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Abstract: Measurement error is an inherent and unavoidable component of nonsam-
pling error in surveys, and its estimation is essential for assessing the quality of survey
results. This paper investigates two agreement criteria, Cohen’s Kappa and Gwet’s
AC1, for quantifying measurement error in binary survey data. A theoretical compari-
son is first presented to highlight the conceptual differences between the two coefficients.
This is followed by a simulation study in which true binary values are generated under
varying prevalence levels, and observed responses are obtained through controlled mis-
classification mechanisms characterized by specified levels of observed agreement. The
performance and empirical variances of both agreement measures are evaluated and
the results demonstrate that Gwet’s AC1 provides more stable agreement estimates
and variance behavior than Cohen’s Kappa, particularly under conditions of extreme
prevalence.

Keywords: Agreement; Cohen’s Kappa; Gwet’s AC1; Measurement error; Preva-
lence.
Mathematics Subject Classification (2010): 62D05, 62P99.

1 Introduction
Measurement error constitutes a major component of nonsampling error in survey stud-
ies and can substantially affect the precision and quality of survey estimates. Modeling
of measurement error provides a framework for quantifying this error and assessing the
precision of survey results. Early work by Kish (1962), Biemer and Stokes (1991), and
Biemer and Trewin (1997) employed analysis of variance (ANOVA) techniques to model
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measurement error in survey data. More recently, Alimohammadi and Navvabpour
(2008) proposed a measurement error model for continuous data arising from face to
face surveys.

Modeling measurement error for categorical data presents challenges that differ
fundamentally from those encountered with continuous variables. In particular, mea-
surement error in binary survey data manifests as misclassification, where the observed
response does not correspond to the underlying true status. Alimohammadi (2011) in-
troduced a modeling framework specifically designed to address measurement error
in binary data. In the context of binary surveys, quantifying measurement error re-
quires appropriate criteria that capture the agreement between observed responses and
their true values. Agreement coefficients provide a natural approach for this purpose.
Among these, Cohen’s Kappa and Gwet’s AC1 are widely used measures of agreement.
While Cohen’s Kappa has a long history of application, it is well documented that
its value is sensitive to marginal distributions and prevalence imbalance, which are
common features of survey data.

In this paper, we focus on the use of Cohen’s Kappa and Gwet’s AC1 as criteria
for quantifying measurement error in binary survey data. We provide a theoretical
comparison of these agreement measures and conduct a simulation study to examine
their behavior and standard errors under varying prevalence and observed agreement
scenarios. The results clarify the relative suitability of these coefficients for assessing
measurement error in binary surveys.

The remainder of this paper is organized as follows. Section 2 introduces the theo-
retical framework, including the 2×2 contingency table structure and formal definitions
of observed agreement, misclassification probabilities, Cohen’s Kappa, and Gwet’s AC1.
Section 3 describes the simulation design, including data generation mechanisms and
simulation results and compares the empirical behavior of the agreement measures.
Section 4 discusses the main findings and practical implications for survey measure-
ment error assessment.

2 Criteria for quantifying measurement error
Let Y ∈ {0, 1} denote the true value of a binary survey variable and Ỹ ∈ {0, 1} its
observed counterpart. The joint distribution of (Y, Ỹ ) can be represented by a 2 × 2
contingency table with cell probabilities πij = Pr(Y = i, Ỹ = j), for i, j ∈ {0, 1}. The
marginal probabilities are denoted by πi. =

∑
j πij and π.j =

∑
i πij (Table 1).

Table 1: Probability distribution of true and observed values for binary data.
Ỹ =Response Value

0 1 total
Y = True Value 0 π00 π01 π0.

1 π10 π11 π1.
total π.0 π.1

In binary data, measurement error appears as disagreement between the observed
response and the true value. A natural measure of this agreement is accuracy, defined
as the probability that the observed and true values coincide. In this paper, accu-
racy corresponds to the observed agreement and is denoted at the population level
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by Pr(Ỹ = Y ) = θ0 = π00 + π11, with the corresponding sample estimator given by
P0 = (n00 + n11)/n, where nij , i, j ∈ {0, 1}, denotes the number of units for which the
true value is i and the observed response is j, and n is the sample size.

Prevalence plays a central role in determining the behavior of agreement measures.
Prevalence is defined as π = Pr(Y = 1), which characterizes the marginal distribution
of the true responses. Extreme values of π (close to 0 or 1) correspond to situations
where one category is rare, a common feature of survey data. Throughout this paper,
the term prevalence refers solely to the distribution of the true binary values, and does
not include the observed responses affected by measurement error.

In this paper, two agreement criteria, Kappa and Gwet’s AC1, are applied to eval-
uate the degree of concordance between observed and true values.

Cohen (1960) supposed Kappa coefficient, and Fliess and Cohen (1973) introduced
weighted Kappa coefficient to assess agreement between two raters. The weighted
kappa coefficient is a generalization of the simple Kappa coefficient, using weights to
consider the relative difference between categories. The weights wij are constructed
such that wii = 1 for all i and j, and wij = wji. The weighted Kappa coefficient is
defined as

Kw =
θ0w − θew
(1− θew)

,

where θ0w = ΣiΣjwijπij and θew = ΣiΣjwijπi.π.j .
Considering Table 1 to define the Kappa coefficient for a binary variable, Cohen’s

Kappa is described as
K =

θ0 − θe
(1− θe)

,

where θ0 = π00 + π11 is known as Observed agreement, and θe = π.0π0. + π.1π1..
The second agreement criterion, introduced by Gwet (2001), is Gwet’s AC1, and

defined as
AC1 =

θ0 − θ∗e
(1− θ∗e)

,

where θ0 = π00 + π11 and θ∗e = 2π∗(1− π∗), π∗ = 1
2 ((π10 + π11) + (π01 + π11)).

The agreement criteria have been applied to quantify measurement error. Let us
consider real values by examining the absolute difference, |i − j|, (i, j = 0, 1 in Table
1) as measurement error. It can be demonstrated that theses criteria take 1 if and
only if θ0 = 1. Therefore, there is complete agreement between observed and true
values. In other words, no measurement error occurs when the value of the criterion
is 1. Conversely, these criteria take 0 if and only if θ0 = θe. This condition is satisfied
when agreement occurs purely by chance. The criteria may yield a negative value when
the probability of agreement is less than the probability of agreement by chance. Such
a scenario indicates a significant amount of measurement error.

Table 2 presents a set of theoretical examples designed to illustrate the conceptual
differences between Cohen’s Kappa and Gwet’s AC1 under varying levels of preva-
lence and observed agreement (θ0). Specifically, the table shows that when prevalence
is balanced, both Kappa and AC1 yield similar values for a given level of observed
agreement. However, as prevalence becomes increasingly imbalanced, Cohen’s Kappa
decreases substantially even when observed agreement remains high, whereas Gwet’s
AC1 remains comparatively stable. These examples foreshadow the simulation results
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presented in Table 3 and highlight why prevalence imbalance plays a central role in
the interpretation of agreement coefficients.

Table 2: Theoretical values of Cohen’s Kappa and Gwet’s AC1
Joint probabilities Agreement measures
π00 π11 π01 π10 θ0 Kappa AC1
0.10 0.90 0.00 0.00 1.00 1.00 1.00
0.00 0.90 0.00 0.10 0.90 0.00 0.00
0.00 0.80 0.10 0.10 0.80 −0.11 −1.00
0.20 0.80 0.00 0.00 1.00 1.00 1.00
0.10 0.70 0.10 0.10 0.80 0.37 0.00
0.00 0.40 0.30 0.30 0.40 −0.43 −1.00
0.50 0.50 0.00 0.00 1.00 1.00 1.00
0.80 0.00 0.10 0.10 0.80 −0.11 0.78
0.00 0.00 0.50 0.50 0.00 −1.00 −1.00
0.10 0.10 0.40 0.40 0.20 −0.60 −0.60
0.20 0.20 0.30 0.30 0.40 −0.20 −0.20
0.30 0.30 0.20 0.20 0.60 0.20 0.20
0.40 0.40 0.10 0.10 0.80 0.60 0.60
0.00 0.00 0.10 0.90 0.00 −0.22 −1.00
0.10 0.60 0.30 0.00 0.70 −0.29 −0.20
0.20 0.30 0.20 0.30 0.50 0.00 −0.11
0.30 0.20 0.10 0.40 0.50 0.00 −0.11
0.40 0.10 0.00 0.50 0.50 0.14 0.29
0.30 0.20 0.40 0.10 0.50 0.14 0.00
0.40 0.20 0.40 0.00 0.60 0.42 0.20
0.50 0.50 0.00 0.00 1.00 1.00 1.00
0.00 0.00 0.90 0.10 0.00 −0.22 −1.00

To further clarify the behavior of the agreement criteria, we provide a theoretical
example based on the contingency tables reported in Table 2. Consider the case with
joint probabilities (π00, π11, π01, π10) = (0.8, 0, 0.1, 0.1), for which the observed agree-
ment is θ0 = π00 + π11 = 0.8. Despite this relatively high level of observed agreement,
Cohen’s Kappa yields a negative value (K = −0.11), suggesting agreement worse than
chance. This result is caused by the strong imbalance in the marginal distributions,
which inflates the expected agreement by chance θe in the definition of Kappa. As a
result, Kappa becomes highly sensitive to prevalence imbalance and may underestimate
agreement in such situations. On the other hand, Gwet’s AC1 for the same contingency
table equals 0.78, reflecting its alternative formulation of expected agreement.

By contrast, when the marginal distributions are balanced, such as in the case
(π00, π11, π01, π10) = (0.4, 0.4, 0.1, 0.1), Cohen’s Kappa (K = 0.6), and Gwet’s AC1
(AC1 = 0.6) yield similar positive values, indicating substantial agreement. This high-
lights that discrepancies between the two criteria are most pronounced under marginal
imbalance and extreme prevalence.

These theoretical examples highlight that discrepancies between the two criteria are
intrinsic to their definitions and not due to sampling variability, thereby motivating
the simulation study presented in the next section.

2.1 Variance formulas of Cohen’s Kappa and Gwet’s AC1
Fliess et al. (1969) presented the variance of Cohen’s Kappa for a 2 × 2 contingency
table with observed cell proportions πij , (i, j = 0, 1). The variance of Cohen’s Kappa
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(K) can be approximated as follow

V ar(K) ≈ θ0(1− θ0)

n(1− θe)2
.

For Gwet’s AC1, Gwet (2008) show that the variance can be approximated as

V ar(AC1) ≈ 1

n

[
θ0(1− θ0)

(1− θ∗e)
2

]
,

where n denotes the sample size, θ0 = π00 + π11 and θ∗e = 2π∗(1− π∗), π∗ = 1
2 ((π10 +

π11) + (π01 + π11)).
The variance of a reliability coefficient influences its confidence interval and inter-

pretability. While Cohen’s Kappa remains an important metric, it is not always reliable
in scenarios with unbalanced data. Gwet’s AC1 provides a theoretically justified, more
stable alternative with superior variance properties. It is recommended for applications
involving low prevalence, small sample sizes, or unbalanced marginal totals.

3 Simulation Methodology
This section describes the simulation design used to compare Cohen’s Kappa and
Gwet’s AC1 when observed survey responses are subject to misclassification relative
to an underlying true binary status. The simulation framework is explicitly defined to
ensure full reproducibility.

3.1 Data-generating process
We consider a binary latent variable Y ∈ {0, 1} representing the true status of a survey
unit (e.g., presence or absence of a characteristic). For each simulation replication, a
sample of size n is generated independently according to a Bernoulli distribution

Yi ∼ Bernoulli(π), i = 1, . . . , n,

where π ∈ (0, 1) denotes the prevalence, defined as the proportion of units with true
value equals 1 in the population. Observed survey responses Ỹ are generated by intro-
ducing misclassification relative to the true status. Specifically, conditional on Y , the
observed response is defined as

Ỹi =

{
Yi with probability α

1− Yi with probability 1− α,

where α ∈ (0, 1) denotes the accuracy of the survey response. Accuracy is defined
as the overall probability that the observed response equals the true latent status
α = P (Ỹ = Y ). In the simulation design, accuracy is defined as Pr(Ỹ = Y ), which
coincides with the observed agreement θ0 = π00 + π11.
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3.2 Contingency table construction
For each simulated dataset, a 2×2 contingency table is constructed by cross-tabulating
Ỹ and Y . The cell counts correspond to nij , i, j ∈ {0, 1}, the number of units for which
Y = i and Ỹ = j. Agreement coefficients are computed from this contingency table.

Sample observed agreement: In practice, observed agreement, θ0, is estimated by
the sample observed agreement as Po = 1

n

∑n
i=1 I(Ỹi = Yi), where I(·) is the indicator

function. In this setting, Po is numerically equal to the realized sample accuracy.

3.3 Simulation parameters
A range of prevalence values π ∈ {0.05, 0.10, 0.30, 0.50, 0.70, 0.90, 0.95}, and observed
agreement levels θ0 ∈ {0.50, 0.70, 0.80, 0.95} are considered in the simulation study.

Rationale for sample size and replications: For each combination of prevalence
and observed agreement, the sample size was set to n = 1000, which is consistent with
common practice in survey methodology and agreement studies (Fliess et al., 2003;
Kish, 1965). Each simulation scenario was replicated R = 1000 times to ensure stable
estimation of the mean and variance of the agreement coefficients, in line with estab-
lished recommendations for the design of simulation studies (Burton et al., 2006; Morris
et al., 2019). The simulation was repeated R = 1000 times to approximate the sam-
pling distributions of the agreement coefficients. For each replication, Cohen’s Kappa
and Gwet’s AC1 were computed, and empirical means and variances were estimated
across replications.

Several limitations of this study should be acknowledged. First, the simulation
assumes symmetric misclassification, with equal probabilities π01 and π10 in Table 1.
While this assumption simplifies interpretation and consistent with common method-
ological studies, real-world survey data may exhibit asymmetric error structures. Sec-
ond, the analysis focuses on binary outcomes; extensions to ordinal or nominal outcomes
may reveal additional complexities. Finally, although the simulation parameters were
chosen to reflect realistic survey settings, specific applications may involve different
sample sizes or error mechanisms.

3.4 Simulation study to compare Cohen’s Kappa and Gwet’s
AC1

In this section, a simulation study is conducted to evaluate the performance of Cohen’s
Kappa and Gwet’s AC1. Table 3 summarizes the results of the simulation study. Each
row corresponds to a specific combination of prevalence π and observed agreement θ0.
For each scenario, the table reports the mean and standard deviation of the sample
observed agreement Po, Cohen’s Kappa, and Gwet’s AC1 across R = 1000 replications.

In Table 3, Kappa is the average of Kappa values across R = 1000 simulation runs,
K̄ = 1

R

∑R
i=1 Ki, Standard Deviation of Kappa is KSD =

√
1

R−1

∑R
i=1(Ki − K̄)2, AC1

is indeed the mean of AC1 as AC1 = 1
R

∑R
i=1 AC1i and Standard Deviation of AC1 is

AC1SD =
√

1
R−1

∑R
i=1(AC1i −AC1)2.
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Table 3: Simulation results to compare agreement criteria.
Prevalence θ0 Po Kappa KSD AC1 AC1SD

0.01 0.95 0.951 0.310 0.017 0.890 0.012
0.05 0.95 0.951 0.346 0.018 0.902 0.013
0.10 0.80 0.884 0.423 0.029 0.765 0.018
0.30 0.70 0.794 0.512 0.031 0.612 0.027
0.50 0.80 0.800 0.600 0.025 0.600 0.025
0.70 0.70 0.798 0.540 0.032 0.635 0.028
0.90 0.70 0.798 0.490 0.034 0.611 0.029
0.95 0.95 0.951 0.346 0.018 0.902 0.013
0.99 0.95 0.951 0.310 0.017 0.890 0.012

The prevalence parameter π controls the proportion of true positive cases in the
population and distinguishes balanced scenarios (e.g., π ≈ 0.5) from imbalanced sce-
narios (e.g., π ≤ 0.10 or π ≥ 0.90). The reported standard deviations provide empirical
estimates of the sampling variability of each agreement coefficient.

The results in Table 3 show that, for a fixed level of observed agreement (θ0), Co-
hen’s Kappa decreases sharply as prevalence becomes more extreme, while Gwet’s AC1
remains relatively stable. This pattern indicates that AC1 more accurately reflects the
underlying measurement error process, whereas Kappa is strongly influenced by preva-
lence imbalance. Additionally, the empirical variance of AC1 is consistently lower than
that of Kappa in highly imbalanced settings, suggesting greater statistical stability.

4 Discussion and conclusions
This study examined the behavior of Cohen’s Kappa and Gwet’s AC1 in a survey mea-
surement error framework, where observed binary responses are imperfect measure-
ments of an underlying true status. By explicitly modeling misclassification through
controlled prevalence and observed agreement parameters, the simulation results pro-
vide insight into how agreement coefficients behave under the considered assumptions.

The results demonstrate that Cohen’s Kappa is highly sensitive to prevalence imbal-
ance. In scenarios where the true prevalence is extreme, Kappa values remain relatively
low despite high observed agreement. From a measurement error perspective, this im-
plies that Kappa may substantially understate the quality of survey measurements in
applications involving rare events, even when misclassification rates are low.

In contrast, Gwet’s AC1 exhibits substantially greater stability across prevalence
levels. The simulation results show that AC1 remains closely aligned with observed
agreement and displays lower empirical variance, particularly under severe prevalence
imbalance. This stability arises from the alternative formulation of expected agreement
in AC1, which reduces sensitivity to marginal distributions. As a result, AC1 provides
a more consistent and interpretable summary of measurement quality when survey
responses are subject to classification error.
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