareto
distribution, examining fixed and random sample sizes. Barakat et al. (2018) developed
pivotal quantities for constructing prediction intervals for future lifetimes that follow
a two-parameter exponential distribution, based on a random number of generalized
order statistics. Basiri and Pakzad (2018) analyzed the problem of the prediction
of order statistics based on record values, considering fixed and random future sam-



169 S.M.T.K. MirMostafaee, R. Ghasabani

ple sizes. Barakat et al. (2021) proposed an efficient point predictor for future order
statistics when the sample size is treated as a random variable.

The problem of prediction for the exponential distribution under well-known loss
functions, such as the squared loss function, has been addressed by many authors, see
for example, Ahmadi et al. (2016). Recently, a new asymmetric loss function has been
proposed by Kumar et al. (2020), which is called the exponential squared error loss
(ESEL) function. This loss function is defined as

L=(e?—e %2 (2)
The estimator of § under the ESEL function is given by (Kumar et al., 2020)
6 =—log E(exp(—0)|data).

Kumar et al. (2020) employed the ESEL function to obtain estimators for the parameter
and for the reliability function of the exponential distribution. Later, Kumar et al.
(2023) implemented the ESEL function to derive an estimator for the parameter of the
Minimum Guarantee exponential distribution. However, the prediction problem under
this new loss function has not been addressed yet.

This paper aims to find predictors for a future ordered observation coming from
the exponential distribution based on a random sample with fixed and random sizes
under the ESEL loss function. Since the predictors do not possess closed forms, we
propose a Monte Carlo method to approximate these predictors. In what follows,
first, we present the process of obtaining the predictor of a future unobserved order
statistic from Fxzp(f) when the sample size is fixed in Section 2. Section 3 is devoted
to the results when the sample size is a random variable and its distribution belongs
to the power series family of distributions. An extensive simulation is conducted and
presented in Section 4. A real data example is analyzed in Section 5. The paper ends
with a discussion.

2 Main results when N = n is fixed

Let Yj.,, represent the s-th future order statistic from a sample of size m, where the
sample consists of independent and identically distributed (i.i.d.) continuous random
variables following a one-parameter exponential distribution with pdf (1). Then, the
pdf of Yy.,,, is given by (Arnold et al., 2008)

Qe—(m—s-‘rl)Qy

1 —0y s—1
B(s,m—s—!—l)( ) >0, )

fYo (3 0) =

where B(-,-) is the beta function.
Our goal is to derive a point predictor for Yj.,, based on an observed sample,
using the Bayesian approach under the ESEL function. For this purpose, let X, =

(X1,...,Xp) denote the observed sample of size n from Exp(f). The joint density
function of X, is given by

f(w(n) |9) = 9n€79 i aji? (4)
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where x(,) = (21,...,7,) is the observed set of X,). Here, we consider the conjugate
prior distribution for €, which is given as follows

_ Ba a—1_-—p36
w(a)fF(a)e e 77 0>0 «p>0,

where I'(+) is the gamma function, and « and § are hyperparameters that can be chosen
based on the prior information. Thus, the posterior distribution is obtained to be

(ﬂ + >0 Iz)n—m
I'(n+a)

m(0lz(n)) = grtale 0A+in w), (5)

Thus, 6|, possesses a gamma distribution with parameters n + a and 8 + Yo @i
So, from (3) and (5), the predictive density function for Y., is given by

Py (W) = / Py (5 0) (020

(8+ T m)"” Z S

B(s,m—s+1)I'(n+«a)
/ 9"+aexp [(m—s—&—j+1)y+6+2xi]9}d9
i=1

(B+xim) it a)
B(s,m—s+1)
s—1 (5;1)(71)3

j=0 {( —s+j+Ly+B+> w

j=0

et (6)
}++

2.1 Point prediction

Let Zy,...,Z,, denote i.i.d. random variables from Exp(f). Then, we have (Arnold et
al., 2008)

S

d Z
Ys‘m = 7 >
' ;m—l—i-l (M

where £ stands for identical in distribution. Therefore, from (7), we can write

E(Ysm) = %g(s,m), and Var(Yem) = e%h(s,m),
where . .
g(s,m) = ; m%l—kl’ and h(s,m) = ZZ; ﬁ
Note that the moment generating function (MGF) of Z;, for I = 1,--- ,m is given by
Mz, (t) = E(e') - t<6.

0—t’
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Thus, from (7), the MGF of Y., is obtained to be

=1

= HE<QXP{ Zz+1}>

95

= 7 , t <. (8)
s (g _ 7)
it ( m—1+1
The point predictor for Y., under the ESEL function is
}?s:m = - IOg(E(eiyszm |X(n)))
Now, from (6) and (8), we get
B o) = [ e e ()
= [ [ e ) dun(ole)at
= [ Bl o
= [ b, 1)) 6
n n—+ao
s + = xl)
_ / 0 » (ﬁ Lizt grta—1,—0(B+X1 %) g9
o1 ( n 1 ) I'(n+ «)
=1 m—1+1
(0 )
[T ( m—1+1
Consequently, the point prediction of Y., under the ESEL function is given by
Yom = —logBEe™ " |z ()
93
= —log E( 1 (B(n)>‘|
s 0 )
iz ( + m—1+1

To approximate f@;m, we generate a sample from 6|z, say {01,--- ,0r}, where R
is a large number. Then the approximate Bayesian prediction of Yj.,,, under the ESEL
function is given by

_ ZR: b5
Yem = —log r ) (9)
FE L (0 )
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3 Results when N is a discrete random variable

In this section, we consider a scenario where the sample size itself is random. Let
Xy = (X1,...,Xn) denote the set of the sample observations, where N is a random
variable and Xy consists of i.i.d. random variables coming from a one-parameter
exponential distribution with parameter . We assume N is truncated at point ¢t =
to — 1, namely N takes values in {tq,to + 1,t9 + 2, ... }. Furthermore, let N* follow a
power series distribution with the following probability mass function (pmf)

h(n)A™
P\(N* =n) = , n=20,1,...,
where g(A) = 377 h(n)A™. Then, the pmf of N can be stated as
h(n) A"
Py\(N =n) (n) n=toto+1,....

- Py\(N* >t9) g(\)’

The class of power series distributions includes several well-known distributions, such
as the Poisson, geometric, negative binomial, and logarithmic distributions, see, for
example, Mahmoudi and Mahmoodian (2015). For further discussion on the properties,
see Noack (1950) and Khatri (1959).

Let x(ny = (21, -- ,on) denote the information sample with zi,---,z, being
the observed sample values. Then, from (4) and following Raghunandanan and Patil
(1972), the joint pdf of Xy,..., Xy is given by

1 n
R n,—0> "  x; *
x )= ———— g 0"e =1 P(N* = n).
f ( (N)l ) P(N—* Z t()) = ( )

Thus, the posterior distribution of # is given by

1 s </3+Z?zlxi
P(N* > tp) Z I'(n+ )

n=to

)n+a
7TR(9|w(N)) = 9n+a_1e_0(ﬁ+2?:1 mi)P(ZV* = ’I’L)
The predictive density function for Yj.,, is obtained to be

oo n

f}lfz:m(y\w(z\/)) = B(s,m—s—i—ll)P(N* >10) Z(n+a>(ﬂ+zxi)”+QP(N* — n)

n=to =1
s—1
>
J=0

(s;l) (_1)j

(m—s+j+Dy+6+57, 2

} n+a+1"

Now, using a similar strategy stated in Subsection 2.1, we get

E(e™ Y™ |z ) /0 E(e Y )nP (0] ) O

P(N*lzto)z/o - 1 )

=t [hi- (6+m—l—|—1
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(5 +> xi>”+0‘
I'(n+ )

gr+a=le=0P+ Tl dg P(N® = n)

CE(N),N>

Consequently, the point prediction of Y., under the ESEL function, when N is a
random variable, is given by
:B(N), N)

We may approximate ?fm using a similar approach stated in Subsection 2.1.

95

= F E
N <Hf—1 0+ 5=r7)

YE = —log{E(e™ |z (n))}

sim
98

i (04 )

—log | En E(

4 Simulation study

In this section, we carry out a simulation study to check the performance of the pre-
dictors discussed in the previous sections. We generate samples from an exponential
distribution, Exp(6), where two values are taken for 6 as 6§ = 1, and 3. We consider
the following cases for the informative sample size:
(i) Fixed sample size: N = n is fixed, where n takes values 10, 20, 30, and 40.
(ii) Random sample size (truncated Poisson): N follows a truncated Poisson distribu-
tion at ¢ = 1, with parameter )\ selected such that E\,(N) = n for n = 10,20, 30,
and 40.
(iif) Random sample size (truncated geometric): N follows a truncated geometric dis-
tribution at ¢§ = 1, with parameter py chosen such that E, (N) = n for n = 10, 20, 30,
and 40.
We examine three future sample sizes: m = 15,24, and 35 with varying values of s.
Two prior distributions are considered:
Prior 1 (non-informative): a = b= 0.
Prior 2 (informative): Hyperparameters a and b are selected such that the prior
expected value of 6 equals the true value of 6, and the prior variance is set to 2.
Specifically, for § = 1, we have a = b = 0.5, and for § = 3, we have a = 4.5 and b = 1.5.

The number of the iterations of the simulation is M = 10000. Let }A/S;m be a
predictor for Yj.,,. For the i-th replication, let Yj.,, (i) be the generated s-th order
statistic, and ?sm(z) be its corresponding predicted value. Then the estimated bias
(bias for short), and the estimated risk (ER) of Yi.,, under the ESEL function are
computed using the following relations:

. 1
biaS(Y;:m) = M ; (Ysm(z) - Ysm(z)>7
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M
ER(Yem) = Z exp{ Yo (i)} — exp{~Yaum (i)})",

respectively. We have computed the biases and ERs of the approximate point predic-
tors, and the results are given in Tables 1-6. From these tables, we may draw the
following conclusions:

Table 1: The ERs (first row) and the biases (second row) of the approximate Bayesian
predictors under the ESEL function when 8 = 1, and N = n is fixed.
Prior T Prior 2

m g " 10 20 30 40 10 20 30 40

0.0039 0.0011 0.0000 —0.0017 0.0036 0.0010 0.0000 —0.0017

) 0.7063 0.6529 0.6332  0.6269 0.6986 0.6511 0.6323 0.6264
0.0143 0.0022 —0.0042 —0.0090 0.0132 0.0020 —0.0044 —0.0091

8 2.8338 2.55640 2.4440  2.3959 2.7882 2.5429 2.4390  2.3932
0.0063 —0.0111 —0.0186 —0.0220 0.0051 —0.0114 —0.0188 —0.0221

10 7.0346 6.1557  5.8227  5.6737 6.8813  6.1185 5.8062 5.6646
—0.0184 —0.0304 —0.0419 —0.0472 —0.0193 —0.0307 —0.0421 —0.0473

15 564.011 400.367 342.692 315.889  525.414 391.894 339.036 314.015
—0.6365 —0.5773 —0.5908 —0.5917 —0.6299 —0.5756 —0.5901 —0.5913

241 0.0091 0.0087 0.0085 0.0085 0.0091 0.0087 0.0085 0.0085
0.0034 0.0008 0.0004 —0.0007 0.0032 0.0008 0.0003 —0.0007

5 0.2438 0.2255 0.2194 0.2164 0.2413 0.2250 0.2191 0.2163
0.0160 0.0048 0.0020 0.0008 0.0151  0.0046 0.0019  0.0007

10 1.4232 1.2768 1.2307 1.2106 1.4024 1.2721 1.2287 1.2093
0.0217  0.0037 —0.0004 —0.0034 0.0202 0.0033 —0.0006 —0.0035

12 25330 2.2395 2.1451  2.1083 24891 2.2296 2.1408 2.1057
0.0198 —0.0007 —0.0027 —0.0083  0.0182 —0.0011 —0.0029 —0.0084

15 6.0430 5.1721  4.9046  4.7955 5.9029  5.1409 4.8912 4.7874
0.0083 —0.0118 —0.0132 —0.0202  0.0068 —0.0122 —0.0135 —0.0203

20 39.3023 30.1697 27.6075 26.5623  37.5981 29.8146 27.4593 26.4731
—-0.0692 —0.0743 —0.0710 —0.0711 —0.0689 —0.0742 —0.0711 —0.0712

24 1965.23 1105.84 924.537 857.103 1772.65 1075.00 912.270 849.634
—0.7064 —0.6386 —0.5880 —0.5986 —0.6981 —0.6361 —0.5870 —0.5980
0.0043 0.0041 0.0040 0.0040 0.0043 0.0041 0.0040 0.0040
0.0022 0.0013  0.0005 0.0001 0.0021  0.0013  0.0005  0.0001
5 0.1076  0.1003 0.0973  0.0962 0.1067 0.1001  0.0972  0.0961
0.0109 0.0049 0.0028 0.0015 0.0102  0.0047 0.0027 0.0014

10 0.5274 0.4855 0.4699 0.4623 0.5215 0.4841 0.4692 0.4619
0.0189 0.0081 0.0030 0.0016 0.0178 0.0078 0.0028 0.0016

15 1.6130 1.4402 1.3826 1.3581 1.5878 1.4346 1.3801 1.3566
0.0272 0.0073  0.0056  0.0028 0.0255 0.0069 0.0054 0.0027

18 2.8873 2.5695 2.4552  2.3992 2.8367 2.5573  2.4498  2.3962
0.0203 0.0080 —0.0032 —0.0040 0.0189 0.0076 —0.0034 —0.0041

20 43804 3.7831 3.6002 3.5196 4.2867 3.7622 3.5912  3.5143
0.0242  0.0040 —0.0007 —0.0031  0.0225 0.0035 —0.0009 —0.0033

25 12.8344 10.8075 10.0445 9.7042  12.4584 10.7187 10.0055 9.6831
—0.0061 —0.0144 —0.0225 —0.0250 —0.0067 —0.0146 —0.0227 —0.0251

30 60.8660 46.9781 41.9444 39.6592 57.9331 46.3155 41.6575 39.5085
—0.0832 —0.0756 —0.0749 —0.0759 —0.0817 —0.0753 —0.0748 —0.0759

35 4603.63 2707.65 2120.37 1849.85 4105.37 2613.37 2081.07 1830.90
—0.7966 —0.6892 —0.6471 —0.6397 —0.7851 —0.6860 —0.6457 —0.6389

35

—
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Table 2: The ERs (first row) and the biases (second row) of the approximate Bayesian
predictors under the ESEL function when 6 = 3, and N = n is fixed.

Prior 1 Prior 2
mo g n 10 20 30 40 10 20 30 40
15 1 0.0026 0.0025 0.0025 0.0024 0.0025 0.0025 0.0025 0.0024
0.0025 0.0009 0.0001 0.0006 0.0017 0.0006 0.0000 0.0005
5 0.0791 0.0734 0.0719 0.0704 0.0749 0.0722 0.0714 0.0702
0.0116 0.0047 0.0019 0.0014 0.0075 0.0036 0.0014 0.0011
8 0.2787 0.2563 0.2487 0.2443 0.2614 0.2515 0.2465 0.2431

0.0173 0.0058 0.0026  0.0006 0.0106  0.0038 0.0017  0.0001

10 0.5807 0.5297 0.5125 0.5024 0.5400 0.5183 0.5072  0.4996
0.0215 0.0064 0.0025 —0.0001 0.0131 0.0039 0.0014 —0.0006

15 8.2157 7.0401 6.6607  6.4556 7.1447  6.7305 6.5164 6.3757
—0.0419 —0.0591 —0.0585 —0.0682 —0.0499 —0.0618 —0.0598 —0.0687
241 0.0011  0.0010 0.00I0 0.0010 0.0010 0.0010 0.0010 0.0010
0.0013 0.0008 0.0003 0.0001 0.0008 0.0006 0.0002 0.0001

5 0.0274 0.0254 0.0248 0.0247 0.0260 0.0251 0.0246  0.0246
0.0078 0.0035 0.0023 0.0006 0.0052 0.0028 0.0020 0.0004

10 0.1451 0.1334 0.1295 0.1283 0.1364 0.1310 0.1284 0.1277
0.0156 0.0071 0.0041  0.0010 0.0102 0.0056 0.0034 0.0007

12 0.2412 0.2204 0.2142 0.2115 0.2260 0.2162 0.2123  0.2105
0.0186 0.0090 0.0046 0.0013 0.0120 0.0071  0.0037  0.0009

15 0.4890 0.4446 0.4310 0.4236 0.4546 0.4350 0.4267 0.4213
0.0244 0.0110 0.0047 0.0015 0.0159  0.0084 0.0036 0.0010

20  1.7301 1.5329 1.4733 1.4396 1.5714 1.4882 1.4532 1.4287
0.0279 0.0129 0.0022 —-0.0014 0.0166 0.0094 0.0007 —0.0021

24 12,6596 10.5389 9.8689  9.5225  10.6924 9.9836 9.6173  9.3829
—0.0425 —0.0513 —0.0683 —0.0704 —0.0498 —0.0540 —0.0694 —0.0707
0.0010 0.0004 0.0003 0.0002 0.0006 0.0004 0.0002 0.0002

5 0.0123 0.0113 0.0110 0.0109 0.0116 0.0112 0.0110 0.0109
0.0048 0.0024 0.0017  0.0009 0.0030 0.0019 0.0014 0.0008

10 0.0572 0.0529 0.0515 0.0509 0.0540 0.0521 0.0511 0.0507
0.0109 0.0049 0.0032 0.0017 0.0072  0.0039 0.0028 0.0015

15 0.1599 0.1464 0.1419 0.1404 0.1502 0.1437 0.1407 0.1398
0.0166  0.0082 0.0051  0.0022 0.0109 0.0066 0.0044 0.0018

18 0.2670 0.2447 0.2382  0.2342 0.2497 0.2399 0.2360 0.2330
0.0211  0.0096 0.0052 0.0027 0.0143 0.0076 0.0043 0.0022

20 0.3734 0.3388 0.3280 0.3239 0.3478 0.3317 0.3248 0.3222
0.0226 0.0116 0.0065 0.0023 0.0147  0.0093 0.0055 0.0018

25 0.8405 0.7576 0.7334 0.7180 0.7746 0.7391 0.7249 0.7133
0.0296 0.0134 0.0065 0.0033 0.0197 0.0105 0.0051  0.0026

30 21823 1.9306 1.8515 1.8008 1.9676 1.8696 1.8233 1.7854
0.0335 0.0114 0.0035 0.0023 0.0220 0.0078  0.0018 0.0014

35 17.6083 14.4325 13.4384 12.8776 14.5510 13.5591 13.0341 12.6541
—0.0487 —0.0697 —0.0714 —0.0680 —0.0539 —0.0718 —0.0724 —0.0683

e The ERs exhibit a decreasing trend with respect to n in most cases, as expected,
since increasing the number of observations should improve performance. Recall that
n denotes the sample size when N is fixed, and the expected value of N when N is
random (Clearly, we expect that increasing the expected value of N leads to larger
values for the number of observations). Moreover, the absolute values of biases also
decrease respect to n in most cases for § = 1 when N follows the truncated geometric
distribution, and for § = 3 as well. The biases are negative when s = m.
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Table 3: The ERs (first row) and the biases (second row) of the approximate Bayesian
predictors under the ESEL function when 8 = 1, and N follows the truncated Poisson
distribution at t; = 1.

Prior 1 Prior 2
mo g n 10 20 30 40 10 20 30 40
151 0.0229 0.0212 0.0204 0.0203 0.0226 0.0212 0.0204 0.0203
0.0045 0.0012 0.0009 0.0007 0.0040 0.0011 0.0008 0.0007
5 0.7278 0.6565 0.6324 0.6269 0.7157 0.6543 0.6315 0.6264
0.0183 0.0008 —0.0028 —0.0053 0.0167 0.0004 —0.0030 —0.0054
8 2.9495 2.5626 2.4408 2.4090 2.8786  2.5496 2.4358  2.4062

0.0074 —0.0114 —0.0159 —0.0201  0.0058 —0.0118 —0.0161 —0.0202

10 7.3724 6.1839 5.8187  5.7037 71312  6.1399 5.8021 5.6943
—0.0095 —0.0338 —0.0394 —0.0403 —0.0106 —0.0342 —0.0395 —0.0404

15 636.061 404.007 339.888 319.355 571.712 393.827 336.283 317.407
—0.6489 —0.6153 —0.5871 —0.5779 —0.6406 —0.6134 —0.5862 —0.5775

241 0.0095 0.0085 0.0085 0.0082 0.0094 0.0085 0.0085 0.0082
0.0031  0.0016 0.0001  0.0008 0.0027  0.0016 0.0001  0.0008

5 0.2511 0.2258 0.2202  0.2152 0.2471 0.2250 0.2199 0.2150
0.0174 0.0065 0.0008 0.0014 0.0160 0.0062 0.0007 0.0013

10 14711 1.2830 1.2327 1.2051 1.4374 1.2770 1.2305 1.2039
0.0250 0.0070 —0.0026 —0.0028  0.0229 0.0065 —0.0028 —0.0029

12 2.6307 2.2558 2.1510 2.0979 2.5596 2.2434 2.1464  2.0955
0.0226  0.0018 —0.0074 —0.0072  0.0205 0.0012 —0.0076 —0.0073

15 6.3327 5.2227 49145 4.7631 6.1032 5.1837 4.9001 4.7553
0.0134 —-0.0099 —0.0193 —0.0151 0.0116 —0.0105 —0.0195 —0.0152

20 42.6313 30.6902 27.6877 26.3582  39.7253 30.2503 27.5275 26.2708
-0.0713 —0.0726 —0.0760 —0.0791 —0.0706 —0.0727 —0.0760 —0.0791

24 2307.16 1162.83 934.627 843.008 1975.10 1122.73 921.359 835.597
—0.7473 —0.6513 —0.5904 —0.5979 —0.7365 —0.6488 —0.5891 —0.5972
0.0044 0.0042 0.0040 0.0040 0.0043 0.0042 0.0040 0.0040
0.0035 0.0007 0.0005 0.0004 0.0032  0.0006 0.0005 0.0004
) 0.1106 0.1007 0.0978  0.0960 0.1091  0.1004 0.0977  0.0960
0.0132  0.0048 0.0021  0.0029 0.0122  0.0046 0.0020 0.0028

10 0.5433 0.4871 0.4704 0.4630 0.5339 0.4855 0.4697 0.4626
0.0246 0.0083 0.0030 0.0038 0.0229  0.0080 0.0028  0.0037

15 1.6702 1.4492 1.3903 1.3575 1.6292 1.4421 1.3876 1.3561
0.0325 0.0101 —0.0007 —0.0008  0.0303 0.0095 —0.0008 —0.0009

18 3.0095 2.5814 2.4571 2.4094 2.9296 2.5669 2.4516  2.4064
0.0280 0.0074 —0.0042 —0.0006  0.0261 0.0069 —0.0044 —0.0008

20 45774 3.8142  3.6108  3.5082 4.4237  3.7882  3.6011  3.5030
0.0314 0.0073 —0.0068 —0.0069  0.0293 0.0067 —0.0070 —0.0070

25 13.6577 10.8591 10.0342 9.7725  13.0503 10.7531 9.9949  9.7507
0.0035 —0.0124 —0.0207 —0.0210  0.0028 —0.0128 —0.0208 —0.0211

30 66.8667 47.3147 41.7950 40.0258  61.9845 46.5196 41.5086 39.8694
—0.0774 —0.0723 —0.0693 —0.0702 —0.0754 —0.0721 —0.0691 —0.0702

35 5352.70 2752.22 2084.87 1869.51  4546.37 2637.57 2046.60 1849.82
—0.8069 —0.7026 —0.6411 —0.6337 —0.7927 —0.6990 —0.6394 —0.6329

35

—

e As expected, Prior 2 (an informative prior) typically yields smaller ERs than Prior
1 (a non-informative prior), since we expect that an informative prior enhances per-
formance. Furthermore, Prior 2 demonstrates superior performance in terms of bias in
most cases, particularly when 6 = 3.

e For a fixed m, as s increases, the ERs increase. This is not far from our expectation,
as we anticipate that with larger future observations, the error or loss would also in-
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Table 4: The ERs (first row) and the biases (second row) of the approximate Bayesian
predictors under the ESEL function when 6§ = 3, and N follows the truncated Poisson
distribution at t; = 1.

Prior 1 Prior 2

mo g n 10 20 30 40 10 20 30 40
15 1 0.0027 0.0025 0.0025 0.0024 0.0025 0.0025 0.0024 0.0024
0.0024 0.0012 0.0007 0.0006 0.0014 0.0010 0.0006 0.0005
5 0.0795 0.0737 0.0718 0.0711 0.0743 0.0724 0.0712 0.0708
0.0119 0.0050 0.0024 0.0010 0.0072 0.0037 0.0018 0.0007
8 0.2797 0.2557 0.2499 0.2451 0.2589 0.2503 0.2474 0.2437
0.0177 0.0083 0.0017 0.0016 0.0102 0.0062 0.0007 0.0010
10 0.5837 0.5300 0.5147 0.5055 0.5357 0.5170 0.5090 0.5022
0.0201  0.0092 0.0010 0.0001 0.0110 0.0064 —0.0003 —0.0006
15 8.2120 7.0911 6.6815 6.5083 7.0023 6.7416 6.5254 6.4178
—0.0496 —0.0548 —0.0680 —0.0660 —0.0546 —0.0577 —0.0694 —0.0667
241 0.00IT 0.00I0 0.0009 0.0010 0.00I0 0.00I0 0.0009 0.0010
0.0017 0.0006 0.0007 0.0004 0.0010 0.0004 0.0006 0.0004
5 0.0281 0.0254 0.0247 0.0246 0.0261 0.0250 0.0246 0.0245
0.0084 0.0035 0.0020 0.0013 0.0050 0.0028 0.0017 0.0011
10 0.1483 0.1333 0.1297 0.1285 0.1370 0.1307 0.1286 0.1278
0.0173 0.0064 0.0031 0.0020 0.0103 0.0048 0.0024 0.0016
12 0.2459 0.2208 0.2145 0.2124 0.2262 0.2162 0.2126 0.2112
0.0214 0.0072 0.0033 0.0019 0.0131  0.0053 0.0025 0.0013
15 0.5011 0.4453 0.4306 0.4258 0.4569 0.4348 0.4262 0.4231
0.0259 0.0083 0.0038 0.0020 0.0155 0.0058 0.0027 0.0013
20 1.7717 1.5343 1.4710 1.4502 1.5725 1.4857 1.4503 1.4375
0.0318 0.0073 0.0009 —0.0017 0.0186 0.0040 —0.0005 —0.0027
24 13.1194 10.5232 9.8319 9.6013 10.6848 9.4148 9.5717 9.4430
—0.0368 —0.0639 —0.0668 —0.0705 —0.0437 —0.0657 —0.0675 —0.0712
35 1 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0009 0.0005 0.0002 0.0001 0.0005 0.0004 0.0002 0.0001
5 0.0123 0.0114 0.0111 0.0110 0.0115 0.0112 0.0110 0.0109
0.0053 0.0024 0.0014 0.0008 0.0032 0.0018 0.0012 0.0007
10 0.0576 0.0532 0.0517 0.0510 0.0537 0.0522 0.0513 0.0508
0.0110 0.0052 0.0030 0.0021 0.0067 0.0040 0.0025 0.0018
15 0.1639 0.1462 0.1422 0.1412 0.1511 0.1433 0.1410 0.1405
0.0176 0.0076 0.0042 0.0023 0.0103 0.0059 0.0035 0.0018
18 0.2688 0.2466 0.2390 0.2352 0.2481 0.2411 0.2366 0.2339
0.0205 0.0092 0.0046 0.0032 0.0128 0.0070 0.0036 0.0026
20 0.3817 0.3385 0.3283 0.3248 0.3489 0.3309 0.3251 0.3228
0.0247 0.0102 0.0052 0.0035 0.0149 0.0078 0.0043 0.0028
25 0.8462 0.7629 0.7348 0.7220 0.7683 0.7418 0.7254 0.7167
0.0271 0.0133 0.0061 0.0039 0.0167 0.0100 0.0046 0.0031
30 2.1954 1.9433 1.8543 1.8150 1.9464 1.8741 1.8236 1.7974
0.0268 0.0121 0.0035 0.0020 0.0156 0.0081 0.0016 0.0010
35  17.5953 14.5588 13.4498 13.0262 14.1736 13.5749 13.0104 12.7718
—0.0742 —0.0576 —0.0613 —0.0675 —0.0745 —0.0597 —0.0624 —0.0680

crease. However, this result does not consistently extend to bias.
e The approximate predictors with fixed sizes achieve the best performance in terms
of ER in most cases. Moreover, the best performance in terms of bias generally occurs
for either the approximate predictors with fixed sizes or those with truncated Poisson
distributed sizes. In contrast, the approximate predictors with truncated geometrically
distributed sample sizes exhibit the poorest performance in terms of both ER and bias.
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Table 5: The ERs (first row) and the biases (second row) of the approximate Bayesian
predictors under the ESEL function when 8 = 1, and N follows the truncated geometric
distribution at t; = 1.

Prior 1 Prior 2
mo g n 10 20 30 40 10 20 30 40
151 0.0254 0.0234 0.0226 0.0221 0.0243 0.0228 0.0222 0.021I8
0.0107 0.0064 0.0034 0.0032 0.0090 0.0054 0.0028 0.0026
5 0.8449 0.7543 0.7089 0.6996 0.7966 0.7288 0.6919 0.6845
0.0343 0.0178 0.0094 0.0063 0.0301 0.0151 0.0077 0.0049
8 3.5408 3.0580 2.8249 2.7841 3.2683 2.9159 2.7315 2.6951

0.0254 0.0094 —0.0019 0.0015 0.0223 0.0070 —0.0032 0.0002

10 9.2309  7.6902 6.9808  6.9245 8.3135 7.2223 6.6760 6.6133
—0.0013 —0.0156 —0.0248 —0.0196 —0.0021 —0.0169 —0.0254 —0.0204

15 1062.609 665.534 535.685 609.0556 808.074 556.900 472.060 506.672
—0.7161 —0.6580 —0.6322 —0.6213 —0.6926 —0.6469 —0.6239 —0.6152
241 0.0I03 0.0095 0.0089 0.0089 0.0098 0.0093 0.0088 0.0088
0.0072  0.0042 0.0037  0.0029 0.0059 0.0036 0.0033 0.0025

5 0.2823 0.2551 0.2405 0.2386 0.2675 0.2480 0.2357  0.2338
0.0276 0.0172 0.0123 0.0079 0.0238 0.0151 0.0110 0.0067

10 1.6836  1.4867 1.3866 1.3683 1.5697 1.4332 1.3498 1.3287
0.0367  0.0206 0.0149 0.0087 0.0328 0.0183 0.0135 0.0075

12 3.0543  2.6518 24568  2.4268 2.8162 25421 2.3810  2.3402
0.0320 0.0171 0.0125 0.0066 0.0288 0.0151 0.0113 0.0055

15 7.6054 6.3586 5.8172 5.8071 6.8378 6.0197 5.5802  5.5016
0.0149  0.0034 —-0.0004 —0.0075 0.0139 0.0024 —0.0009 —0.0080

20  58.4913 42.1403 37.0691 40.3946  48.0637 38.2021 34.2446 35.2391
—0.0997 —0.0762 —0.0741 —0.0829 —0.0926 —0.0729 —0.0715 —0.0809

24 4656.21 2121.87 1731.98 2985.15 3140.42 1743.49 1458.78 2117.03
—0.8318 —0.6955 —0.6822 —0.6623 —0.8007 —0.6792 —0.6701 —0.6524
0.0066  0.0034 0.0028 0.0013 0.0055 0.0028 0.0024 0.0010

5 0.1272  0.1139 0.1087 0.1069 0.1203 0.1103 0.1063  0.1048
0.0259 0.0169 0.0096 0.0086 0.0224 0.0149 0.0083 0.0075

10 0.6361  0.5627 0.5303  0.5223 0.5975 0.5422 0.5168 0.5102
0.0416  0.0274 0.0153 0.0134 0.0369 0.0245 0.0135 0.0118

15 1.9268 1.6867 1.5735 1.5512 1.7879 1.6220 1.5289 1.5018
0.0432  0.0277 0.0181 0.0146 0.0393 0.0254 0.0167 0.0133

18 3.6740  3.1245 28778  2.8436 3.3630 2.9637 2.7724  2.7410
0.0471  0.0319 0.0142 0.0143 0.0435 0.0292 0.0127 0.0128

20 5.4594  4.5988  4.2342  4.2067 4.9432 4.3689 4.0736 4.0060
0.0331  0.0232 0.0116 0.0084 0.0310 0.0217 0.0107 0.0076

25  18.1454 14.3189 12.7094 12.7688  15.7952 13.1604 11.9699 11.9364
0.0092  0.0068 —0.0151 —0.0073  0.0102 0.0062 —0.0152 —0.0077

30 100.7667 70.5845 59.4174 62.8730 81.5130 61.7865 54.0542 55.4958
—0.0966 —0.0665 —0.0835 —0.0685 —0.0878 —0.0631 —0.0808 —0.0668

35 11098.4 5386.91 4033.66 5468.67 7598.65 4164.74 3356.85 4030.67
—0.9081 —0.7777 —0.7441 —0.7047 —0.8719 —0.7596 —0.7308 —0.6948

5 Real data example

For illustrative purposes, we consider real-world data, focusing on the lifetimes of
steel specimens (in units of 1000 cycles) subjected to different stress amplitudes, see
Maennig (1967); Kimber (1990); Crowder (2000); Lawless (2003). The specimens were
tested under 14 distinct stress levels, ranging from 32.0 to 38.5 in increments of 0.5
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Table 6: The ERs (first row) and the biases (second row) of the approximate Bayesian
predictors under the ESEL function when 6§ = 3, and N follows the truncated geometric
distribution at t; = 1.

Prior 1 Prior 2
mo g n 10 20 30 40 10 20 30 40
15 1 0.0031 0.0028 0.0027 0.0026 0.0026 0.0026 0.0025 0.0025
0.0051 0.0025 0.0021 0.0016 0.0020 0.0009 0.0009 0.0007
5 0.0933 0.0827 0.0802 0.0770 0.0766 0.0744 0.0734 0.0722
0.0236  0.0128 0.0107 0.0092 0.0099 0.0056 0.0050 0.0050
8 0.3297 0.2876 0.2800 0.2693 0.2670 0.2567 0.2543 0.2512

0.0357 0.0207 0.0162 0.0129 0.0154 0.0100 0.0075  0.0064

10 0.6936 0.5986 0.5844  0.5587 0.5530 0.5296 0.5262 0.5179
0.0417 0.0248 0.0173  0.0150 0.0179  0.0122 0.0069 0.0072

15 10.6917 8.4689 8.2536  7.6475 7.2515 6.9079 6.8198  6.7087
—0.0261 —0.0469 —0.0509 —0.0539 —0.0401 —0.0534 —0.0588 —0.0601
241 0.0013 0.00I1 0.00I0 0.0010 0.0010 0.0010 0.0010 0.0010
0.0031  0.0021  0.0017 0.0010 0.0010 0.0010 0.0009 0.0004

) 0.0326 0.0289 0.0272  0.0268 0.0264 0.0258 0.0252  0.0252
0.0158 0.0095 0.0069 0.0051 0.0063 0.0044 0.0035 0.0024

10 0.1723 0.1519 0.1430 0.1401 0.1381 0.1345 0.1318 0.1307
0.0308 0.0187 0.0134 0.0105 0.0135 0.0093 0.0071  0.0054

12 0.2879 0.2523 0.2371 0.2321 0.2292 0.2224 0.2179 0.2159
0.0356  0.0220 0.0157 0.0123 0.0155 0.0111 0.0084 0.0064

15 0.5891 0.5115 0.4798  0.4693 0.4614 0.4467 0.4383 0.4340
0.0435 0.0276 0.0185 0.0143 0.0199 0.0146 0.0099 0.0073

20  2.1550 1.8130 1.6784 1.6308 1.5904 1.5342 1.5027 1.4779
0.0485 0.0301 0.0165 0.0152 0.0225 0.0153 0.0069 0.0073

24 18.0989 13.5386 11.8956 11.6180  10.7653 10.2779 9.9670 9.7913
—0.0470 —0.0505 —0.0561 —0.0631 —0.0538 —0.0552 —0.0582 —0.0650
0.0024 0.0014 0.0009 0.0010 0.0009 0.0007 0.0003 0.0005

5 0.0144 0.0127 0.0125 0.0118 0.0118 0.0114 0.0114 0.0111
0.0117  0.0069 0.0050 0.0049 0.0048 0.0033 0.0022 0.0028

10 0.0678 0.0597 0.0581  0.0558 0.0551 0.0534 0.0529 0.0521
0.0228 0.0133 0.0105 0.0089 0.0100 0.0066 0.0051  0.0049

15 0.1910 0.1688 0.1576 0.1544 0.1525 0.1489 0.1449 0.1438
0.0319 0.0184 0.0141 0.0111 0.0138 0.0085 0.0076  0.0058

18 03196 0.2781 0.2693 0.2594 0.2563 0.2467 0.2433  0.2410
0.0388 0.0232 0.0194 0.0152 0.0178 0.0121 0.0104  0.0085

20 0.4489 0.3927 0.3659 0.3582 0.3529 0.3436 0.3347 0.3317
0.0413 0.0242 0.0184 0.0143 0.0187 0.0117 0.0101 0.0075

25 1.0198 0.8733 0.8454 0.8099 0.7931 0.7624 0.7512 0.7441
0.0518 0.0296 0.0254 0.0185 0.0255 0.0157 0.0138  0.0098

30 27224 2.2645 2.1938  2.0770 2.0103 1.9256 1.8973 1.8747
0.0569 0.0301 0.0256  0.0175 0.0300 0.0159 0.0131  0.0080

35 25.1253 18.3013 17.9623 16.0743 14.7131 13.9189 13.6906 13.4482
—0.0393 —0.0630 —0.0473 —0.0591 —0.0434 —0.0637 —0.0516 —0.0626

(i.e. 32.0,32.5,33.0,...,38.0,38.5). Prior studies have investigated different subsets
of the stress levels tested. Tanis et al. (2023) focused on the stress levels 32.0 and
33.0, whereas Etemad Golestani et al. (2025) analyzed the data for 33.0 and 32.5 stress
levels. In this work, we specifically analyze the data for stress level 32.0 and stress level
32.5, which are divided by 1000.

We used the Kolmogorov-Smirnov (K-S) test to check if the data come from the
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exponential distribution with 8 = 0.75. The K-S test statistics are computed as D; =
0.14316 for the stress level 32.0, and Dy = 0.13671 for the stress level 32.5. Moreover,
the corresponding computed p-values are given by p; = 0.6571 for the stress level 32.0,
and py = 0.8011 for the stress level 32.5. We treat the first data (the stress level 32.0)
as the information sample, denoted by x(,) = (¥1,...,%,), and the second data (the
stress level 32.5) as the future sample. Assuming that there is no prior information,
let us take a = b = 0. We define the deviation as \ﬁ:m — Yim|- From (2), we define

the loss as (e~ Ysm —e~Yem)2, Table 7 presents several order statistics from the future
sample along with their corresponding approximate Bayes point predictions under the
ESEL function, computed using (9), as well as the deviations and the losses. As shown
in Table 7, the predicted values approximately deviate from the actual values in an
increasing manner as s grows. However, the loss values seem to remain stable.

Table 7: Several order statistics, and the approximate Bayes point predictions under
the ESEL function, the deviations and the losses for data of stress level 32.5.

s 1 3 5 8 10 12 15 18 20
Yem 0.196 0.250 0.308 0.475 0.669 0.879 1.338 2.2IT 4.257
Yom 0.070 0.222 0.390 0.682 0.914 1.189 1.734 2.628 3.955
Deviation 0.126 0.028 0.082 0.207 0.245 0.310 0.396 0.417 0.302
Loss 0.012 0.000 0.003 0.014 0.012 0.012 0.007 0.001 0.000

Discussion and conclusions

In this paper, we addressed the problem of Bayesian two-sample prediction for the
exponential distribution using a recently introduced asymmetric loss function. We
examine cases where the informative sample size is either fixed or follows a random
distribution (e.g., truncated Poisson or truncated geometric). Due to the fact that the
Bayesian predictors do not seem to possess a closed form, we adopt a Monte Carlo
approximation approach. Through a simulation study, we assess the performance of
these predictors and demonstrate that fixed sample sizes may yield better predictive
results compared to truncated Poisson and and truncated geometrically distributed
sample sizes. A real data application is provided to illustrate the methodology. Note
that other loss functions could be considered for predicting future observations. All
computations in this paper were performed using the statistical software R (R Core
Team, 2025) and the package extraDistr (Wolodzko, 2023) included therein.
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